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Abstract
Background: Trinitrobenzenesulphonic acid (TNBS) induced rat colitis is one of the most widely
used models of inflammatory bowel disease (IBD), a condition whose aetiology and
pathophysiology are incompletely understood. We have characterized this model at the genomic
level using a longitudinal approach. Six control rats were compared with colitic animals at 2, 5, 7
and 14 days after TNBS administration (n = 3). The Affymetrix Rat Expression Array 230 2.0 system
was used.

Results: TNBS-induced colitis had a profound impact on the gene expression profile, which was
maximal 5 and 7 days post-induction. Most genes were affected at more than one time point. They
were related to a number of biological functions, not only inflammation/immunity but also
transport, metabolism, signal transduction, tissue remodeling and angiogenesis. Gene changes
generally correlated with the severity of colitis. The results were successfully validated in a subset
of genes by real-time PCR.

Conclusion: The TNBS model of rat colitis has been described in detail at the transcriptome level.
The changes observed correlate with pathophysiological disturbances such as tissue remodelling
and alterations in ion transport, which are characteristic of both this model and IBD.

Background
Inflammatory bowel disease (IBD), comprising ulcerative
colitis and Crohn's disease, is characterized by chronic
and relapsing inflammation of the gastrointestinal tract.
The pathogenesis of IBD is unknown, but it appears to be
multifactorial in origin, and genetic, environmental and
dietary factors are believed to be involved [1]. Animal

models of IBD have been central to the investigation of
the pathophysiology of the disease and are valuable tools
for drug testing and development. Because IBD-like dis-
eases do not occur spontaneously in animals, several ani-
mal models that mimic different aspects of the disease are
currently used, including gene knockout, transgenic,
chemical, adoptive transfer and spontaneous models [2].

Published: 17 October 2008

BMC Genomics 2008, 9:490 doi:10.1186/1471-2164-9-490

Received: 9 May 2008
Accepted: 17 October 2008

This article is available from: http://www.biomedcentral.com/1471-2164/9/490

© 2008 Martínez-Augustin et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18928539
http://www.biomedcentral.com/1471-2164/9/490
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2008, 9:490 http://www.biomedcentral.com/1471-2164/9/490
To date, no single model has reproduced all features of the
human disease. One of the most widely used models in
both pharmacological and pathophysiological studies (72
in the past year) is murine colitis induced by trinitroben-
zenesulphonic acid (TNBS) [3-5]. This simple model is
based on a single rectal administration of TNBS dissolved
in ethanol. TNBS is a hapten that elicits an immune
response when bound to tissue proteins, while ethanol
contributes to disruption of the intestinal barrier. The
result is a severe and prolonged degenerative inflamma-
tion of large parts of the colon sharing several clinical and
molecular characteristics with Crohn's disease. Specifi-
cally, the inflammation produced by the administration
of TNBS-ethanol involves all layers of the intestinal
mucosa and produces long-lasting damage with cell infil-
tration and ulcers, including protracted physiological dys-
function. Furthermore, both TNBS-ethanol
administration to mice and human Crohn's disease are
characterized by Th1-driven inflammation with infiltra-
tion of macrophages and neutrophils, producing high lev-
els of proinflammatory cytokines such as tumour necrosis
factor, interleukin (IL)-1β and IL-6, followed by T cell
infiltration, mainly of the CD4+ phenotype.

Genomic profiling of disease models is of interest for
characterizing the pathological response at transcriptome
level and identifying putative drug targets. Animal models
may overcome many of the limitations of the application
of genomic technology to humans, including the need for
repeated encoscopy, the large genetic and phenotypic var-
iability, and the difficulty of studying the initial stages of
the disease. There have been a few attempts at gene expres-
sion profiling in IBD models [6-10]. In general, these
studies have addressed acute colitis (48–72 h after induc-
tion), employed small microarrays (containing 87 and
1252 transcripts in two of the studies), have analysed large
samples (augmenting internal genomic variation, which
occurs along the longitudinal axis) and include modest
validation experiments (6–14 genes). Although a recent
study by te Velde et al. [8] used 20,000 transcript microar-
rays, the data were not validated. Only one of the studies
was longitudinal [9]. Therefore, the present study repre-
sents the most ambitious and comprehensive investiga-
tion to date, using several microarrays to examine the
progression of colitis at four time points, employing a
genechip platform that includes more than 30,000 tran-
scripts (Affymetrix Rat 230 2.0). Results were validated in
a subset of almost 100 transcripts by using real-time PCR
(qRT-PCR). The full results database, publicly accessible,
will serve as a valuable reference for all researchers in the
field. In fact, three pharmacological studies adopting this
strategy are currently underway in our laboratory.

Methods
All reagents were obtained from Sigma (Barcelona, Spain)
except where indicated.

Animals
Female Wistar rats (175–225 g) were used, housed in
makrolon cages and maintained in air-conditioned ani-
mal quarters with a 12-h light-dark cycle. Animals had free
access to tap water and were fed a standard chow diet
(Panlab A04, Panlab, Barcelona, Spain). This study was
carried out in accordance with the Directive for the Protec-
tion of Vertebrate Animals used for Experimental and
other Scientific Purposes of the European Union (86/609/
EEC), was approved by the Ethical Committee of the Uni-
versity of Granada and complies with the American Phys-
iological Society's Guiding Principles in the Care and Use
of Animals.

Induction of colitis
Colitis was induced as previously described [11]. Briefly,
rats were fasted overnight and anaesthetized with haloth-
ane. Under these conditions, rats were given 10 mg of
TNBS dissolved in 0.25 ml of 50% ethanol (v/v) by means
of a Teflon cannula inserted 8 cm into the anus. Rats were
kept in a head-down position for an additional 30 s and
returned to their cages.

