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Abstract
Background: Nonspecific hybridization is currently a major concern with microarray technology.
One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide
microarrays is the utilization of mismatch probes; however, this approach has not been used for
longer oligonucleotide probes.

Results: Here, an oligonucleotide microarray was constructed to evaluate and optimize
parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM)
probes were designed for each of ten target genes selected from three microorganisms. The
microarrays were hybridized with synthesized complementary oligonucleotide targets at different
temperatures (e.g., 42, 45 and 50°C). In general, the probes with evenly distributed mismatches
were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4
and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at
50, 45 and 42°C, respectively. Based on the experimental data generated from this study, a
modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the
thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray
environment. The MM probes with four flexible positional mismatches were designed using the
newly established MPDNN model and the experimental results demonstrated that the redesigned
MM probes could yield more consistent hybridizations.

Conclusion: This study provides guidance on the design of MM probes for long oligonucleotides
(e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and
this modeling method can potentially be used for the prediction of oligonucleotide microarray
hybridizations.

Background
DNA microarray technology has been widely used in gene
expression analysis, disease characterization, environ-
mental monitoring and many other biological processes.
PCR amplicons [1], oligonucleotides [2] and genomic
DNA [3] have all been used as microarray probes. Cur-

rently, the use of oligonucleotide probes has become pop-
ular due to better specificity, easier construction, and less
cost [4,5] compared to other probe types. In addition,
many studies [4,6,7] have demonstrated that longer oligo-
nucleotide probes (e.g., 50 mers or longer) yield better
sensitivity than shorter probes (e.g., 20–30 mers). There-
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fore, long (e.g., 50-mer, 70-mer) oligonucleotide probes
have been widely used, especially for spotted oligonucle-
otide microarrays.

Nonspecific hybridization is one of the major concerns
with microarray technology. This is usually caused by
highly homologous sequences, such as gene families or
multi-spliced variants [8,9]. Owing to the high similarity
with target sequences, false positive signals contribute to
the total signal intensities and they are difficult to subtract
out. Results from Kane et al. [10] suggest that, for long oli-
gonucleotides, a probe sharing >75% identity with non-
targets might cause significant cross-hybridization. Fur-
ther experiments showed that the oligonucleotide specifi-
city was also affected by high local sequence similarity
(identical stretch length), free energy and other factors
[11-13]. Although deciphering the source of nonspecific
signals can be quite complicated, a simple experimental
option to handle nonspecific signals is to design one or
more pairs of perfect match (PM) and mismatch (MM)
probes for each gene [4,7,14]. The signal from the MM
probe would then represent nonspecific cross-hybridiza-
tion to the corresponding PM probe. Hence, subtracting
the signal intensity of the MM probe from its PM probe
would theoretically eliminate the nonspecific signal and
would be directly proportional to the concentration of the
real target [2,15]. Currently, PM/MM pairwise probes
have been widely applied in short oligonucleotide micro-
arrays. For example, the Affymetrix GeneChip® usually
employs 11 different 25-mer PM/MM probe pairs for each
gene [14]. Many statistical methods have been developed
to estimate the binding affinity of probe-target duplexes
on this platform [16-19]. One of the most commonly
used methods is the positional-dependent-nearest-neigh-
bor (PDNN) model [20,21]. This model is based on the
fact that different positions of a probe may contribute dif-
ferently to the binding affinity [22,23], so that the binding
free energy of a probe could be expressed as a weighted
sum of its nearest-neighbor (NN) stacking energies [21].
Although all of these methods are effective in correcting
some background noise in Affymetrix® microarrays, it is
still difficult to explain the observation that up to a third
of MM probes had higher signals than their PM probes
[24]. Although efforts have been taken to explain and
solve this problem by altering the physical and chemical
characteristics of the chips [25-28], the uncertainty of MM
probe signals may be caused by the design of the MM
probe. To create each MM probe, a single nucleotide is
replaced at the middle position of its corresponding PM
probe [14]. This arbitrary design has not been experimen-
tally validated and hence the signals of MM probes are dif-
ficult to predict accurately. As a result, higher signal
intensities obtained from the MM probes compared to
their PM partners were usually considered to be from bad
probe pairs and were completely removed or ignored

[29]. Therefore, in order to accurately predict the signal
intensities for oligonucleotide probes in microarray
hybridizations, a more elaborate design and testing of
MM probes seems necessary.

