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Abstract
Background: Dichlorodiphenyltrichloroethane (DDT) is a persistent estrogenic organochlorine pesticide that
is a rodent hepatic tumor promoter, with inconclusive carcinogenicity in humans. We have previously reported
that o, p'-DDT elicits primarily PXR/CAR-mediated activity, rather than ER-mediated hepatic responses, and
suggested that CAR-mediated effects, as opposed to ER-mediated effects, may be more important in tumor
promotion in the rat liver. To further characterize species-specific hepatic responses, gene expression analysis,
with complementary histopathology and tissue level analyses were investigated in immature, ovariectomized
C57BL/6 mice treated with 300 mg/kg o, p'-DDT, and compared to Sprague-Dawley rat data.

Results: Rats and mice exhibited negligible histopathology with rapid o, p'-DDT metabolism. Gene expression
profiles were also similar, exhibiting PXR/CAR regulation with the characteristic induction of Cyp2b10 and
Cyp3a11. However, PXR-specific target genes such as Apoa4 or Insig2 exhibited more pronounced induction
compared to CAR-specific genes in the mouse. In addition, mouse Car mRNA levels decreased, possibly
contributing to the preferential activation of mouse PXR. ER-regulated genes Cyp17a1 and Cyp7b1 were also
induced, suggesting o, p'-DDT also elicits ER-mediated gene expression in the mouse, while ER-mediated effects
were negligible in the rat, possibly due to the inhibitory effects of CAR on ER activities. In addition, o, p'-DDT
induced Gadd45a, Gadd45b and Cdkn1, suggesting DNA damage may be an additional risk factor. Furthermore,
elevated blood DHEA-S levels at 12 h after treatment in the mouse may also contribute to the endocrine-related
effects of o, p'-DDT.

Conclusion: Although DDT is known to cause rodent hepatic tumors, the marked species differences in PXR/
CAR structure, expression patterns and ligand preference as well as significant species-specific differences in
steroidogenesis, especially CYP17A1 expression and activity, confound the extrapolation of these results to
humans. Nevertheless, the identification of potential modes of action as well as species-specific responses may
assist in the selection and further development of more appropriate models for assessing the toxicity of DDT to
humans and wildlife.
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Background
Dichlorodiphenyltrichloroethane (DDT) is a persistent
organochlorine pesticide that is a hepatic tumor pro-
moter in the mouse and rat [1], with inconclusive carci-
nogenicity in the human liver [2,3]. Technical grade
DDT is a mixture of p,p'-DDT, o, p'-DDT and their metab-
olites such as 1,1-dichloro-2,2-bis(p-chlorophenyl)
ethylene (DDE) and l,l-dichloro-2,2-bis(p,p-chlorophe-
nylethane) (DDD) [4]. o, p'-DDT exerts estrogenic effects
in responsive tissues such as the uterus [5] by binding to
estrogen receptor (ER)α and β subtypes [6]. In addition,
o, p'-DDT is an agonist for pregnane X receptor (PXR)
and constitutive androstane receptor (CAR) [7,8]. Thus,
it may elicit complex responses through multiple nuclear
receptors.

Several structurally diverse estrogenic compounds elicit
ER-mediated responses in the liver [9,10]. We have previ-
ously reported that o, p'-DDT elicits primarily PXR/CAR-
mediated, rather than ER-mediated hepatic responses,
and suggested that CAR-mediated effects, as opposed to
ER-mediated effects, may be more important in DDT-
induced tumor promotion in the rat liver [11].

Although the rat is a preferred toxicological model because
of the accumulated background knowledge regarding
chemical-induced toxicity compared to mice, several stud-
ies report significant species-specific differences in response
to chemical exposures. For example, 1,4-bis-[2-(3,5,-
dichloropyridyloxy)] benzene (TCPOBOP) acts as potent
phenobarbital-type enzyme inducer in the mouse liver but
not in the rat or human. This is due to a substitution of
Thr350 in mice with Met in the rat and human CAR [12-
14]. Alternatively, another phenobarbital-type enzyme
inducer 2,4,6-triphenyldioxane-1,3 induces hepatic CYP2B
in rats but not in mice [15]. Such differences may affect
CAR-mediated hepatic drug metabolism and disposition
following xenobiotic exposure. In addition, rat genome
annotation lags behind the mouse and human in maturity,
confounding a more comprehensive assessment of rat gene
expression data. Furthermore, targeted gene-disruption can
be used in mice to further elucidate the roles of PXR, CAR
and ER in o, p'-DDT elicited effects. Thus, we were moti-
vated to investigate hepatic gene expression in the mouse
following o, p'-DDT treatment to identify species-specific
and conserved responses. Overall, the hepatic gene expres-
sion profiles were comparable, however there were marked
species-specific differences in genes regulated by ER, which
may involve species-difference in CAR activation. Further-
more, blood levels of DHEA-S, a precursor of androgen and
estrogen, exhibited mouse-specific elevation, which may
also contribute to endocrine system disruption. Thus, the
present study further elucidates the dynamics of o, p'-DDT
elicited responses in the rodent, and identifies species-spe-

cific responses that may be important to o, p'-DDT exposure
for humans and wildlife.