Experimental design
Rats were randomly assigned to one of two different
groups, a control (C, n = 6) group that received a saline
enema and a TNBS group (n = 12) that received the TNBS
challenge. Food and water intake and body weight were
determined daily. To follow the progression of the colitis,
three rats of the TNBS group were killed 2, 5, 7 and 14
days after the induction of colitis. Three control rats were
killed on day 2 and the other three at the end (day 14) of
the experiment. For the purpose of postgenomic valida-
tion, this experiment was repeated in order to perform
qRT-PCR analysis on fresh samples. The magnitude and
time course of the inflammatory response were similar in
both experiments (data not shown).

Assessment of colonic damage
Animals were killed by cervical dislocation, and the entire
colon was removed and placed on an ice-cold plate,
cleaned of fat and mesentery, and blotted on filter paper.
Each specimen was weighed and its length measured
under a constant load (2 g). The large intestine was longi-
tudinally opened and scored for visible damage on a 0 to
25 scale as previously described [12]. A sample for
genomic analysis was obtained from the distal colon
approximately 4.5 cm proximal to the anus, taking care to
avoid any areas of necrosis. The colon was subsequently
divided longitudinally into several pieces for biochemical
determinations. The fragments were immediately frozen
in liquid nitrogen and kept at -80°C until used. Myeloper-
oxidase activity was measured according to the technique
described by Krawisz et al. [13].
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RNA extraction, microarray hybridization and data 
analysis
RNA was extracted from homogenized full-thickness
colonic tissues in Trizol® reagent (Invitrogen) and purified
with RNeasy affinity columns (Qiagen). Quantity and
integrity of RNA were assessed by spectrophotometry and
0.8% agarose gel electrophoresis, respectively. Sample
labelling, hybridization, staining and scanning proce-
dures were carried out using Affymetrix standard proto-
cols http://www.affymetrix.com. The microarray analysis
was performed by Progenika Biopharma (Bilbao, Spain)
on 18 GeneChip® Rat Expression Array 230 2.0 microchips
(Affymetrix). Normalization and statistical analyses were
carried out using GeneSpring v7.1 (Agilent). Gene ontol-
ogy analysis was performed with GeneMapp/MappFinder
http://www.genmapp.org[14]. Specifically, biological
process, cellular component and molecular function cate-
gories were scored with respect to the number of genes
included in the Rattus norvegicus database that were meas-
ured in the microarray and the number of genes signifi-
cantly affected by TNBS colitis in each category. The
resulting z parameter [15] has positive values when the
proportion of genes affected is higher than expected, and
it was used to select the most representative gene ontology
categories (i.e. those with z ≥ 4) at each time point. Non-
redundant categories are shown, listing only the highest z
value when nested categories exceeded the cutoff value at
multiple levels. The k-means algorithm was applied to
identify and group transcript changes over time in clus-
ters. Only sequences with annotated gene identities that
were present (intensity > 100 units) in at least 66% of
samples per group in at least one group were considered.
The data were analyzed by analysis of variance followed
by Tukey post-hoc tests in order to reduce the false positive
or type I error rate in inter-group comparisons. In addi-
tion, the Benjamini & Hochberg false discovery rate cor-
rection was applied to reduce the occurrence of type I error
when comparing among genes. This procedure offers a
reasonable balance between sensitivity and specificity.
Data are expressed as fold change (mean ± SEM) over the
control (uninflamed) group (n = 6) at each time point
(TNBS colitis after 2, 5, 7 or 14 days). MIAME recommen-
dations [16] were followed to ensure that all information
needed to understand, interpret, reproduce and compare
our results was given in detail. The data are accessible at
the the European Bioinformatics Institute Arrayexpress
database (http://www.ebi.ac.uk, reference E-MEXP-873).

Postgenomic validation
Postgenomic validation was carried out by measuring 93
of the genes in fresh samples (n = 3 per group) using qRT-
PCR with TaqMan® Low Density Arrays (Applied Biosys-
tems). Genes were selected to include both significantly
and non-significantly changed genes pertaining to differ-
ent families affected by inflammation, i.e., those related to

transport, immunity or metabolism. The relative Ct values
of each gene with respect to the reference gene (18S) were
used to calculate the RQ (relative quantitation) parame-
ter, which represents the change in mRNA expression
compared to a control sample. The RQ was then used to
calculate fold change ratios. Results are expressed as mean
± SEM.

Results
TNBS colitis
The morphological and biochemical features of TNBS col-
itis were consistent with previous reports by our group
and other authors [4,5,12,17]. Thus, TNBS-treated rats
suffered anorexia and loss of body weight (Fig. 1) associ-
ated with extensive mucosal damage, oedema, haemor-
rhage and early epithelial necrosis. Leukocyte infiltration
was prominent, resulting in a significant increase in mye-
loperoxidase activity (Fig. 1). Epithelial regeneration grad-
ually occurred from day 7 and was macroscopically
complete by day 14. At 5 and 7 days, there was major sub-
mucosal fibrosis and scarring that resulted in a marked
shortening of colonic length. Even after 2 weeks, treated
rats showed significant differences with controls in
colonic weight-to-length ratio and myeloperoxidase activ-
ity, among others (Fig. 1).

Genomic analysis
2340 genes were significantly modified at 2 days after
TNBS instillation (1238 upregulated, 1102 downregu-
lated). This number was almost doubled at day 5 (4266,
2073 of which were upregulated) and rose to 5752 (2356
upregulated) by day 7. The pool of altered gene expression

Inflammatory biochemical and morphological markers in TNBS-induced colitisFigure 1
Inflammatory biochemical and morphological mark-
ers in TNBS-induced colitis. All means were different 
from the control values, except for body weight gain at 14 
days (not shown).
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fell to 1953 by day 14 (1146 upregulated), coinciding
with a marked recovery from the inflammatory bout. The
dendogram in Figure 2 shows that samples from TNBS
colitic rats at each time point were clustered together,
forming groups that significantly differed from control
samples. As expected, many of the genes that showed sig-
nificant changes are directly related to the inflammatory
response, including genes for chemokines, cytokines and
inflammatory markers such as Cp, Ptgs2, or Lyz (see
below).