A few studies have been conducted with MM probes on
chips [2,14], but this approach has not been used for long
oligonucleotides. Further, specific detection of unknown
targets, such as environmental samples, requires MM
probes to eliminate the influence of nonspecific hybridi-
zations for long oligonucleotide arrays. In this study, we
used a microarray with 50-mer PM and MM probes to
determine the parameters for MM probe design. Our
results demonstrated that evenly distributed MM probes
with three to five mismatched nucleotides were suitable
for 50-mer oligonucleotide probes under different hybrid-
ization conditions. A modified positional dependent
nearest neighbor (MPDNN) model was then established
for a better prediction of hybridization signals for long
oligonucleotide microarrays. This study provides general
guidance for long oligonucleotide probe design.

Methods
Oligonucleotide probe design and microarray construction
Ten genes from Desulfovibrio vulgaris Hildenborough,
Shewanella oneidensis MR-1 and Methanococcus maripaludis
were randomly selected as target sequences (Table 1). The
best 50-mer probe was designed for each gene using the
CommOligo program [30] with parameters based on
optimized experiments [11]. Seven groups of MM probes
were designed for each PM probe with 1–7 mismatch
nucleotides, respectively. For the nucleotide exchanges,
Gs or Cs in the PM probes were changed to As, and As or
Ts were changed to Gs. Each MM group consisted of two
kinds of MM probes: one with evenly distributed mis-
matches and three with randomly distributed mis-
matches. For evenly distributed MM probes, the interval
between two mismatches or between mismatch and ter-
minus was as long as possible. For example, three mis-
matches were located at the 12th, 25th and 38th positions
of the probe strings and four mismatches were located at
the 10th, 20th, 30th and 40th positions. After all probes
were designed, they were searched against the GenBank
database. There were no highly similar hits or SNPs found
with these PM and MM probes. In total, 290 probes,
including 10 PM probes and 280 MM probes (Additional
file 1) were commercially synthesized at a concentration
of 100 μM (Invitrogen Life Technologies, Carlsbad, CA).
All probes were prepared in 50% dimethyl sulfoxide
(Sigma-Aldrich, St. Louis, MO) and spotted onto Ultra-
GAPS slides (Corning Inc., Corning, NY) using a MicroG-
rid robotic arrayer (Genomic Solutions, Ann Arbor, MI).
Each probe was printed four times on each slide (1160
spots per array). After printing, the long oligonucleotide
probes were covalently fixed to the surface of the slide by
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cross-linking at 600 mJ (UV Stratalinker 2400, STRATA-
GENE, La Jolla, CA) and then stored at room temperature.

Microarray hybridization and data processing
The synthesized oligonucleotides were prepared in the
same manner as the artificial targets. For each PM probe,
a complementary 50-mer oligonucleotide target was com-
mercially synthesized with a Cy3 or Cy5 fluorescent dye
(MWG-Biotech, Ebersberg, Germany) at the 5'-end.
Hybridizations were performed using a Tecan HS4800
Hybridization Station (Tecan US, Durham, NC). Hybridi-
zations were carried out as described previously [31].
Briefly, hybridization solution [130 μL; 50% formamide
(Mallinckrodt Baker, Phillipsburg, NJ), 3× saline-sodium
citrate (SSC), 0.3% SDS, 0.8 mM DTT, 0.7 μg/μL of her-
ring sperm DNA (Invitrogen Life Technologies, Carlsbad,
CA)] was mixed with the labeled targets, heated to 98°C
for 5 min, and then kept at 65°C until ready for injection.
After the injection of hybridization solution, the hybridi-
zation was carried out at 42, 45 or 50°C for 10 hours with
agitation. Microarrays were scanned with a ProScanAarray
microarray Scanner (Perkin-Elmer, Boston, MA) at 90%
laser power and 80% photomultiplier tube efficiency
[32,33]. Hybridizations were conducted in duplicate for
determining the optimal target concentration and in trip-
licate for all other experiments.

The images obtained from scanning were analyzed by
using ImaGene 6.1 (Biodiscovery Inc., El Segundo, CA).
The ambient background for each spot was measured
independently. All pixels within approximately a half
radius of each spot were used to calculate the background
mean and standard deviation of the spot. The signal-to-
noise ratio [SNR; SNR = (signal mean - background
mean)/(background standard deviation)] was then calcu-
lated for each spot to discriminate true signals from noise.
Spots with an SNR equal to or greater than 2.0 were con-
sidered positive [34]. Probes for which more than 50% of
the total numbers of spots were positive were regarded as

valid probes. Both valid and invalid probes were used to
calculate the average signal in the primary computations,
but only valid probes were used to construct the following
model.