Methods
Husbandry
Female C57BL/6 mice, ovariectomized on postnatal day
20 were obtained from Charles River Laboratories
(Raleigh, NC) on day 25. Mice were housed in polycar-
bonate cages containing cellulose fiber chip bedding
(Aspen Chip Laboratory Bedding, Northeastern Products,
Warrensberg, NY) and maintained at 40–60% humidity
and 23°C in a room with a 12 h dark/light cycle (7 am-7
pm). Animals were allowed free access to de-ionized water
and Harlan Teklad 22/5 Rodent Diet 8640 (Madison, WI),
and acclimatized for 4 days prior to dosing.

Treatments and Necropsy
Mice (n = 5) were orally gavaged once or once daily for
three consecutive days with 300 mg/kg b.w. o, p'-DDT
(99.2% purity, Sigma-Aldrich, St Louis, MO) in 0.1 ml of
sesame oil (Sigma-Aldrich) vehicle. An equal number of
time-matched vehicle control animals (n = 5) were also
treated in the same manner. Mice receiving one dose were
sacrificed 2, 4, 8, 12, 18, and 24 h after treatment. Mice
receiving three daily doses were sacrificed 24 h after the
third treatment (72 h). All procedures were performed
with the approval of the Michigan State University All-
University Committee on Animal Use and Care. Animals
were sacrificed by cervical dislocation and animal body
weights were recorded. Whole liver weights were recorded
and sections of the left lateral lobe (approximately 0.1 g)
were snap-frozen in liquid nitrogen and stored at -80°C.
The right lateral lobe was placed in 10% neutral buffered
formalin (NBF, VWR International, West Chester, PA) for
histopathology and stored at room temperature.

Histopathology
Following fixation of the right lateral lobe for at least 24 h
in 10% NBF, the samples were embedded in paraffin
according to standard techniques. Five μm sections were
mounted on glass slides and stained with hematoxylin
and eosin. All embedding, mounting and staining of tis-
sues were performed at the Histology Laboratory,
(Department of Physiology, Michigan State University).
The histopathology of each liver section was scored
according to the NTP Pathology guidelines.

Measurement of blood DHEA-S and androstenedione
Rat plasma samples were obtained from a previous study
[11]. Mouse serum and rat plasma samples were used for
determining dehydroepiandrosterone sulfate (DHEA-S)
and androstenedione levels using a DHEA-S ELISA kit
(Calbiotech Inc., Spring Valley, CA) and Androstenedione
ELISA kit (Genway Biotech Inc., San Diego, CA), respec-
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tively. The detection limits, defined by the vendors, are
0.02 μg/ml of DHEA-S and 0.043 ng/ml of androstenedi-
one, respectively.

Protein preparation and Western analysis
Total protein was extracted from liver samples from all the
time points using the Total Protein Extraction kit (Chemi-
con International Inc., Temecula, CA). Protein concentra-
tions were determined using Bicinchoninic Acid Protein
Assay Kit (Sigma-Aldrich). Total protein (100 μg) was
resolved on a 11% denaturing SDS-polyacrylamide gel, and
transferred to Hybond-ECL membrane (GE Healthcare,
Waukesha, WI). Blots were incubated with blocking buffer
(0.1% Tris-buffered saline pH 7.4 containing 1% low-fat
dry milk) for 10 min at room temperature. Goat anti-
CYP17A1, goat anti-actin antibodies and donkey horserad-
ish peroxidase-conjugated anti-goat IgG were purchased
from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).
Immunochemical staining was performed as described pre-
viously [16], with dilution of 1:500 (anti-CYP17A1), 1:500
(anti-actin) and 1:10000 (anti-goat IgG) using blocking
buffer, respectively. SuperSignal West Dura substrate
(Thermo Fisher Scientific, Inc., Waltham, MA) was used for
signal detection. The Western analysis was performed on
three independent biological replicates.

RNA isolation
Total RNA was isolated from left lateral liver sections using
TRIZOL Reagent (Invitrogen, Carlsbad, CA) and resus-
pended in The RNA Storage Solution (Ambion, Austin, TX).
RNA concentrations were determined by spectrophotome-
try (A260) and purity was assessed by the A260:A280 ratio and
by visual inspection of 3 μg on a denaturing gel.

Microarray analysis
Temporal changes in gene expression were assessed using
an independent reference design in which o, p'-DDT-
treated samples were co-hybridized with time-matched
vehicle controls using 3 biological replicates and 2 inde-
pendent labelings of each sample (i.e. dye swap) for each
time point. Whole Mouse Genome 4 × 44 K Oligo Micro-
array Kit (Agilent Technologies, Inc, Santa Clara, CA) was
used for global gene expression analysis. All the reagents
and enzymes were provided by Agilent Technologies, and
the microarray analysis was performed according to the
vendor's protocol. The microarrays were scanned at 635
nm (Cy5) and 532 nm (Cy3) using a GenePix 4000B
microarray scanner (Molecular Devices, Union City, CA).
Images were analyzed for feature and background intensi-
ties using GenePix Pro 6.0 (Molecular Devices). All data
were managed in the toxicogenomic information man-
agement system dbZach relational database [17].

