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Abstract

Background: The contribution of individual organs to the whole-body adaptive response to
fasting has not been established. Hence, gene-expression profiling, pathway, network and gene-set
enrichment analysis and immunohistochemistry were carried out on mouse liver after 0, 12, 24 and
72 hours of fasting.

Results: Liver wet weight had declined ~44, ~5, ~I | and ~10% per day after 12, 24, 48 and 72
hours of fasting, respectively. Liver structure and metabolic zonation were preserved. Supervised
hierarchical clustering showed separation between the fed, 12-24 h-fasted and 72 h-fasted
conditions. Expression profiling and pathway analysis revealed that genes involved in amino-acid,
lipid, carbohydrate and energy metabolism responded most significantly to fasting, that the
response peaked at 24 hours, and had largely abated by 72 hours. The strong induction of the urea
cycle, in combination with increased expression of enzymes of the tricarboxylic-acid cycle and
oxidative phosphorylation, indicated a strong stimulation of amino-acid oxidation peaking at 24
hours. At this time point, fatty-acid oxidation and ketone-body formation were also induced. The
induction of genes involved in the unfolded-protein response underscored the cell stress due to
enhanced energy metabolism. The continuous high expression of enzymes of the urea cycle,
malate-aspartate shuttle, and the gluconeogenic enzyme Pepck and the re-appearance of glycogen
in the pericentral hepatocytes indicate that amino-acid oxidation yields to glucose and glycogen
synthesis during prolonged fasting.

Conclusion: The changes in liver gene expression during fasting indicate that, in the mouse, energy
production predominates during early fasting and that glucose production and glycogen synthesis
become predominant during prolonged fasting.

Page 1 of 20

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18990241
http://www.biomedcentral.com/1471-2164/9/528
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2008, 9:528

Background

Abstinence or absence of food requires the body to recruit
metabolites from pre-existing stores. Based on the rate of
weight loss, nitrogen excretion, concentration of plasma
metabolites and resting metabolic rate, the body is
thought to pass through three successive adaptive phases
during fasting [1] that have been associated with the pri-
mary fuel that is putatively available to the tissues (e.g [2-
5]). During the brief postabsorptive period, the rate of
weight loss is relatively high (~24% per day in mice [6],
~10% per day in rats [7,8], and ~2% in humans [9]). The
decreasing insulin levels induce glycogenolysis (primarily
muscle and liver) and lipolysis [10,11] to support circulat-
ing glucose, triglyceride and cholesterol levels [8]. During
the subsequent "coping" phase, the loss of body mass is
slower (~7% per day in mice, ~6% per day in rats [7], and
~1% in humans [12]). This state, which can be main-
tained for several weeks in humans [13,14], for almost a
week in rats [7], and for 2-3 days in mice [6], is thought
to depend, at least in humans, on lipids as the main fuel
source. However, amino-acid oxidation and, hence, pro-
tein catabolism remains necessary for continuous anaple-
rosis of the TCA cycle [14]. It is widely accepted that
muscle is a main source of amino acids from protein
catabolism, that protein catabolism is maintained by an
increased in the circulating levels of glucocorticosteroids,
and that glutamine and alanine are the main carriers of
this energy source [15,16] to the intestine, liver and kid-
ney [2,5,7,17-19]. As a result, total splanchnic glucose
production amounts to approximately 80 grams daily in
humans after several weeks of starvation [13]. Despite this
enhanced glucose production, but reflecting the enhanced
fatty-acid oxidation and ketone-body synthesis in muscle
and splanchnic region [5,20], the brain gradually switches
to ketone-body oxidation after several weeks of starvation
[21,13]. During the preterminal phase, finally, the rate of
loss of body weight may increase again (~9% in rats [7]).
Because the fat stores are depleted, proteolysis remains the
sole, nonsustainable source of fuel.

The maintenance of the fuel supply during fasting requires
an extensive exchange of metabolites from organs that
break down the stores of fats or proteins to organs that
consume these metabolites. This exchange mainly occurs
as glucose, lactate, amino acids, triglycerides and ketone
bodies. The question that arises from these global findings
concerns the contribution of individual organs to the
whole-body adaptive response to fasting. Our previous
study of the effects of fasting on the small intestine [6]
suggested, in comparison with that of liver [22] and mus-
cle [23,24], an organ-specific response to fasting. Our
study [6] included both shorter and longer periods of fast-
ing than earlier published studies [22-24]. The aim of the
current study was, therefore, to determine the characteris-
tics of gene-expression profile of mouse liver between 0
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and 72 hours of fasting, using a genome-wide transcrip-
tomics approach. Our findings show that the adaptive
response of the liver peaks around 24 hours after food
withdrawal and, unexpectedly, declines thereafter. The
major components of the response were fatty-acid p-oxi-
dation and ketone-body synthesis, and oxidative and
energy metabolism during the first 24 hours of fasting,
and glycogen synthesis and the urea cycle throughout the
entire fasting period.