Modified Positional Dependent Nearest Neighbor model
The PDNN model can be expressed as [21]:

where ΔG is the free energy of a target-probe duplex; n is
the number of probe length; ωk is a weight factor that
depends on the position k along the probe; and ε (bk, bk+1)
represents a stacking energy term [35,36].

Except for this key formula, other mathematical regres-
sions in the PDNN model are based on the multiple pair-
wise PM/MM probe sets of GeneChip® microarrays.
Herein, we modified the PDNN model to fit 50-mer oli-
gonucleotide arrays with a single pair of PM/MM probes
and to acquire more precise thermodynamic parameters
for the spotted microarray platform. Two major modifica-
tions were made. First, the assigned weights for the PM
probes in the PDNN model gave the highest weight to the
middle position with decreasing weights on either side
until reaching the two fraying ends. Based on a recent
study of microarray thermodynamics [16], the MM probes
were assigned mismatch penalties for the binding free
energy at mismatches and the two adjacent nucleotide
positions. Second, we adopted a simple linear relation-
ship between relative signal intensity and relative free
energy to perform a mathematical regression:

SMM/SPM ∝ ΔGMM/ΔGPM

where S and ΔG represent the signal intensity and free
energy, respectively, and SMM/SPM, ΔGMM/ΔGPM are the rel-
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Table 1: Genes used for perfect match (PM) and mismatch (MM) probes.

ID Genbank ID Organism* Annotation

DVU0625 46451220 DvH Putative cytochrome c nitrite reductase, catalytic subunit NfrA
DVU1466 46451220 DvH Acetylglutamate kinase (argB)
DVU1782 46451220 DvH Iron-sulfur cluster-binding protein
DVU2526 46451220 DvH Periplasmic [NiFe] hydrogenase, large subunit, isozyme2(hynA-2)
MMP0707 44921025 Mm Na+/H+ exchanger
MMP0926 44921025 Mm Chemotaxis protein cheB
MMP1559 45047480 Mm Formatedehydrogenase alpha subunit
SO1362 24371479 So Chorismate mutase/prephenate dehydrogenase (tyrA)
SO1779 24371479 So Decaheme cytochrome c (omcA)
SO2452 24371479 So Alcohol dehydrogenase, zinc-containing

*DvH: Desulfovibrio vulgaris str.Hildenborough; Mm: Methanococcus maripaludis; So:Shewanella oneidensis MR-1.
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ative signal intensity and relative free energy of the MM
probe for its corresponding PM probe.

In the MPDNN calculation, temperatures were set to 30°C
higher than the actual hybridization temperatures
because the hybridization buffer contains 50% forma-
mide which is expected to destabilize duplexes in a way
equivalent to increasing the temperature by this amount
(0.6°C per 1% formamide) [37]. All calculation programs
were written in PERL script and run in the Windows envi-
ronment.

Results
Distribution of mismatch positions
One important parameter for MM probe design is the dis-
tribution of mismatch nucleotides within the probe
string. To investigate the effect of mismatch position on
signal intensity, the 50-mer artificial oligonucleotide
probes with 1 to 7 mismatches were used. Ten synthesized
targets complementary to the 10 PM probes were mixed
equally in different concentrations to determine the opti-
mal concentration for the spotted microarrays at 45°C.

The experimental results showed that at all concentrations
tested the signal intensities were lower for MM probes
with higher numbers of mismatches. These trends were
consistent with those from different concentrations of tar-
gets (data not shown). From these data, 10 pg of synthet-
ically labeled target, equivalent to 30 fM per target, was
needed to achieve appropriate specificity and sensitivity
for the constructed microarrays. Therefore, this experi-
mentally determined optimal concentration of target was
used for the following studies.

The influence of mismatch position distribution was
assessed through changes in the relative signal of MM
probes to their corresponding PM probes (Figure 1).
Approximately 70% of PM signals were detected for single
mismatch probes, and no significant differences in rela-
tive signal intensities were observed between randomly
and evenly distributed probes (Figure 1). However, the
effect of mismatch position on signal intensity was obvi-
ous for two or more mismatches with 36% and 52% for
evenly and randomly distributed two mismatches, respec-
tively, 23% and 33% for three mismatches, 11% and 26%