Microarray data normalization and statistical analysis
Data were normalized using a semi-parametric approach
[18]. Model-based t-values were calculated from normal-

ized data, comparing treated and vehicle responses per
time-point. Empirical Bayes analysis was used to calculate
posterior probabilities (p1 [t]-value) of activity on a per
gene and time-point basis using the model-based t-value
[19]. Genes were filtered for activity based on the p1(t)-
value. p1(t) values approaching one indicate changes in
gene expression which are more robust. In this study,
unique genes with a p1(t) > 0.999 for a minimum of two
time points and absolute value fold change ≥ 1.5-fold
compared to time-matched vehicle control for at least one
time point were considered differentially expressed.

Hierarchical clustering
A total of 996 orthologous rat and mouse genes were in com-
mon on the rat cDNA, mouse cDNA, and Agilent mouse oli-
gonucleotide microarrays based on HomoloGene http://
www.ncbi.nlm.nih.gov/sites/entrez?db=homologene. Dif-
ferentially expressed orthologs (|fold change| ≥ 1.5 for at
least one time point in either species) for ethynylestradiol
(EE)-treated mouse liver, o, p'-DDT treated rat liver and o, p'-
DDT-treated mouse liver, were hierarchical clustered using
Cluster 3.0 and TreeView software http://rana.lbl.gov/eisen/.
In addition, differentially expressed genes known to be regu-
lated by PXR, CAR and ER agonists [20-23], were identified
from the literature and their expression profiles were sub-
jected to hierarchical clustering.

Correlation analysis
Correlation analysis was performed using relaxed criteria
to allow for more inclusive comparison between mouse
and rat data sets. Genes with a p1(t) > 0.99 and absolute
fold change ≥ 1.5-fold at one or more time points in the o,
p'-DDT-treated mouse liver samples were selected and
used for correlation analysis. This analysis involved a mul-
tivariate correlation-based visualization application [24]
that has been used to compare two independent gene
expression profile datasets [11,25]. It calculates the tem-
poral correlations between gene expression (fold change)
and significance values (p1 [t]-value) for orthologous o,
p'-DDT-treated mouse (this study) and o, p'-DDT-treated
rat genes [11], and summarizes the results in a scatter plot.

Quantitative Real-Time PCR (QRT-PCR)
Expression levels of mouse Car (Nr1i3), Cyp17a1,
Cyp2b10, Cyp3a11, Cyp7b1, Gadd45a, Gadd45b, Gapdh,
Gclm, Pxr (Nr1i2), and Srebf1, and rat Gapdh and Cyp7b1
were measured by QRT-PCR. For each sample, 2 μg of
total RNA was reverse transcribed by SuperScript II using
an anchored oligo-dT primer as described by the manufac-
turer (Invitrogen). The resultant cDNA (1.0 μl) was used
as the template in a 30 μl PCR reaction containing 0.1 μM
each of forward and reverse gene-specific primers
designed using Primer3 [26], 3 mM MgCl2, 1.0 mM
dNTPs, 0.025 IU AmpliTaq Gold and 1 × SYBR Green PCR
buffer (Applied Biosystems, Foster City, CA). PCR ampli-
fication was conducted in MicroAmp Optical 96-well
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reaction plates (Applied Biosystems) on an Applied Bio-
systems PRISM 7000 Sequence Detection System using
the following conditions: initial denaturation and
enzyme activation for 10 min at 95°C, followed by 40
cycles of 95°C for 15 s and 60°C for 1 min. A dissociation
protocol was performed to assess the specificity of the
primers and the uniformity of the PCR generated prod-
ucts. Each plate contained duplicate standards of purified
PCR products of known template concentration covering
eight orders of magnitude to interpolate relative template
concentrations of the samples from the standard curves of
log copy number versus threshold cycle. The copy number
of each unknown sample for each gene was standardized
to that of Gapdh gene to control for differences in RNA
loading, quality and cDNA synthesis. Primer sequences
and amplicon sizes are provided as Additional file 1.

Statistical analysis
Body weight, relative liver weight, hepatic concentrations
of o, p'-DDT, o, p'-DDD, and o, p'-DDE and QRT-PCR data
are presented as the mean ± SE. Statistical analysis was
performed with two-way ANOVA followed by pairwise
comparisons using Tukey's Honestly Significant Differ-
ence post hoc test to control Type I error (α = 0.05). For
QRT-PCR data, the relative expression levels of target
genes were scaled such that the standardized expression
level of the time-matched vehicle control group was equal
to 1 for graphing purposes. All statistics were performed
using SAS 9.1.3 software (SAS Institute Inc., Cary, NC).

Results
Body Weight, Relative Liver Weight, and Histopathology
Relative liver weight was significantly (p < 0.05) increased
at 72 h compared to vehicle-treated mice (Fig. 1A). No
effect on body weight was observed. These results are sim-
ilar to those previously observed in the rat o, p'-DDT study
[11]. There were no significant histological changes by o,
p'-DDT treatment, except for two animals exhibiting cell
death of small numbers of hepatocytes at 4 h or 72 h,
where the nuclei were shrunken and hyperchromatic.