Results

Effects of food withdrawal on liver structure

During the first 12 hours of fasting, mice lost ~12% of
their body weight (that is, 24% if expressed on a per-day
basis). Thereafter, weight loss remained steady at a rate of
~7% per day, so that mice had lost ~30% of their initial
weight after 72 hours of fasting (Figure 1A). Note that we
expressed daily differences in the rate of weight loss on a
per-day basis to define a common denominator for the 12
h- and 24 h-fasted animals. Liver wet weight declined
more than body weight (Figure 1A), especially during the
first 12 hours of fasting, and amounted to ~44, ~5, ~11
and ~10% per day after 12, 24, 48 and 72 hours of fasting,
respectively. After 72 hours, the liver had, therefore, lost
almost 50% of its initial weight. The basic architecture of
the liver lobules (Figure 1B, HA) and the zonation of gene
expression as studied by the expression of glutamine syn-
thetase and carbamoylphosphate synthetase (Figure 1B,
GS and CPS) remained unaffected. Staining for the
appearance of active-caspase 3 revealed no changes in the
number of apoptotic cells upon fasting, not even after 72
hours (data not shown). In agreement, the apoptotic
genes that were represented on the microarrays showed
no significant change in expression in fasted compared to
fed mice. Since there was no reduction in the number of
liver cells during fasting, we took two approaches to esti-
mate the decrease in average cell size. The summation of
50 hepatocyte diameters in three 72 hours fasted and
three control animals, amounted to 25% reduction in cell
diameter. Based on the liver wet weight, the average cell
diameter decreased 20% in the fasted animals.

Effects of fasting on metabolism

Ammonia levels had increased 2.0-, 3.7- and 5.2-fold after
24,48 and 72 hours of fasting, respectively (P < 0.005; Fig-
ure 2A). Glucose and lactate concentrations remained sta-
ble until 48 h of fasting, but decreased 34 and 43%,
respectively (P < 0.05 and 0.005, respectively, Figure 2A)
in the next 24 hours. The plasma concentration of many
amino acids changed at some time point of fasting, but
only the changes in the concentration of taurine showed a
trend with time (Figure 2B and Supplementary Table 1,
Additional file 1). Accumulation of taurine helps protect
cells from hypertonicity [25], as may occur during shrink-
age of fasting hepatocytes.
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Macro- and microscopic analysis of the fasting liver. A) Change in whole-body and liver weight during fasting as percent-
age of fed weight (n > 8). Asterisks label significant changes (P < 0.01). The blue and pink lines represent the daily percentual
change in body and liver weight, respectively, with the percent weight loss per day shown on the secondary y-axis. B) Histology
of fed and 72 hour-starved livers (upper and lower panel, respectively). The sections were stained with hematoxylin and azo-
phloxin (HA), and for the presence of glutamine synthetase (GS; pericentral expression) and carbamoylphosphate synthetase
(CPS; periportal expression). The figures show that lobular architecture and metabolic zonation are unaffected by fasting. Bars:

0.1 mm.

Global gene-expression profile in the liver

To gain a comprehensive overview of the physiological
response of the liver to fasting, whole-genome measure-
ments were made. Compared to the fed group, 201, 504
and 119 transcripts, including expressed sequence tags
and RIKEN sequences, met our boundary condition for

significance (> 1.4-fold change with P < 0.01) after 12, 24,
and 72 hours of fasting, respectively (Figure 3A; for a com-
plete list of more than 1.4-fold up- or downregulated
genes, see Additional file 2). The dendrogram generated
by supervised hierarchical clustering (Figure 3B) shows a
clear separation between fed and fasted conditions.
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Figure 2

Changes in plasma metabolite concentrations during fasting. A) Glucose and lactate (mM, primary Y-axis), and ammo-
nia concentrations (UM, secondary Y-axis) after 0, 12, 24, 48 and 72 hours of fasting. B) Adaptive changes in concentrations of
a selection of amino acids during fasting (those without significant change between any two time points were left out). For all
the metabolites measured: 8 < n < [2; bars represent SEM and the asterisks identify significant changes (P < 0.05) in compari-

son to the fed condition.

Among the arrays coming from fasted animals, those from
72 hours stand out, while the branches of the two earlier
time points are intertwined, indicating that expression
profiles are rather similar after 12 and 24 hours of fasting.
This is also reflected in the Venn diagrams where the over-
lap between 12 and 24 hours is larger than the overlap
with 72 hours.