Comparison of the relative signals between evenly- and randomly-distributed MM probesFigure 1
Comparison of the relative signals between evenly- and randomly-distributed MM probes. The x-axis is the 
number of mismatches in the probes. The value in brackets is the percent identity of the 50 bp probe-target duplex. The y-axis 
is the average relative signal intensity of ten genes. Error bars indicate standard error of replicate arrays. Statistical tests were 
done between evenly and randomly distributed probes. An asterisk (*) indicates p-values ≤ 0.05, and double asterisks (**) indi-
cate p-values ≤ 0.01 using a paired T-test.
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for four mismatches, 4% and 12% for five mismatches,
2% and 11% for six mismatches, and 1% and 9% for
seven mismatches (Figure 1). Although an increase in the
number of mismatches markedly reduced the relative sig-
nals for both evenly and randomly distributed MM
probes, the data also showed that the relative signals of
evenly distributed MM probes decreased faster than those
of randomly distributed MM probes when the number of
mismatch nucleotides was the same. For example, probes
with four mismatches with a random distribution had an
average of 31% PM signal compared to 13% for evenly
distribution (Figure 1). The Student T-test results revealed
that the differences between evenly and randomly distrib-
uted MM probes became significant when the number of
mismatches was equal to or greater than two. These results
indicate that the positional distribution of mismatches
greatly affects the performance of MM probes on microar-
rays, and that an even distribution may make it easier to
distinguish MM probes from their corresponding PM
probe, suggesting that an even distribution is better for
MM probe design.

Determination of the numbers of mismatches at different 
hybridization temperatures
To evaluate the effect of temperature on the hybridization
the signal intensity of PM/MM probe pairs and to further
determine the optimal number of mismatches for 50-mer
MM probes, the microarrays were hybridized at 42, 45 or
50°C in the presence of 50% formamide, which are the
most commonly used hybridization conditions for spot-
ted microarrays. As shown in Figure 2, the relative signal
intensities decreased as the number of mismatch nucle-
otides and the temperature increased. For instance, at
42°C, the MM probes with two and five mismatches had
about 50% and 20% of the PM signal, respectively, but
only about 38% and 10% at 45°C, and less than 20% and
5% at 50°C (Figure 2). With five mismatches, the relative
signal intensities were all less than 0.1 (0.087 at 42°C,
0.044 at 45°C and 0.025 at 50°C). If a relative signal
intensity of ≤ 0.1 is considered background noise [11],
three evenly distributed mismatches were needed for MM
probes hybridized at 50°C, four were needed at 45°C and
five mismatches were required at 42°C.

MPDNN modeling
Although the average relative signal intensity generally
decreased with decrease in probe-target identity under all

The relationship between probe-target identity and relative signal intensity at different hybridization temperaturesFigure 2
The relationship between probe-target identity and relative signal intensity at different hybridization temper-
atures. Each data point is the mean value from ten evenly-distributed MM probes. Error bars indicate standard error of repli-
cate arrays.
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temperatures examined, the relative signal variation
among the ten currently designed PM/MM probe pairs
was still considerable. For instance, ten evenly-distributed
MM probes with four mismatches had relative signal
intensities from 0.006 to 0.62 with a standard deviation of
0.23. We considered this variation to be too large to prop-
erly evaluate non-specific hybridization in the microarray
system. Therefore, an appropriate model had to be devel-
oped in order to design MM probes with more accurate
predictions. Here we present key steps used to modify and
improve the PDNN model [20,21].

First, considering the specific and nonspecific signals that
are primarily determined by binding affinities of the DNA
duplex, and that affinity is determined by free energy ther-
modynamics, we calculated the correlation between rela-
tive signal and relative free energy. Because weak spots are
normally too ambiguous to reflect real hybridization
behavior, only spots with SNR >2.0 using 10 pg of each
synthetic target at 45°C were chosen as valid data. The
stacking energies of dimer nucleotides from the NN
method [9,35,38-40] were initially used to calculate the
free energy of each probe. The relative signal intensities
and original relative free energies of valid data were plot-
ted in Figure 3. Generally, the relative signals increased
with an increase in relative free energy. The regression
analyses indicated a linear correlation had a higher rela-
tive coefficient (R = 0.798) than logarithmic (R = 0.736)
or power (R = 0.741) correlations. Therefore, a linear cor-

relation between relative signals and relative free energies
was used for model construction.

Second, a weight was assigned for each probe position.
The distribution of weight factors along the probe was
adopted from the PDNN model for 50-mer probes. For
PM probes, the weight distribution was similar to a nor-
mal distribution, in the range of one delta (Figure 4A). For
MM probes, considering that mismatched nucleotide
pairs form a bubble in the DNA string, which would affect
several adjacent nucleotides, positional weights were
assigned by reducing the weight of mismatched positions
and five of the adjacent positions. For example, the
weights of probes with four evenly distributed mis-
matches are shown in Figure 4B. The thermodynamic
parameters for solutions were used in calculating free
energies. After assigning these new positional weights, the
correlation was considerably improved to 0.828 (Figure
4C).