Hepatic o, p'-DDT, o, p'-DDD and o, p'-DDE 
concentration
Animals treated with o, p'-DDT showed significantly greater
levels of o, p'-DDT, from 2 to 18 h compared to vehicle con-
trols (Fig. 1B). The levels of the metabolites o, p'-DDD and
o, p'-DDE were significantly greater than controls from 2 to
12 h, and at 72 h (Figs. 1B and 1C), indicating that o, p'-
DDT is readily metabolized in the liver, and that much of
the o, p'-DDT and its metabolites remain primarily distrib-
uted to the liver from 2 to 12 h, similar to the rat [11]. Note
that there was a statistical outlier in the 72 h treated group,
which lead to significant o, p'-DDE and o, p'-DDD levels,
but was still included in the analysis as there was no tech-
nical or biological justification for its removal.

Microarray Data
Gene expression was assessed using the 4 × 44 K Mouse
Agilent array containing approximately 44,000 oligonu-
cleotide probes, representing 34,204 annotated genes
including approximately 21,000 unique genes. Model-
based t-values that compared treated and vehicle
responses on a per time-point basis followed by Empiri-
cal Bayes analysis identified 1,206 differentially
expressed genes across the time course based on a p1(t)
> 0.999 for a minimum of two time points and absolute
fold change ≥ 1.5-fold compared to time-matched vehi-
cle control for at least one time point (Fig. 2A). Overall,
859 genes were induced while 382 genes were repressed.
Changes in gene expression ranged from 36.4-fold
induction for Cyp2c55 gene to -13.0-fold repression for
gene Car3. The 12 h time point exhibited the greatest
number of differentially expressed genes (Fig. 2B). All of
the gene expression data as well as the identified differ-
entially regulated genes are provided in Additional files
2 and 3, respectively.

Relative liver weight and tissue level analysisFigure 1
Relative liver weight and tissue level analysis. (A) Rela-
tive liver weight. Immature ovariectomized C57BL/6 mice 
were orally administered 300 mg/kg o, p'-DDT or sesame oil 
vehicle at time 0, 24 and 48 h. Mice were sacrificed 2, 4, 8, 
12, 18, 24 or 72 h after the initial dose. The relative liver 
weight was significantly increased at 72 h. (B) Hepatic con-
centration of o, p'-DDT and o, p'-DDD. (C) Hepatic concen-
tration of o, p'-DDE. Hepatic tissue levels of o, p'-DDT, o, p'-
DDD and o, p'-DDE were determined using high-resolution 
gas chromatograph/HRMS from three randomly selected 
mice orally gavaged with 300 mg/kg o, p'-DDT. The data are 
presented as mean ± SE. The asterisk (*) indicates a signifi-
cant (p < 0.05) difference from the vehicle controls.

2 4 8 12 18 24 72
Time after treatment (h)

*Vehicle
o,p’-DDT

R
el

at
iv

e 
liv

er
 w

ei
gh

t (
%

)

0

2

4

6

8

(A)

2 4 8 12 18 24 72
Time after treatment (h)

140

H
ep

at
ic

 c
on

ce
nt

ra
tio

n 
(

g/
g 

liv
er

)

120
100
80
60
40
20
0

o,p’-DDT
o,p’-DDD

(B)

*
*

* *

**

*
*

*

*

(C)
350

o,p’-DDE300
250
200
150

50

0H
ep

at
ic

 c
on

ce
nt

ra
tio

n 
(n

g/
g

liv
er

)

2 4 8 1218 24 72
Time after treatment (h)

100

*
* *

*

Page 4 of 13
(page number not for citation purposes)



BMC Genomics 2008, 9:487 http://www.biomedcentral.com/1471-2164/9/487

Page 5 of 13
(page number not for citation purposes)

Microarray and QRT-PCR resultsFigure 2
Microarray and QRT-PCR results. (A) Identification of differentially regulated genes. (B) Number of differentially 
expressed genes following o, p'-DDT treatment in the mouse liver. Differentially expressed genes were selected based on a 
p1(t) ≥ 0.999 at two or more time points and an absolute fold change ≥ 1.5 at one or more time points relative to time-
matched vehicle controls. All differentially expressed genes are listed in Additional file 3. (C) Verification of microarray results 
by QRT-PCR. QRT-PCR results relative to time-matched vehicle controls are shown as bar and presented as mean ± SE. 
Microarray results are represented as lines. The dashed line indicates the expression level of the time-matched vehicle control. 
The asterisk (*) indicates a significant (p < 0.05) difference from the time-matched vehicle controls for QRT-PCR, n = 5. (D) 
Hepatic expression of PXR/CAR-target genes in o, p'-DDT-treated mouse. A heat map of o, p'-DDT elicited microarray 
expression profiles for selected PXR-, CAR-specific and PXR/CAR-shared target genes identified in the literature [20-23]. 
While some CAR-regulated genes such as Cyp1a1, Fmo5, Sult1d1 or Abcc2 were moderately induced, several PXR-target genes, 
including ApoA4, Ces2, Gstm2 or Insig2, exhibited strong induction. However, other PXR-target genes such as Hmgcs1 and 
Hmgcs2 were down-regulated.
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Table 1: Selected microarray results