An additional set of three rats per experimental group was
subjected to confirmatory analysis of 93 genes by qRT-
PCR. This independent validation procedure for microar-
ray analysis results has become standard in genomic stud-
ies, although our use of triplicate measurements may have
made this step redundant. An excellent correlation was

found between microarray and qRT-PCR data (0.89
regression coefficient, n = 1116, Fig. 3). Individual exam-
ples can be seen in other Figures (see below). Amplifica-
tion was not possible with two of the selected genes,
namely Defb1 and Htr6. In addition, neither Il6 nor Ifng
could be detected in the control samples but both were
measured in the colitis groups. Hence, although this is an
unmistakable indication of significant induction, a fold
change could not be calculated from the qRT-PCR data.
The reason for this discrepancy is not known.

Table 1 shows some of the most relevant gene categories
affected by TNBS colitis (pre-established gene ontology
entries), which differed according to the time point during
the inflammatory response. Thus, although the immune
response categories predictably dominated at all time
points, apoptosis appeared to play a pivotal role at days 2

Time course changes of gene expression in rat TNBS colitisFigure 2
Time course changes of gene expression in rat TNBS colitis. Sample clustering by two-way analysis of variance. Upreg-
ulated genes are shown in red and downregulated genes in green. The difference between TNBS colitis and control samples 
was greatest on day 7.
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and 5 while extracellular matrix related genes were espe-
cially important at day 7, and a variety of processes and
functions were present as leading gene ontology catego-
ries at day 14. Manual analysis of the genes showing the
most pronounced changes in expression confirmed the
importance of immunity/inflammation and tissue
remodelling/matrix but also indicated the occurrence of
wide changes in transport, metabolism and signalling (see
below).

Time course analysis
The set of genes that was significantly altered by TNBS col-
itis underwent k-means clustering, a mathematical tool
that groups genes with a similar time evolution profile.
Most genes clustered to profiles that showed the highest
increase (or decrease) at 5 and 7 days, usually peaking at
7 days or staying relatively constant between 2 and 7 days
and decreasing or increasing at 14 days (data not shown).
However, some atypical profiles were also detected. Thus,
the expression of some genes was changed only at day 2
(50 genes, Table 2) or day 14 (57 genes, Table 3) while
others were upregulated (Cybb, Nfil3, Cxcr4, Spn, Itgb2)
or downregulated (Apob, Amn, Apoa1, Aldob, Cxcl14,
Ckm, Slc26a3) at all or most time points. Therefore,
somewhat unexpectedly, the time course of gene expres-
sion was largely parallel, with few outliers, although there
were marked differences in the magnitude of changes.
However, as explained above, there was a change over
time in the clustering of gene groups according to gene
ontology.

Genes involved in the inflammatory response
Many of the most severely affected genes were those
directly involved in the inflammatory response, as
expected (Fig. 4, see also Fig. 5 for validated genes).
Chemokines were especially prominent, including neu-
trophil chemokines and other leukocyte-attractant mole-
cules. Interleukin 1 and related TLR2 pathways were
highly affected, and both converged in the activation of
NF-κB. Nfkbia (encoding IκB-α) was markedly increased,
indicating a trend to limit activation of this pathway. The
intestinal inflammatory marker Alpl [18] was promi-
nently upregulated, unlike Alpi and Alpi2, the intestinal
isoforms of alkaline phosphatase (data not shown).

The prostaglandin biosynthetic pathway was strongly acti-
vated by TNBS through the concerted induction of
Pla2g2a, Ptgs2, and Ptges, especially during the chronic
phase (confirmed by qRT-PCR, data not shown). Other
affected genes are related to cell adhesion, bacteria bind-
ing or reactive oxygen species generation. There were also
marked changes in the expression of numerous transcripts
involved in antioxidative defence, most of which were
downregulated.

In addition, close examination of the expression level of a
number of genes that act as inflammatory cell markers
indicated the nature of the inflammatory infiltrate. Thus,
TNBS colitis was characterized by an absence of significant
changes in markers of T cells (Thy1, Tcrb, Tcrg, Zap70,
Lck), B cells (Ptprc -B220-, Ms4a1 -Cd20-, Cd22, Cd79b)
and NK cells (Baat, Ncam1 -Cd56-, B3gat1 -Cd57-). In
contrast, several neutrophil/macrophage markers such as
S100a8, Itgb2 (Cd18), Cd68_predicted, Csf1r, Cybb,
Csf2rb1 and Lcn2 were significantly increased by inflam-
mation, especially at days 5 and 7.

Genes involved in metabolism
Metabolism-related genes were highly affected (mostly
decreased) by TNBS-induced colitis (Fig. 6 and also Fig. 7
for validated genes). They included genes participating in
glycolysis, like Aldob and many different subunits of the
pyruvate dehydrogenase complex (Dlat, Dld, Pdha1,
Pdhb). Several enzymes of the Krebs cycle were also
changed, e.g., Idh3g, Aco2, Sucla2 and Cs. The respiratory
chain genes Ndufs1 and Sdhc and several genes encoding
cytochrome isoforms were also downregulated.