Third, each thermodynamic parameter for the mis-
matched dimer nucleotides was amended to fit the best
linear correlation of relative signals and relative free ener-
gies. The original and optimized parameters (Figure 4D)
used increased the correlation value of the obtained scat-
ter plots to 0.921 (Figure 4E). Some parameters of mis-
match dimer nucleotides in the NN method were
substantially adjusted in our modified PDNN (MPDNN)
model, for example, AG-CA which denoted a double mis-
matches pair (A-C and G-A) was decreased from 0 to -2.1,
and AG-CC was decreased from 0.8 to -0.1. Further, the
correlation coefficient increased from 0.828 to 0.921,
indicating that these parameters significantly affected the
linear relationship between the relative free energy and
the relative signal intensity.

Finally, each thermodynamic parameter of matched
dimer nucleotides was adjusted (Figure 4F), and the
related coefficient reached 0.938 (Figure 4G). An obvious
result was that several equivalent parameters in solution
became inconsistent with those in the spotted microarray
system. For instance, due to the symmetry of the DNA
duplex, the thermodynamic parameters of AG-TC and TC-
AG were both -0.49 in solution, but from the microarray
data we obtained thermodynamic parameters of -0.80 and
-0.40, respectively. This suggests that the DNA duplexes
are asymmetric on the microarray surface, and that the
probes and targets contribute differently to the thermal
stability of their complexes.

Redesigned MM probes through MPDNN
The MPDNN model and the modified thermodynamic
parameters of dimer nucleotides were used to identify
MM probes. It was expected that the calculations of the
relative free energy using MPDNN modified parameters

The linear relationship between relative signal intensity and relative free energyFigure 3
The linear relationship between relative signal inten-
sity and relative free energy. Here, the original free 
energy of each probe was calculated by the Nearest Neigh-
bor method.
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could better predict the relative signal intensity for each
MM/PM probe pair. The basic process of MM probe
design is shown in Figure 5. Each PM probe was designed
with evenly distributed MM probes first, and then the rel-
ative free energy was calculated through the MPDNN

model. If the obtained value was significantly different
from the predetermined criterion of relative signal inten-
sity (0.1 in this study), the program would replace each
nucleotide adjacent to the mismatched nucleotides in the
original MM probe to obtain a new MM probe. The rela-

The linear regression of relative signals with relative free energies in the MPDNN methodFigure 4
The linear regression of relative signals with relative free energies in the MPDNN method. A. Weight factors and 
positions of 50-mer PM probes in the MPDNN model. B. Weight factors of a MM probe with four evenly distributed mis-
matches. C. Linear scatter plot of relative signals and relative free energies after assigning positional weights. D. Parameters of 
MM dimer nucleotides in the NN and MPDNN models. The dotted line is the parameter based on a 75°C water solution based 
on calculations for the NN method. The solid line is the parameter obtained from the MPDNN model. E. Scatter plot of rela-
tive signals with relative free energies after the parameters of the dimer MM nucleotides were adjusted. F. The parameters of 
PM dimer nucleotides in the NN and MPDNN model. The dotted line is the parameter from the NN method and the solid line 
is the parameter observed from the MPDNN model. G. Scatter plots of relative signals with relative free energies after the 
parameters of dimer PM nucleotides were adjusted.
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Flowchart of MM probe design with the novel MPDNN modelFigure 5
Flowchart of MM probe design with the novel MPDNN model.
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tive free energy was then recalculated until a best MM
probe was identified so that the relative free energy was
closest to the criterion. The newly designed MM probes
have relatively flexible positioning of mismatches instead
of the fixed mismatch positions in the previously
designed MM probes.

To test if the MPDNN model could reduce variation
among different MM/PM pairs and improve prediction of
probe hybridization, ten probes with four mismatched
nucleotides were redesigned using the MPDNN model
with the criterion of relative signal intensity set to 0.1
(Table 2) and commercially synthesized. These newly
redesigned probes were printed on the same microarray
with all other previously designed probes and hybridized
with the complementary oligonucleotides. The experi-
mental results showed that all high relative signal intensi-
ties (>0.3) from the previously designed MM probes were
successfully decreased to less than 0.21 using the newly
designed MM probes with flexible positional mismatches.
The standard deviation was 0.07 for the ten redesigned
MM probes, much less than the 0.23 obtained in the pre-
vious MM probes with fixed positional mismatches (Fig-
ure 6). These results demonstrate that all ten relative
signal intensities were much closer to the criterion of 0.1
and that the consistency of relative signal intensities for all
MM/PM probe pairs was significantly improved.