Gene symbol Entrez GeneID Gene expression ratio (h)a

2 4 8 12 18 24 72

Drug metabolizing enzyme
Cyp1a1 13076 1.22 1.22 1.22 2.16 1.78 1.92 1.42
Cyp1a2 13077 1.16 1.26 1.30 1.61 1.50 2.29 1.30
Cyp2b9 13094 1.78 1.90 2.41 4.11 3.75 4.97 2.23
Cyp2b10 13088 2.19 2.12 2.69 11.37 12.47 18.42 4.29
Cyp2b13 13089 1.49 1.36 1.46 3.79 3.54 4.09 2.04
Cyp2c39 13098 1.25 1.41 1.23 1.51 1.60 2.13 1.72
Cyp2c55 72082 1.71 3.19 7.43 15.18 30.38 36.40 7.70

Reductive reaction
Gsta1 14857 1.30 0.91 1.39 1.76 3.00 3.42 2.37
Gsta2 14858 1.53 0.83 2.23 3.52 7.01 6.60 2.91
Gstm2 14863 1.03 1.14 2.20 2.06 2.44 3.19 1.90
Gstt3 103140 1.22 1.17 1.81 2.31 2.18 2.65 1.62

Ugt2b35 243085 1.13 1.17 1.94 2.73 2.30 3.38 2.53

DNA damage/apoptosis
Casp9 12371 1.01 0.67 0.62 0.61 0.64 0.75 0.83
Cdkn1a 12575 2.53 15.36 3.37 2.27 0.75 1.54 1.00

Fas 14102 0.94 0.89 0.78 0.80 0.85 0.66 0.72
Gadd45a 13197 2.96 12.58 13.54 8.52 3.16 1.41 2.29
Gadd45b 17873 4.55 8.35 6.66 7.83 5.12 6.80 3.32
Tnfrsf19 29820 1.22 1.75 5.86 4.29 1.67 1.66 2.21

Metabolism
ApoA4 11808 1.15 1.05 4.31 5.03 5.74 3.54 3.34
Ces2 234671 1.16 1.46 1.68 2.22 2.11 3.36 3.05

Cyp17a1 13074 1.43 1.27 3.97 6.24 5.52 3.68 1.88
Cyp51 13121 0.98 1.02 0.85 0.39 0.72 0.35 0.49
Cyp7a1 13122 1.07 0.58 0.25 0.44 0.66 0.51 1.09
Cyp7b1 13123 0.98 1.51 3.05 5.77 4.15 5.44 3.41
Insig2 72999 2.80 5.00 4.40 4.63 1.45 2.36 0.81
Srebf1 20787 0.94 0.51 0.31 0.21 0.70 0.47 0.31

Cell proliferation
Ccnb2 12442 0.94 0.84 0.82 0.49 0.68 0.86 0.83
Ccnd1 12443 0.71 1.17 1.08 0.85 2.32 0.78 0.66
Ccng2 12452 1.26 1.66 1.39 0.71 0.34 1.03 0.95
Mdm2 17246 1.13 1.19 1.16 1.11 0.97 1.09 1.28
Stmn1 16765 0.74 1.00 0.69 0.35 0.59 0.84 0.60

Oxidative stress
Gclm 14630 1.06 1.15 1.36 1.54 1.33 1.59 1.50
Gsr 14782 1.02 1.40 2.03 2.47 2.39 2.54 2.33

Hmox2 15369 1.18 1.55 1.44 1.39 1.40 1.52 1.43
Nqo1 18104 0.99 1.10 1.71 1.97 2.57 2.35 2.43

Transcription factor/signal transuction
Ahr 11622 1.20 1.43 1.29 1.50 0.96 1.47 1.15

Nr1i2 (PXR) 18171 1.16 1.63 1.74 1.62 1.90 1.68 1.44
Nr1i3 (CAR) 12355 1.12 1.20 0.58 0.91 1.18 1.29 1.38

a Highlighted values indicate expression ratio where p1(t) > 0.999.
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A number of phase I drug metabolizing enzyme genes
were induced such as Cyp1a1 (~2.2-fold), Cyp2b9 (~5.0-
fold), Cyp2b10 (~18.4-fold), Cyp2b13 (~4.1-fold),
Cyp2c39 (~2.1-fold), and Cyp2c55 (~36.4-fold) (Table
1). The induction of Cyp2b10 and Cyp3a11 were verified
by QRT-PCR (Fig. 2C). The steroid metabolism genes,
Cyp17a1 (~6.2-fold) and Cyp7b1 (~5.8-fold), were also
induced, while Cyp51 and Cyp7a1 were down-regulated.
Steroidogenic Cyp11a1 mRNA level was not detected by
microarray or QRT-PCR (data not shown). Note that the
hepatic induction of Cyp17a1 and Cyp7b1 by o, p'-DDT
was observed in the mouse but not in the rat [11]. Several
phase II genes (Gsta1 (~3.4-fold), Gstm2 (~3.2-fold),
Ugt2b35 (~3.4-fold)) were also induced.