With regard to lipid metabolism, the fatty acid biosyn-
thetic enzymes Fasn and Scd1 were inhibited, as was the
related gene Acly. Several transcripts related to cholesterol
biosynthesis and transport were also affected (Hmgcr,
Srebf1, Bzrp, Dhcr7, Dhcr24, Apoa1, Abca1). In addition,
both ApoE and the apolipoprotein B mRNA editing gene
Apobec1 were upregulated, suggesting a higher lipopro-

Postgenomic validation of microarray dataFigure 3
Postgenomic validation of microarray data. Corre-
spondence between mean fold change (FC) values obtained 
by microarray (X) and qRT-PCR (Y) analysis. The diagonal 
line represents the ideal correspondence trend.

0.1 1 10 100 1000 10000
0.01

0.1

1

10

100

1000

10000

qR
T

-P
C

R
 F

C

Microarray FC
Page 5 of 18
(page number not for citation purposes)



BMC Genomics 2008, 9:490 http://www.biomedcentral.com/1471-2164/9/490
Table 1: Gene ontology categories most affected by TNBS colitis at different time points

Gene ontology category z value

Day 2 Biological process Positive regulation of anti-apoptosis 5.033
Leukocyte chemotaxis 5.199

Cellular component Phosphoinositide 3-kinase complex 4.202
Molecular function Chemokine activity 5.721

1-Phosphatidylinositol 3-kinase activity 4.582
Unfolded protein binding 4.022

Day 5 Biological process Immune system process 6.507
Immune response 6.088
Defence response 6.025
Response to external stimulus 5.402
Antigen processing and presentation of peptide antigen via MHC class II 5.128
Lymphocyte mediated immunity 4.962
Cell death 4.910
Response to other organism 4.532
Leukocyte migration 4.506
Cytokine biosynthetic process 4.484
Phagocytosis, recognition 4.473
Positive regulation of lymphocyte differentiation 4.348
Vasculature development 4.320
Protein amino acid dephosphorylation 4.289
Regulation of inflammatory response 4.190
T cell differentiation 4.091
Peptide antigen transport 4.044
Regulation of protein binding 4.001
Organelle fusion 4.001

Cellular component MHC class II protein complex 4.900
Mitochondrial respiratory chain 4.384
TAP complex 4.374

Molecular function Haematopoietin/interferon-class (D200-domain) cytokine receptor activity 5.107
Protein tyrosine phosphatase activity 4.871
Cytokine activity 4.600
Chemokine activity 4.277
NADH dehydrogenase activity 4.133
Peptide antigen-transporting ATPase activity 4.044
Phosphatidylserine binding 4.001

Day 7 Biological process Leukocyte chemotaxis 4.936
Immune system process 4.332
Response to external stimulus 4.323
Antigen processing and presentation of exogenous peptide antigen 4.124

Cellular component Extracellular matrix part 5.849
Proteinaceus extracellular matrix 4.931
Collagen 4.674
Basement membrane 4.280
Actin filament 4.115

Molecular function Extracellular matrix constituent 4.710

Day 14 Biological process Defence response 5.420
Prophyrin catabolic process 5.286
Immune response 5.082
Lymphocyte homeostasis 5.029
DNA damage response, signal transduction by p53 class mediator 4.414
Glial cell migration 4.414
Leukocyte activation 4.366
Inflammatory response 4.362
RNA destabilization 4.316
Positive regulation of interferon-gamma production 4.316
Heme oxidation 4.316
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tein biosynthesis, although ApoE may also play a protec-
tive role against lipopolysaccharide [19]. A number of
other metabolic pathways appeared to be altered by TNBS
colitis, including purine de novo biosynthesis, arginine
and heme catabolism.

Genes involved in signalling
Many transcripts involved in cell signalling were changed
by TNBS colitis, including genes encoding proteins that
participate in cAMP/protein kinase A and calcium/protein
kinase C pathways, phosphatases, various regulatory pro-
teins and a number of transmitter/hormone receptors,
including P2ry6, Htr2b, Prlr, Sstr1, Tacr2 and Thra. In
addition, Ace was modestly increased only on day 14, sug-
gesting a possible local increase in angiotensin II produc-
tion in the healing colonic tissue (Fig. 8).

The signalling-related genes that exhibited the highest
changes in expression included Gp49b and Plek. Gp49b
encodes an immunoglobulin-like receptor expressed in
myeloid cells that appears to counter-regulate the
cytokine and chemokine attraction of neutrophils [20].
The function of Plek appears to be related to the regula-
tion of macrophage phagocytosis [21].

Genes involved in transport
TNBS colitis influenced the expression of many transport-
related transcripts, including genes that participate in
ionic transport, e.g. Slc9a2, Slc9a3 (Nhe2-3), Scnn1a and
Slc26a3 (Dra), which mediate NaCl absorption, and the
Na+/K+ pump subunit Atp1a1 and Slc12a2 (Nkcc2), all of
which were inhibited. However, the chloride channel Cftr
was not affected. Three aquaporins (Aqp3, 8 and 11) were
also repressed in TNBS colitis, whereas Aqp9 was upregu-
lated. Many other nonionic transporters and ionic chan-
nels were altered (Fig. 9 and Fig. 10 for validated genes).
Interestingly, there was upregulation of Slc7a7, which is
involved in the basolateral transport of arginine, lysine
and ornithine by epithelial cells and activated monocytes
[22], suggesting increased availability of iNOS substrate.

Genes involved in tissue remodelling
Following the gene ontology analysis, a manual search of
the most severely affected genes confirmed the dramatic
changes in the expression of many genes involved in
matrix deposition, muscle plasticity and angiogenesis (see
Figs. 11 and 12 for validated genes). These include Igf1
(validated) and Igfbp5, genes that may regulate tissue
remodelling by increasing collagen synthesis and cell pro-
liferation. Several procollagen/collagen isoforms were
increased, as well as genes involved in collagen processing
and synthesis or in collagen and elastin fibre cross-linking
(Lox, Tgm1 – both validated-). A number of metallopro-
teases and multiple cytoskeletal genes were increased,
especially during the chronic phase.