Discussion
One of the biggest challenges for microarray-based
approaches is to eliminate non-specific hybridization so

that probe signals accurately reflect the presence and con-
centration of specific targets. Besides several commonly
used methods to increase hybridization specificity in
experimental steps, such as increasing the hybridization
temperature, the PM/MM probe pairwise design is one of
the most accurate approaches to minimize or eliminate
the effects of cross-hybridization. Most microarray manu-
facturers have not thought it necessary to use MM probes
for long oligonucleotide arrays since these probes have a
higher specificity than shorter probes. Additionally, inclu-
sion of MM probes would double the cost and reduce the
capacity of the microarrays. However, in practice non-spe-
cificity is a big issue for long oligonucleotide arrays, espe-
cially for complex samples, like environmental DNA,
which would have many unknown sequences, some of
which could be similar to those PM probes. Furthermore,
with the continuing development of microarray technol-
ogy, the capacity of microarrays is expected to increase. In
this study, we applied this pairwise approach to long oli-
gonucleotide (50-mer) probe design and experimentally
established MM probe design parameters for the number
and position of mismatches. In addition, instead of sim-
ply altering the nucleotides at fixed positions within the
probe string, we constructed a model to calculate the rela-
tive free energy based on microarray data, and then used
this model to further improve MM probe design. The
results demonstrate that this novel MPDNN model can
provide guidance for long (50-mer) PM/MM oligonucle-
otide probe design.

Table 2: Comparison of the evenly-distributed MM probes and the MM probes designed using the MPDNN modeling parameter

Name Type Sequence* RSI**

DVU0625_MM4 Evenly GCAGGCTATAACGACCTGAGGATCCAGGCACGTGAGATGATCCGCAAGGG 0.345
MPDNN GCAGGCTATAACGACCTGATAATCCAGACCCGTGAGATAGTCCGCAAGGG 0.109

DVU1466_MM4 Evenly TGGCAAGGTAGGCGAAGTGGTGGGCGTGAGCACGACGCTGCTGCGTTCTC 0.527
MPDNN TGGCAAGGTGGACGAAGTGATAGGCGTAAACACGACGCGACTGCGTTCTC 0.158

DVU1782_MM4 Evenly GGGTGGGAGGTGGTCTACAACCATCCTGCACTGTATTCCGTCGTCTTGAA 0.190
MPDNN GGGTGGGAGAGGGTCTACAACCATCCTGCCCGGTATTCATTCGTCTTGAA 0.100

DVU2526_MM4 Evenly AAGGTCGAGAAGGTGAACCAGGAACAGATGGTGGAGCATATGGCCCACAG 0.345
MPDNN AAGGTCGAGGAAGTGAACCCAGAACAGATAATGGAGCATGTAGCCCACAG 0.136

MMP0707_MM4 Evenly CAGAGGAGTGGTTCCTGCGACACTTGCGGAAATGATATAAACAAATATTA 0
MPDNN CAGAGGAATAGTTCCTGCGACACTTGCGGCAGTGATATGCACAAATATTA 0.100

MMP0926_MM4 Evenly ATTAAACAGATTAAAGATGATTCAAAATCAAAAGTAAGAGTTAAATCATC 0
MPDNN ATTAAACAGGGTAAAGATGATTCAAAATCCGAAGTAAGAAGTAAATCATC 0.042

MMP1559_MM4 Evenly ATTAAAAGCGGCAATTGGTGAAAAAACATGCCAAGTATCGAGAGTTCCAT 0
MPDNN ATTAAAAGATGCAATTGGGAAAAAAACATGCCAAGTATCGAGAGTTCCAT 0.056

SO1362_MM4 Evenly GGTAGTTATGGTGGGCGGTGAAGGCCAGCGTGGCGGGCTATTTCAACAAA 0.353
MPDNN GGTAGTTATAATGGGCGGTAAGGGCCAACTTGGCGGGCGGTTTCAACAAA 0.102

SO1779_MM4 Evenly CGCATTTCGGTTGGCAACCGTCAACAGGTGAAACAGAAGACATTCAAACT 0
MPDNN CGCATTTCGGTTGGCAAACTTCAACAGGTGAAACAGAAAGCATTCAAACT 0.101