A number of DNA damage-related genes such as Cdkn1a
(~15.4-fold), Gadd45a (~13.5-fold), Gadd45b (~8.4-fold)
and Tnfrsf19 (~5.9-fold) were induced following o, p'-
DDT treatment, while Fas and Casp9 were down-regulated
(~2.0-fold). The oxidative stress-responsive genes Gclm
(~1.6-fold), Gsr (~2.5-fold), Hmox2 (~1.6-fold) and Nqo1
(~2.6-fold) exhibited induction. There was no clear induc-
tion for the cell proliferation-related genes such as Ccnd1,
Ccnb2, Mdm2 or Stmn1, while their orthologs were
induced by o, p'-DDT in the rat liver [11]. mRNA levels for
Ahr and Pxr (Nr1i2) were slightly elevated, whereas Car
(Nr1i3) mRNA levels decreased following o, p'-DDT treat-
ment. Srebf1 which was previously shown to be down-reg-
ulated by o, p'-DDT in the rat liver [11], was also down-
regulated in the mouse liver. Overall, the QRT-PCR results
closely paralleled the expression pattern seen in the
microarray data (Fig. 2C).

We also examined the expression of genes regulated by
CAR, PXR or ER that were selected based on the null ani-
mal studies [20-23]. While CAR-specific targets such as
Cyp1a1 (~2.2-fold), Fmo5 (~2.3-fold), Sult1d1 (~2.8-fold)
and Abcc2 (~2.7-fold) showed relatively weak induction,
several PXR-regulated genes were induced more strongly
including ApoA4 (~5.8-fold), Ces2 (~3.4-fold), Gstm2
(~3.2-fold) or Insig2 (~5.0-fold) genes (Fig. 2D). How-
ever, other PXR genes, such as Hmgcs1 and Hmgcs2, were
unexpectedly down-regulated.

Comparative Analysis of Gene Expression
Hepatic gene expression profiles of EE-treated mice, o, p'-
DDT-treated rats and o, p'-DDT-treated mice were com-
pared by hierarchical clustering focusing on the 538
orthologs represented on both microarray platforms that
satisfied the |fold change| ≥ 1.5 for at least one time point
in any data set. The filtering criteria used here were relaxed
compared to those used in Figs. 2A and 2B to include
more orthologs in the correlation analysis, and thus be
more informative of the overall similarity between the
two data sets. Despite the differences in microarray plat-

form (i.e., cDNA vs. oligonucleotide), o, p'-DDT elicited
gene expression profiles in the rat and mouse that were
more similar to each other than to the EE-treated mouse
profile (Fig. 3A).

Correlation Analysis
One hundred and forty orthologs were identified as differ-
entially expressed on both rat cDNA and mouse oligo
microarrays (Fig. 3B), which were further examined by
correlation analysis to determine if their gene expression
profiles were comparable. Again, the filtering criteria used
here were relaxed compared to those used in Figs. 2A and
2B to include more orthologs in the correlation analysis.
The scatter plot shows that a majority of the spots local-
ized to either the upper-right (32.9%) or lower-right
(47.9%) quadrants (Fig. 3C), indicating that the gene
expression profiles between o, p'-DDT-treated rat and
mouse were highly similar in terms of their gene expres-
sion pattern. Temporal correlation of the p1(t)-value (sta-
tistical significance) showed relatively low correlation
between the two data sets, with 60% of spots located in
the lower-right or lower-left quadrants. All correlation
analyses results are provided in Additional file 4.

For example, Cyp17a1, a key enzyme gene for steroidogen-
esis (Fig. 4A) fell into the lower left quadrant (Fig. 3C)
suggesting divergent gene expression profiles in the
mouse and rat. Fig. 4B clearly demonstrates that Cyp17a1
is significantly induced in the mouse and is non-respon-
sive in the rat in both microarray and QRT-PCR data.
Cyp7b1, another steroid metabolism gene, exhibited a
similar species-specific gene expression profile (Fig 4B).
Moreover, hepatic CYP17A1 protein induction was evi-
dent at 18 and 24 h in the mouse liver (Fig. 4C).

Effects on DHEA-S Levels
Species-specific induction of CYP17A1 mRNA and pro-
tein levels suggests that steroid metabolism may also be
differentially affected. More specifically, since CYP17A1
metabolizes pregnenolone and 17α-hydroxypregne-
nolone to produce DHEA (Fig. 4A), blood levels of
DHEA-S were measured using an enzyme-linked immu-
nosorbent assay. Serum DHEA-S levels exhibited a signif-
icant (p < 0.05) increase relative to vehicle at 12 h in the
mouse, (Fig. 4D). In contrast, plasma DHEA-S was not sig-
nificantly different between treated and control rats.
Mouse serum androstenedione levels were below the
detection level (data not shown).