Discussion
The main features of the TNBS model of colitis have been
well defined. Ethanol causes direct toxic damage to the
epithelium, which in turn grants TNBS access to the
colonic mucosa, where it acts as a hapten. Although the
toxic effect of ethanol is a requisite for TNBS to act effec-
tively, the immunogenic nature of the 'chronic' phase has
been unequivocally established by various authors [23-
25]. Without TNBS, ethanol produces only a short-lived
inflammatory reaction that resolves without sequelae and
was therefore not of interest in the present study. During
the 'chronic' phase, TNBS rat colitis shares a number of
features in common with IBD, e.g., transmural inflamma-
tion (Crohn's disease only), abnormal ion transport, diar-
rhoea, fibrosis and abnormal intestinal motility.
Furthermore, TNBS rat colitis is amenable to treatment
with corticoids, sulfasalazine or tacrolimus, making it an
attractive model for the preclinical testing of putative IBD
drugs. Our aim was to perform a detailed genomic charac-
terization of the model.

The TNBS colonic inflammatory response was character-
ized by a marked increase in the expression of multiple
genes involved in inflammation/immunity, including
cytokines, chemokines, adhesion molecules, eicosanoid-

Vasodilation 4.231
Cytokine biosynthetic process 4.142

Cellular component External side of plasma membrane 5.339
Costamere 4.316
B cell receptor complex 4.316

Molecular function Double-stranded DNA adenosine deaminase activity 5.286
Interleukin 1, Type I receptor binding 4.316
DNA ligase (ATP) activity 4.316
Heme oxygenase (decyclizing) activity 4.316
Saccharopine dehydrogenase (NAD+, L-glutamate-forming) activity 4.316
Thyroid hormone receptor activity 4.316
Cannabinoid receptor activity 4.316

Non-redundant categories with z values > 4 are shown. A high z value indicates a higher representation of significantly changed genes than 
expected.

Table 1: Gene ontology categories most affected by TNBS colitis at different time points (Continued)
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related genes, and a number of effectors and cell markers.
There was a dramatic increase in Il1b, Il1a, Il6, Tgfb1 and
Tnf and in various chemokine and chemokine receptors.
In addition, a nonsignificant increase was observed in the

pivotal Il23a and Ifng cytokine genes, which was found to
be significant after re-examination using the more sensi-
tive qRT-PCR. Although no protein data are avaliable, it is
tempting to speculate that the combined upregulation of

Table 2: Genes modulated specifically at day 2

Gene symbol Gene name FC SEM

Hla-dmb Major histocompatibility complex, class II, DM beta 9.13 0.47
Fbxl7_predicted F-box and leucine-rich repeat protein 7 (predicted) 8.46 3.35
Acot12 Acyl-CoA thioesterase 12 8.19 3.28
Prl8a2 Prolactin family 8, subfamily a, member 2 7.86 2.22
Tmod1 Tropomodulin 1 6.66 0.79
Sds Serine dehydratase 4.57 0.71
Adcyap1r1 Adenylate cyclase activating polypeptide 1 receptor 1 4.56 0.54
Sp2 Sp2 transcription factor 4.05 0.56
Vmd2l1_predicted Vitelliform macular dystrophy 2-like protein 1 (predicted) 2.80 0.32
Crh Corticotropin releasing hormone 2.65 0.26
Fzd4 Frizzled homolog 4 (Drosophila) 2.64 0.14
Igfbp5 Insulin-like growth factor binding protein 5 2.44 0.30
CPG2 CPG2 protein 2.32 0.08
Lss Lanosterol synthase 2.27 0.08
Reln Reelin 2.10 0.17
Atcay_predicted Ataxia, cerebellar, Cayman type (caytaxin) (predicted) 2.05 0.06
Pik3c2g Phosphatidylinositol 3-kinase, C2 domain containing, gamma polypeptide 2.02 0.25
Fmo2 Flavin containing monooxygenase 2 1.97 0.22
Slc13a5 Solute carrier family 13 (sodium-dependent citrate transporter), member 5 1.90 0.11
Xlkd1_predicted Extra cellular link domain-containing 1 (predicted) 1.81 0.15
Vps4a Vacuolar protein sorting 4a (yeast) 1.64 0.03
C1qbp Complement component 1, q subcomponent binding protein 1.53 0.10
Exosc2_predicted Exosome component 2 (predicted) 1.52 0.10
Map3k6_predicted Mitogen-activated protein kinase kinase kinase 6 (predicted) 1.51 0.09
Retnla Resistin like alpha 0.05 0.03
Csrp2 Cysteine and glycine-rich protein 2 0.10 0.03
Dmrta1_predicted Doublesex and mab-3 related transcription factor like family A1 (predicted) 0.11 0.00
Rax Retina and anterior neural fold homeobox 0.13 0.04
Ide Insulin degrading enzyme 0.14 0.02
Opcml Opioid-binding protein/cell adhesion molecule-like 0.17 0.01
Wdr22_predicted WD repeat domain 22 (predicted) 0.18 0.05
Nova1 Neuro-oncological ventral antigen 1 0.19 0.02
Fgf20 Fibroblast growth factor 20 0.21 0.01
Adh6 Alcohol dehydrogenase 6 (class V) 0.22 0.02
Cpg1 Candidate plasticity gene 1 0.22 0.04
Pfkfb2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 0.27 0.10
Gpha2 Glycoprotein hormone alpha 2 0.31 0.01
Myt1l Myelin transcription factor 1-like 0.31 0.06
Npffr2 Neuropeptide FF receptor 2 0.33 0.07
Csn2 Casein beta 0.34 0.06
Sybl1 Synaptobrevin-like 1 0.34 0.04
Efcbp2 Neuronal calcium binding 2 0.40 0.06
Cbr3_predicted Carbonyl reductase 3 (predicted) 0.41 0.03
Alpi Alkaline phosphatase 1, intestinal, defined by SSR 0.41 0.04
Nrxn1 Neurexin 1 0.43 0.06
Gp2 Glycoprotein 2 (zymogen granule membrane) 0.46 0.03
Cd248_predicted CD248 antigen, endosialin (predicted) 0.46 0.05
Ppfia3 Protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), alpha 3 0.59 0.02
Zfp580_predicted Zinc finger protein 580 (predicted) 0.62 0.05
Pttg1ip Pituitary tumour-transforming 1 interacting protein 0.65 0.05