SO2452_MM4 Evenly GTTACATGAATTTGGTGATAGTCAAGATTAGCAGATCCTAATGCAACAAG 0
MPDNN GTTACATGACTGTGGTGGTCGTCAAGAGTGGCAGATCCTAATGCAACAAG 0.101

*The 50-mer MM probe sequences. The letters in shadow are the mismatched nucleotides.
**The predicted relative signal intensity (RSI) using the MPDNN model.
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Currently, there are no commonly accepted methods for
MM probe design, especially for long MM oligonucle-
otides. The simplest method, used by Affymetrix Gene-
Chip®, replaces the central nucleotide of a 25-mer PM
probe. However, this caused an unexpected consequence
of higher signal intensity for up to a third of MM probes
compared to their PM probes [24]. Therefore, to obtain a
useful MM probe, two issues should be considered. First,
the MM probe must be as similar to its corresponding PM
probe as possible so that they bind to the same specific or
non-specific targets synchronously. Second, the differ-
ences of signal intensity between PM- and MM-target pairs
should be as large as possible to allow for confident
assignment of positive signals and elimination of false
positives. To find a balance between the above two con-
flicting factors, two key design parameters, the number
and distribution of mismatches, were examined in this
study. Our results showed that choosing an appropriate
number of mismatches for a MM probe depends on
hybridization temperature (Figure 2). Theoretically, for
short (25-mer) oligonucleotide probes, one mismatched
nucleotide in the MM probe string is enough to obtain a
high level of discrimination [29]. A single mismatch was
also sufficient for detection of single nucleotide polymor-
phisms (SNP) [18]. However, since the relative signal of

single mismatch probes was still around 0.60 for long
(50-mer) oligonucleotides (Figure 2A), it is obvious that
one mismatched nucleotide is insufficient to distinguish
the PM signal from its MM signal. Therefore, in order to
achieve sufficient discrimination, multiple mismatches
are required. In addition, it is known that in solution the
DNA duplex is more stable at lower temperatures for both
specific and nonspecific binding. This phenomenon
could be easily explained by the decrease of free energy,
which would influence the performance of both MM and
PM probes. However, we found that MM probes clearly
acquired more signal than PM probes as the temperature
decreased, suggesting that MM probes were more sensitive
to temperature than PM probes. Therefore, three, four and
five mismatch nucleotides are required for hybridization
at 50°C, 45°C and 42°C, respectively, for MM oligonucle-
otide probes to achieve 10% discrimination.

The comparison of signals from randomly and evenly dis-
tributed MM probes clearly demonstrates that evenly dis-
tributed mismatches generally have a higher
discrimination power than randomly distributed mis-
matches. This is consistent with all previous microarray
studies using both long and short MM oligonucleotide
probes [11,23]. However, when we examined the evenly

Comparison of experimentally detected relative signal intensities between evenly-distributed and flexible positional MM probes through the MPDNN modelFigure 6
Comparison of experimentally detected relative signal intensities between evenly-distributed and flexible posi-
tional MM probes through the MPDNN model.
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distributed MM probes individually, there appeared to be
a large variability in discrimination power among the dif-
ferent genes (Figure 6), suggesting that the even distribu-
tion strategy for MM probe design needs further
improvement for individual genes. Therefore, a novel
MPDNN model was constructed for this purpose. Since
the influence of the chip surface on the hybridization
behavior of probes is still unclear, most currently availa-
ble probe design programs use nearest neighbor parame-
ters, which are adapted from solution to microarray
systems [30,41]. But recent experimental results have
shown that the difference in thermodynamics between
solution and microarray systems is considerable
[23,42,43]. In microarray systems, probes are cross-linked
and fixed on a solid surface (e.g., glass slides), and the dis-
equilibrium between probes and their targets is expected
to be fundamentally different from the DNA duplex in
solution. As a result, some thermodynamic parameters of
dimer nucleotides which are equivalent in solution, such
as CC-GG and GG-CC, AG-TC and TC-AG, become distin-
guishable. This phenomenon has been observed previ-
ously [20,23]. Moreover, there was a significant positional
effect of mismatches in the microarray environment
[20,23]. One of the consequences of these effects is that
probes with evenly distributed mismatches have lower
signal intensities than randomly distributed probes, con-
trary to the free energy calculations carried out based on
solution chemistry. In the nearest neighbor calculation,
the free energy of probes with the same number of mis-
matches should be similar regardless of where the mis-
matches are located, except for adjacent mismatches or
those at both ends.