Discussion
o, p'-DDT elicits phenobarbital-type activities in the
mouse liver, characterized by the increase in relative liver
weight or induction of Cyp2b10, Cyp3a11 and GST mRNA
levels [27,28]. In the rat, we previously reported that o, p'-
DDT elicits PXR/CAR-mediated responses, with negligible
Page 7 of 13
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Comparative analysis of global gene expression profiles elicited by o, p'-DDTFigure 3
Comparative analysis of global gene expression profiles elicited by o, p'-DDT. (A). Comparative gene expression 
analysis between EE-treated mouse, o, p'-DDT-treated rat and o, p'-DDT-treated mouse. A total of 996 orthologs were repre-
sented on the rat cDNA microarray, mouse cDNA microarray and mouse Agilent oligonucleotide microarrays determined by 
HomoloGene http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene. 538 of these orthologs showed a |fold change| ≥ 1.5 
for at least one time point in either species. These 538 differentially expressed orthologs were subjected to hierarchical clus-
tering. The dendrogram illustrates that mouse o, p'-DDT gene expression profiles are more similar to rat o, p'-DDT gene 
expression profiles than the mouse EE gene expression profiles. (B) Correlation analysis using differentially expressed ortholo-
gous genes. The temporal profiles of o, p'-DDT-treated mouse liver (current study) and those of the o, p'-DDT-treated rat 
liver [11] were compared by determining the Pearson's correlation of the temporal gene expression (fold change) and signifi-
cance (p1 [t] value) between orthologs. Both studies used comparable study designs and data analysis methods, although differ-
ent platforms were used (i.e., rat cDNA microarray and mouse Agilent oligonucleotide microarray). 140 genes were identified 
as differentially expressed orthologs. (C) Scatter plot of the 140 differentially expressed orthologous genes. Correlations for 
gene expression and significance approaching 1.0 indicate that the behavior or the orthologous genes are similar and would fall 
in the upper right quadrant. Orthologs tended to localize in upper- or lower-right quadrant (32.9% and 47.9% of total number 
of spots, respectively), indicating that temporal gene expression changes for o, p'-DDT-treated mouse and rat liver are compa-
rable. However, poor correlations between the temporal p1(t) values and gene expression fold changes would fall within the 
lower left quadrant. For example, Cyp17a1 fell into this quadrant suggesting that significant differences exist between the rat 
and mouse ortholog expression profiles.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene
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Species-specific regulation of steroid hormone metabolism elicited by o, p'-DDTFigure 4
Species-specific regulation of steroid hormone metabolism elicited by o, p'-DDT. (A) Overview of the role of 
CYP17A1 and CYP7B1 in steroid metabolism. CYP17A1 metabolizes pregnenolone and progesterone to produce DHEA and 
androstenedione, respectively. Hepatic CYP7B1 is involved in bile acid biosynthesis, and also responsible for 7α-hydroxylation 
of DHEA. (B) Hepatic Cyp17a1 and (C) Cyp7b1 mRNA levels in the o, p'-DDT-treated mouse and rat. QRT-PCR results rela-
tive to time-matched vehicle controls are shown as bars and presented as mean ± SE. Microarray results are represented as 
lines. o, p'-DDT induced Cyp17a1 and Cyp7b1 mRNAs in the mouse liver, while it did not affect in the rat liver [11]. The dashed 
line indicates the expression level of the time-matched vehicle control. The asterisk (*) indicates a significant (p < 0.05) differ-
ence from the time-matched vehicle controls for QRT-PCR, n = 5. (C) Representative Western analysis result for hepatic 
CYP17A1 protein in o, p'-DDT-treated mouse liver. CYP17A1 protein levels were induced at 18 and 24 h. Western analyses 
were performed on 3 independent biological replicates to verify the consistency of the results. C, control; T, 300 mg/kg o, p'-
DDT. (D) Blood DHEA-S levels. DHEA-S level was significantly higher at 12 h following o, p'-DDT treatment compared to 
time-matched controls in the mouse, while it did not change in rats.
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ER-mediated activity [11], despite the responsive of the
liver to estrogens [9,29], and the association of estrogenic
activity with hepatic tumorigenesis [30]. Consequently,
PXR/CAR-mediated responses to DDT may have a more
significant role in hepatic tumor promotion [11]. In order
to further investigate o, p'-DDT elicited gene expression
mediated by PXR/CAR, we investigated its hepatic expres-
sion profile using a comparable mouse model, study
design and data analysis [11]. Comparative analysis indi-
cated that the hepatic gene expression profiles were simi-
lar between rat and mouse. However, correlation analysis
of orthologous genes revealed that hepatic Cyp17a1
mRNA and protein levels as well as serum DHEA-S were
only elevated in the mouse following o, p'-DDT treatment.

Cyp17a1 exhibits dose-dependent induction by EE in the
mouse liver [10], suggesting ER-mediated induction. In
addition, induction of Cyp7b1 and down-regulation of
Cyp7a1 by EE are abolished in ER alpha-null mice but not
in ER beta-, Fxr-, Pxr- or Car-null mice [23]. Collectively,
these results indicate that Cyp7a1 mRNA levels are regu-
lated by ERα in the mouse liver. Considering the strong
inductions of Cyp17a1 and Cyp7b1 observed only in the
mouse liver as well as down-regulation of Cyp7a1 in the
mouse liver, o, p'-DDT may elicit ERα-mediated activity in
the mouse liver but not in the rat liver.