Only annotated genes with a 50% or higher fold change are included. In all cases the FC at days 5–14 was not significantly different from the control 
(significance at P > 0.10 to exclude transcripts not specifically upregulated or downregulated at only day 2).
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Table 3: Genes modulated specifically at day 14

Gene symbol Gene name FC SEM

Tbx15_predicted T-box 15 (predicted) 8.00 1.74
Trhr Thyrotropin releasing hormone receptor 5.67 1.26
Ppp3cc Protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform (calcineurin A gamma) 5.07 3.34
Eif2ak3 Eukaryotic translation initiation factor 2 alpha kinase 3 4.92 2.25
Hrh3 Histamine receptor H3 4.35 1.34
Klf15 Kruppel-like factor 15 3.58 0.39
Gldc_predicted Glycine dehydrogenase (decarboxylating; glycine decarboxylase, glycine cleavage system protein P) (predicted) 3.40 1.49
Trdn Triadin 3.18 0.53
Galr1 Galanin receptor 1 3.15 0.04
Mlana_predicted Melan-A (predicted) 2.30 0.47
Cma1 Chymase 1, mast cell 2.15 0.30
Trerf1_predicted Transcriptional regulating factor 1 (predicted) 1.91 0.10
Serbp1 Serpine1 mRNA binding protein 1 1.85 0.22
Ltb4dh Leukotriene B4 12-hydroxydehydrogenase 1.78 0.24
Fgf1 Fibroblast growth factor 1 1.75 0.28
Ace Angiotensin 1 converting enzyme 1.72 0.33
Eif4a1 Eukaryotic translation initiation factor 4A1 1.68 0.38
Adar Adenosine deaminase, RNA-specific 1.59 0.12
Ddb1 Damage-specific DNA binding protein 1 1.57 0.05
Mbnl Muscleblind-like 1 (Drosophila) 1.52 0.10
Lzts1 Leucine zipper, putative tumour suppressor 1 1.52 0.16
Hmga1 High mobility group AT-hook 1 1.51 0.13
Apoa5 Apolipoprotein A-V 0.08 0.01
Strn Striatin, calmodulin binding protein 0.09 0.05
Olfm3 Olfactomedin 3 0.09 0.01
Cdc2l5 Cell division cycle 2-like 5 (cholinesterase-related cell division controller) 0.11 0.03
Prom2 Prominin 2 0.11 0.02
Snag1_predicted Sorting nexin associated golgi protein 1 (predicted) 0.11 0.03
Serpina3m Serine (or cysteine) proteinase inhibitor, clade A, member 3M 0.12 0.02
Ank1_predicted Ankyrin 1, erythroid (predicted) 0.13 0.00
Hist1h1t Histone 1, h1t 0.15 0.02
Imp1 Insulin-like growth factor 2, binding protein 1 0.15 0.03
Cacng7 Calcium channel, voltage-dependent, gamma subunit 7 0.16 0.05
Rbm9_predicted RNA binding motif protein 9 (predicted) 0.19 0.03
Drp2 Dystrophin-related protein 2 A-form splice variant 0.20 0.03
Eif4g1 Eukaryotic translation initiation factor 4 gamma, 1 0.20 0.01
Apob Apolipoprotein B 0.21 0.07
Wt1 Wilms tumor 1 0.23 0.02
Pqlc2_predicted PQ loop repeat containing 2 (predicted) 0.25 0.07
Cnr1 Cannabinoid receptor 1 (brain) 0.25 0.02
Lmo3 LIM domain only 3 0.26 0.03
Bai3_predicted Brain-specific angiogenesis inhibitor 3 (predicted) 0.28 0.04
Sp3 Sp3 transcription factor 0.31 0.02
Apba1 Amyloid beta (A4) precursor protein-binding, family A, member 1 0.32 0.03
Kcnc3 Potassium voltage gated channel, Shaw-related subfamily, member 3 0.44 0.06
Actc1 Actin alpha cardiac 1 0.45 0.06
Wnt11 Wingless-type MMTV integration site family, member 11 0.47 0.09
Il2 Interleukin 2 0.50 0.08
Galnt2_predicted UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (predicted) 0.57 0.02
Nrg2 Neuregulin 2 0.60 0.04
Cspg4 Chondroitin sulphate proteoglycan 4 0.60 0.02
Enth Enthoprotin 0.61 0.03
Zfp503_predicted Zinc finger protein 503 (predicted) 0.66 0.02
Rbm3 RNA binding motif (RNP1, RRM) protein 3 0.66 0.02
Mpp5_predicted Membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5) (predicted) 0.66 0.01
Prg1 Plasticity related gene 1 0.67 0.02
Csnk1d Casein kinase 1, delta 0.67 0.06