For the above reasons, the modification of thermody-
namic parameters in microarray systems appears neces-
sary. Zhang et al. (2003) built a PDNN model to correct
these parameters and improve data analysis for gene
expression. But the modifications were based only on data
from Affymetrix® arrays. Since the probe sets and array
construction methods are different for spotted microar-
rays, we modified this model to fit our single-paired PM/
MM probes for spotted arrays. The MPDNN model is
based on a simple deduction that relative signal intensi-
ties and relative free energies are linearly dependent (Fig-
ure 3), which was supported by our regressive analyses
that the linear relationship had higher relative coefficient
(R = 0.798) than logarithmic (R = 0.736) or power (R =
0.741) correlations. Additionally, there are three more
reasons for using the relative signal intensity in this study
rather than the original signal intensity. First, the relative
signal intensity is a normalized intensity with each PM
signal set at 100% so that a gene-dependent factor may be
eliminated. Second, the coefficient of variation (CV) of
the relative signal intensities among replicate slides was
21% on average, less than the 29% obtained from the

original signal intensities, indicating the relative signal
intensities were more stable among the replicates. In addi-
tion, most microarray users focus only on relative signal
intensities for relative comparisons rather than the origi-
nal intensities. Thus, the linear relationship of relative sig-
nal intensities and relative free energies is suitable for
mathematical modeling.

We used the new MPDNN model to generate a set of
improved parameters for dimer matched and mismatched
nucleotides and employed these parameters to redesign
MM probes. The basic idea for the new design process is
to control the relative signals for each individual gene by
exchanging different nucleotides in probe strings (Figure
5). As a result, the redesigned MM probes had slightly flex-
ible mismatch positions which were different from the
commonly used fixed-position design methods. Experi-
mental data demonstrated that the relative signal intensi-
ties from the redesigned MM probes were less variable
than the fixed-position MM probes, indicating that the
new design method with flexible mismatch positions was
better than the previous method. Interestingly, the MM
probes redesigned using MPDNN contained 16 G to A
changes among the 40 total mismatches, much higher
than other base changes. Some studies showed that the
ΔTm of the G to A change was one of biggest among all
base changes [44]. This implies that different nucleotide
exchanges would affect signal intensities differently.
Therefore, theoretically we could design MM probes for
any length of probes using the MPDNN method.

Like other commonly used models [11,20], the MPDNN
model is simply based on a linear relationship between
signal intensity and free energy. Other factors were
ignored in the final formula, such as target labeling effi-
ciency and fluorescence on redundant targets. This model
does have some limitations. For example, the adjusted
thermodynamic parameters of mismatched dimer nucle-
otides through MPDNN are variable at different tempera-
tures (data not shown). Also, hybridization at 50°C and
50% formamide is equivalent to 80°C, which is very close
to some probe-target melting temperatures, resulting in
more variation in thermodynamic parameters at 50°C
than 42 or 45°C. This suggests that an optimization of
microarray hybridization conditions is necessary to assure
the quality of microarray data. Besides, we only studied
nucleotide exchanges from As or Ts to Gs and Cs or Gs to
As, and only DNA-DNA duplexes were tested. In RNA-
DNA microarray hybridizations, the exchange from As to
Gs will be GU wobble with a similar interaction energy to
AU case. Therefore, more data from other exchanges are
needed to improve MPDNN model in the future.

To our knowledge, this is the first report of MM probe
design parameters that are experimentally established for
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long (50-mer) oligonucleotides, and this will provide gen-
eral guidance for microarray MM probe design. The
MPDNN model can be further validated by other
researchers in both experimental and theoretical fields,
and potentially integrated into probe design software like
CommOligo (Li et al. 2005).

Conclusion
MM probes must be carefully designed and evaluated
before incorporation into both short and long oligonucle-
otide microarrays. This study provides guidance on the
design of MM probes for long oligonucleotides (e.g., 50
mers). In general, the results demonstrated that the
probes with evenly distributed mismatches were more dis-
tinguishable than those with randomly distributed mis-
matches. MM probes (50 mers) with 3, 4 and 5
mismatched nucleotides could be differentiated when
hybridized at 50, 45 and 42°C, respectively. Additionally,
instead of simply altering the nucleotides at fixed posi-
tions along the probe string, we constructed a model to
calculate the relative free energy based on microarray data,
and then used this model to further improve MM probe
design. The results demonstrate that this novel MPDNN
model can dramatically improve the consistency of long
MM probe design. Also, this modeling method can poten-
tially be used for the prediction of oligonucleotide hybrid-
ization on microarrays.
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