In addition, the mouse profile suggests that o, p'-DDT elic-
ited gene expression was predominately PXR regulated
based on genes known to be regulated by PXR-, CAR- or
PXR/CAR [20-23]. In part, this could be due to the repres-
sion of mouse Car mRNA levels by o, p'-DDT compared to
its induction in the rat liver [11]. Furthermore, several
genes associated with cell proliferation (Ccnb1, Ccnb2,
Mdm2 and Stmn1) were induced in the rat liver [11], but
not in the mouse. Ccnd1, a known CAR-regulated cell pro-
liferation-related gene [31], was not significantly induced
in the mouse, further supporting the hypothesis that o, p'-
DDT preferentially activated PXR.

CAR also has an inhibitory effect on ER-mediated gene
expression [32]. Therefore, the availability of CAR may
inhibit ER-mediated effects elicited by o, p'-DDT in the rat
liver [11], while the down regulation of Car mRNA in the
mouse and the preferential activation of PXR may facili-
tate more ER-mediated gene expression. Consequently,
ER-mediated responses may be important when assessing
DDT-elicited hepatic responses in the mouse in addition
to PXR/CAR-mediated response when compared to the
rat.

CYP17A1 is an important enzyme in steroid biosynthesis
that metabolizes pregnenolone and progesterone to pro-
duce DHEA and androstenedione, respectively [33,34].
Therefore, induction of CYP17A1 mRNA and protein lev-

els may affect DHEA metabolism. o, p'-DDT treatment
increased DHEA-S levels in the mouse whereas no change
was detected in the rat. Although the liver is usually not a
major steroidogenesis organ, microsomes are capable of
participating in steroidogenesis [35]. In addition, hepatic
microsomal CYP17A1 exhibits age-dependent expression,
with higher expression and activity in immature rats
[35,36]. o, p'-DDT elicited changes in other steroidogenic
enzymes (e.g., Cyp11a1) and metabolites (e.g., androsten-
edione) were below the level of detection. Collectively,
alterations in steroid levels following o, p'-DDT treatment
could affect steroid levels, since peripheral tissues can use
circulating DHEA and DHEA-S to produce androgens and
estrogens [37]. Furthermore, the 7α-hydroxylation of
DHEA and pregnenolone by o, p'-DDT induced CYP7B1
could also facilitate elimination of DHEA or the synthesis
of neuro-active hormones [38,39].

In addition to PXR-, CAR- or ER-mediated gene expression
changes, o, p'-DDT induced Gadd45a, Gadd45b and Cdkn1,
all of which are DNA damage-responsive genes [40,41].
Consistent with this are the reports of the DNA damaging
potential of DDT [42-44]. Consequently, DNA damage
may be an additional risk factor for tumor initiation/pro-
motion following o, p'-DDT exposure in addition to PXR/
CAR- and ER-mediated activities. Considering that the
induction of DNA damage-responsive genes precedes
Cyp2b10 or Cyp3a11 induction, the DNA damage may not
be caused by oxidative stress derived from enzyme induc-
tion. Moreover, Gclm and Hmox, both known oxidative
stress-responsive genes [45,46], exhibited relatively weak
induction compared to rats [11], suggesting that oxidative
stress was not strongly induced.

Conclusion
In conclusion, o, p'-DDT elicits a broad spectrum of spe-
cies-conserved and specific effects. This includes PXR/
CAR- and ER-mediated responses, altered steroidogenesis,
oxidative stress, and DNA damage (Fig. 5). Although DDT
is known to cause liver tumors in both mice and rats, the
marked species differences in PXR/CAR structure, expres-
sion patterns and ligand preference as well as significant
species-specific differences in steroidogenesis, especially
CYP17A1 expression and activity, confound the extrapo-
lation of these results to humans. Nevertheless, the iden-
tification of potential modes of action as well as species-
specific responses may assist in the development or selec-
tion of more appropriate models for assessing the toxicity
of DDT to humans and wildlife.

Abbreviations
CAR: constitutive androstane receptor (Nr1i3); Casp9:
caspase 9; Ccn: cyclin; Cdkn1a: cyclin-dependent kinase
inhibitor 1A; Cyp: cytochrome P450; DDT: dichlo-
rodiphenyltrichloroethane; DHEA-S: dehydroepiandros-
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terone sulfate; EE: ethynylestradiol; ER: estrogen receptor;
FXR: farnesoid X receptor; Gclm: glutamate-cysteine ligase
modifier subunit; Gadd45: growth arrest and DNA-dam-
age-inducible 45; Gsr: glutathione reductase; GST: glu-
tathione S-transferase; Hmox2: heme oxygenase
(decycling) 2; HMGCS: 3-hydroxy-3-methylglutaryl-
Coenzyme A synthase; Hsd3b: hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase;
Insig2: insulin induced gene 2; Mdm2: transformed
mouse 3T3 cell double minute 2; Nqo1: NAD(P)H dehy-
drogenase, quinone 1; Stmn1: stathmin 1; PXR: pregnane
X receptor (Nr1i2); QRT-PCR: Quantitative Real-Time
PCR; Srebf1: sterol regulatory element binding factor 1;
Stat: signal transducer and activator of transcription;
TCPOBOP: 1,4-bis-[2-(3,5,-dichloropyridyloxy)] ben-
zene; Tnfrsf19: tumor necrosis factor receptor superfamily
member 19; UGT: UDP glycosyltransferase.
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