Only annotated genes with a 50% or higher fold change are included. In all cases the FC at days 2 – 7 was not significantly different from the control 
(significance at P > 0.10 to exclude transcripts that were not specifically upregulated or downregulated at only day 14).
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Behaviour over time of genes involved in inflammation and immune responseFigure 4
Behaviour over time of genes involved in inflammation and immune response. Upregulated genes are shown in red 
and downregulated genes in blue. Gene expression was considered significantly changed by inflammation at p < 0.05 after anal-
ysis of variance followed by Tukey post-hoc tests and Benjamini & Hochberg false discovery rate correction.
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Il23a, Il6 and Tgfb1 are indicative of Th17 induction [26].
In fact, although Il17a was not represented in the micro-
array, qRT-PCR findings showed an increase in the mRNA
levels (data not shown), suggesting the involvement of
Th17 cells in rat TNBS colitis. A contribution of Th1 cells
is also likely in view of the Ifng upregulation and lack of
Il4 changes, although Il12a and Il12b were not aug-
mented. Our group [27] and other authors [28,29] previ-
ously reported an increase in the IFN-γ or IFN-γ/IL-4
protein ratio in this model. A staggering increase was
observed in some of the genes, e.g. S100a9/S100a8, sug-
gesting that they may be highly sensitive markers to fol-
low intestinal inflammation, as previously observed in
humans [30,31]. These genes encode proteins expressed
by macrophages and neutrophils and are involved in bac-
terial defence, chemotaxis and signalling [32,33].

Analysis of the microarray data offered insights into the
nature of the inflammatory infiltrate. TNBS colitis was
previously characterized at this level [25]. In brief, macro-
phages and neutrophils are initially recruited to the
colonic mucosa and submucosa, followed by a more pre-
dominant role of lymphocytes in later stages of colitis,
which are characterized by progressive healing, reepitheli-
alization, crypt enlargement and prominent fibrosis [25].
The predominance of neutrophils/macrophages in the
inflammatory response was confirmed in our study by the
global increase in gene markers of these cell types and the
absence of effects on B, T and NK cells (at significance
level of p < 0.05). It should be noted that the sample used
for genomic analysis did not include lymphoid follicles,
in which lymphocytes accumulate in this model [25],
which explains the lack of a significant increase. However,

gene ontology analysis indicated that lymphocyte differ-
entiation was already prominent at day 5.

Our data also revealed important changes that were not
directly linked to inflammation/immunity. Thus, marked
alterations were found in metabolism-related genes, indi-
cating a reduced functionality of numerous biochemical
pathways, including glycolysis, purine biosynthesis, Krebs
cycle, cholesterol biosynthesis and transport, fatty acid
biosynthesis and respiratory chain. Taken together, these
data demonstrate a decrease in biosynthesis of macromol-
ecules, an increase in catabolism, and a decrease in aero-
bic and anaerobic respiration. Therefore, mucosal cells
may be have inadequate energy resources during the
inflammatory response. Similar changes have been
reported in IBD patients [34] and in experimental colitis
[35].

A number of genes encoding ion transporters were
affected by TNBS colitis, including: Atp1a1, encoding the
catalytic subunit of the Na+/K+ pump; Scnn1a, encoding
the alpha polypeptide of the epithelial sodium channel;
Nhe1, encoding the housekeeping Na+/H+ exchanger; and
Slc12a2, encoding Nkcc2, the Na+/K+/Cl- cotransporter.
These were generally downregulated, as were the trans-
porters involved in NaCl absorption, e.g., Nhe2, Nhe3,
and Slc26a3. However, Cftr was unchanged. These modi-
fications are consistent with severe alterations of ionic
transport, as demonstrated in IBD and animal models
[17,36,37].

A striking finding of our analysis was the vast number of
upregulated genes involved in tissue remodelling in TNBS
colitis, generally during the chronic phase, as indicated by
the gene ontology analysis. The chronic phase is character-
ized by mucosal wound healing and submucosal fibrosis
and by the scarring and deposition of excess muscular tis-
sue, extending through day 14 and eventually leaving
sequelae [5]. These features are often detectable by the
naked eye as colonic shortening, deformation and rigid-
ity. Two features are related to the intestinal fibrosis suf-
fered by IBD patients: an increase in collagen synthesis by
smooth muscle cells, fibroblasts and myofibroblasts, and
an increase in muscle layer thickness. IGFBP-5 expression
is known to increase in ulcerative colitis, while IGF-1 and
TGF-β1 expression is known to increase in both ulcerative
colitis and Crohn's disease [38,39]. These molecules have
been related to extracellular matrix remodelling and may
therefore be relevant to the fibrosis observed in IBD. Our
results are in agreement with these IBD findings, showing
an increase in Igf1, Igfbp5 and Tgfb1 expression in the
inflamed colon. Hence, the TNBS model may be appropri-
ate for the study of molecular mechanisms implicated in
the development of fibrosis in intestinal inflammation. In
addition, expressions of procollagen/collagen genes, most

Postgenomic validation of selected inflammation genes by qRT-PCRFigure 5
Postgenomic validation of selected inflammation 
genes by qRT-PCR. *P < 0.05 vs. control.
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Behaviour over time of genes involved in metabolismFigure 6
Behaviour over time of genes involved in metabolism. Upregulated genes are shown in red and downregulated genes in 
blue. Gene expression was considered significantly changed by inflammation at p < 0.05 after analysis of variance followed by 
Tukey post-hoc tests and Benjamini & Hochberg false discovery rate correction.
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notably Tgm1, and of several enzymes related to collagen
processing were increased in the TNBS colitic animals.

Our results include some intriguing findings, including:
the severe repression of nuclear receptors Nr1d1 and
Nr1d2, involved in circadian expression patterns and
recently shown to be regulated by heme [40]; the synthe-
sis and marked upregulation of Tg in the inflamed colon;
and the downregulation of the thyroid receptor. Further
experiments are warranted to clarify the role of these
changes in colonic inflammation.

We were especially interested in establishing a correlation
between the known characteristics of the model and the
time course of gene expression. Because the time points
selected cover all stages of the TNBS-induced inflamma-
tory response, from acute (2 d) to chronic (5–7 d) and
healing/recovery (14 d) phases, we expected to find sub-
stantial differences in the pattern of expression. For
instance, genes involved in inflammation/immunity and
tissue regeneration were expected to predominate in the
early and late stages, respectively. However, the vast
majority of transcripts followed a common trend, namely
a change of expression that was maximal at days 5 and 7,
when colitis is most prominent, and was normal (or
almost normal) at day 14. Hence, there is a close correla-
tion between the pathological features of TNBS colitis and
the changes observed in the transcriptome. The genes that
were up- or downregulated only at days 2 or 14 did not
conform to any specific category. Some of the transcripts
involved are of interest. Thus, Retnla, which encodes resis-
tin-like alpha, which is dramatically repressed soon after
colitis induction, may be involved in monocyte activa-
tion, as is the beta isoform [41]. Both Ace and Cma1,
which encode enzymes with angiotensin I cleaving capac-

ity, are induced specifically at day 14. Some specific recep-
tors involved in cellular signalling are differentially
regulated, such as Galr1, Hrh3, Npffr2 and Cnr1. Further
analysis is warranted to explore the implications of these
findings.

Despite using a technical approach (triplicate samples per
time point) that meets or surpasses common standards in
genomic studies, we carried out more than 1100 qRT-PCR
determinations in 15 additional samples for a posteriori
data validation. As expected, the overall correlation was
excellent. In some cases, microarray analysis appeared to
be less prone to pick up statistically significant variations,
i.e. it was less sensitive than qRT-PCR. The fact that we
examined four different time points adds to the complex-
ity of the analysis, since a marked change at one time
point may not be enough in many cases to reach signifi-
cance in the ANOVA. Further validation is provided by the
fact that the changes (or lack thereof) observed in many
genes, including Il1b, Il1rn, Cftr, Tnf, Alpl, Alpi, Ifng, Il4,
Il6, Pgts2, Nos2 and Ccl2, among many others, are in line
with previous observations from our own group, either at
the RNA or protein level [12,18,27].

Previous studies have examined changes in the transcrip-
tome in intestinal inflammation, especially in mouse col-
itis elicited by TNBS and other manoeuvres [6-10]. These
studies are somewhat limited because they either use
small microarrays, examine animals shortly after colitis
induction (consistent with acute but not chronic colitis),
offer limited or no postgenomic validation or use longitu-
dinal tissue samples. One of these studies addressed the
time course of gene expression, but it studied recovery
from repeated TNBS challenges [9]. In general, the
changes in gene expression documented in the present
study are much stronger and wider than those found in
previous reports. For example, 175 genes were differen-
tially expressed in the above study in compared to the
thousands of genes in our investigation. On the other
hand, there have been several human IBD microarray
studies [30,31,42-47], which have detected some key gene
expression changes associated with human intestinal
inflammation, including some specifically linked to either
ulcerative colitis or Crohn's disease [47]. However, it is
poorly understood how genomic data are related to IBD
pathology and therapy, partly because of the variability
inherent to human studies and partly because of method-
ological differences [48]. For instance, the most important
source of variation in gene expression measurement
(54%) is the microarray platform itself [49], and all of the
above studies used different arrays. There are also differ-
ences in design and especially in sample selection, i.e.,
individual vs. pooled or mucosal vs. full thickness. Never-
theless, there are some similarities with the rat TNBS
model, including increases in Chi3l1, Mmp3, 10 and 12,

Postgenomic validation of selected metabolic genes by qRT-PCRFigure 7
Postgenomic validation of selected metabolic genes 
by qRT-PCR. *P < 0.05 vs. control.
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Behaviour over time of genes involved in cell signallingFigure 8
Behaviour over time of genes involved in cell signalling. Upregulated genes are shown in red and downregulated genes 
in blue. Gene expression was considered significantly changed by inflammation at p < 0.05 after analysis of variance followed by 
Tukey post-hoc tests and Benjamini & Hochberg false discovery rate correction.
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Apoe, S100a8, Ltb, Sod2, Cxcl1, Cxcl2, Il6 and many
other genes.

Conclusion
We have characterized the rat TNBS model of IBD at the
genomic level, obtaining novel data on individual genes,
metabolic pathways and biological functions that are
altered during colitis. These findings establish a basis for
further mechanistic studies on drug action and research
into the pathophysiology of intestinal inflammation. The
full genomic database will serve as a reference standard for
all future investigations using this model and for compar-
isons with other animal models of colitis, an approach
that is currently being applied in our laboratory.

Abbreviations
IBD: inflammatory bowel disease; IL: interleukin; qRT-
PCR: quantitative real time PCR; TNBS: trinitrobenze-
nesulphonic acid.

Postgenomic validation of selected ion transport genes by qRT-PCRFigure 10
Postgenomic validation of selected ion transport 
genes by qRT-PCR. *P < 0.05 vs. control.

Behaviour over time of genes involved in transportFigure 9
Behaviour over time of genes involved in transport. Upregulated genes are shown in red and downregulated genes in 
blue. Gene expression was considered significantly changed by inflammation at p < 0.05 after analysis of variance followed by 
Tukey post-hoc tests and Benjamini & Hochberg false discovery rate correction.
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Behaviour over time of genes involved in tissue remodellingFigure 11
Behaviour over time of genes involved in tissue remodelling. Upregulated genes are shown in red and downregulated 
genes in blue. Gene expression was considered significantly changed by inflammation at p < 0.05 after analysis of variance fol-
lowed by Tukey post-hoc tests and Benjamini & Hochberg false discovery rate correction.
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