Global analysis reveals a strong early and an abated late
response to fasting

We used GenMAPP and, in particular, MetaCore™ soft-
ware to deduce the biological processes that change with
an increasing duration of fasting from the liver transcrip-
tome data. In MetaCore, the degree of association of the

uploaded datasets with predefined metabolic pathways is
defined by P-values, with lower P-values being more rele-
vant. The expression of 465 genes that met our thresholds
(56%) could be linked to the MetaCore™ suite. Their dis-
tribution across time points is shown in Figure 4A. The
graphs show the numbers of unique, similar and common
genes for all three, and for two initial time points sepa-
rately, showing that the response to fasting at 24 hours
was similar to, but more pronounced than that at 12
hours.

We performed gene-set enrichment analysis in three dif-
ferent functional ontologies using MetaCore™: cellular
processes, biological processes and canonical pathways.
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Table I: Top 10 canonical pathways influenced by fasting
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pathway pathway group p- value genes
glycolysis and gluconeogenesis metabolic maps/carbohydrate metabolism 2.32e-07 9/36
urea cycle metabolic maps/amino-acid metabolism 2.61e-07 8/27
PPARa regulation of lipid metabolism regulation of metabolism/regulation of lipid metabolism 3.57e-07 8/28
peroxisomal straight-chain fatty-acid -oxidation metabolic maps/lipid metabolism 2.51e-06 5/10
mitochondrial long-chain fatty- acid $-oxidation metabolic maps/lipid metabolism 2.74e-06 6/17
metabolism of sulphur-containing amino acids metabolic maps/amino-acid metabolism 4.02e-06 6/18
peroxisomal branched-chain fatty- acid oxidation metabolic maps/lipid metabolism 8.04e-06 6/20
taurine metabolism metabolic maps/amino-acid metabolism 1.96e-05 6/23
mitochondrial unsaturated fatty- acid -oxidation metabolic maps/lipid metabolism 2.69e-05 5/15
TCA metabolic maps/amino-acid metabolism 1.25e-04 4/20

Canonical pathways represent a set of about 500 signalling and metabolic maps in the MetaCore suit. All maps are drawn from scratch by GeneGo

annotators and manually curated.

Based on the Gene Ontology categorization of cellular
processes, fasting predominantly affected the metabolic
processes, in particular the carboxylic-acid metabolizing
processes, lipid and glucose metabolism. The enrichment
analysis for biological processes showed, more specifi-
cally, that genes involved in amino-acid, lipid, carbohy-
drate and energy metabolism responded most
significantly to fasting (Figure 4B). The graph presents P-
values as parameter of the likelihood that coordinate
changes in the pathways shown were indeed present at the
different time points of fasting. As statistical parameter,
the P-value encompasses no variation. The changes in all
processes except amino-acid metabolism showed a
response that peaked at 24 hours after food withdrawal
and declined thereafter. The response during the late
phase of fasting was dominated by amino-acid metabo-
lism, although lipid and carbohydrate metabolism
remained significantly regulated. The Figure further
reveals that the changes in energy metabolism were signif-
icant at 24 hours of fasting only. The common denomina-
tor of the overall fasting response was, therefore,
metabolism of amino acids, carbohydrates, and lipids.

Regulated pathways

Since the global analysis does not reveal a direction in the
changes and lacks functional detail, we scrutinized the
pathways with most pronounced regulation for func-
tional implications. A list of the 10 top-scoring canonical
pathways, shown in Table 1, points to gluconeogenesis,
urea synthesis, and PPARa-regulated fatty-acid oxidation
as the major characteristics in the response of the liver to
fasting.

Amino-acid catabolism and urea synthesis

Of all the pathways studied in the liver, the adaptive
changes in amino-acid metabolism persisted throughout
the fasting period (Figure 4B). Of the enzymes in this
group, those of the urea cycle were upregulated at all three
time points (Figure 5). Among the genes consistently

affected were argininosuccinate synthetase 1 (Ass1, Assy;
3.7-,2.5- and 4.5-fold upregulated) and argininosuccinate
lyase (Asl, Arly; 5.0-, 5.8-, and 12-fold upregulated at 12,
24 and 72 hours, respectively. The first and rate-determin-
ing enzyme of urea cycle, carbamoylphosphate synthetase
(Cps), was not represented on the microarrays, but its
expression level, as estimated by qPCR, was increased 3.5-
fold at all 3 time points (manually added to Figure 5).
Urea synthesis occurs in periportal hepatocytes, whereas
ammonia detoxification via glutamine synthesis occurs
pericentrally. Genes for the pericentral enzymes orni-
thine-aminotransferase (Oat) and proline dehydrogenase
(Prodh), which provide glutamate for glutamine synthesis,
were upregulated 2.5-, 3.0- and 3.0-fold and 2.1-, 2.5- and
2.0- fold at 12, 24 and 72 hours, respectively. Glutamine
synthetase (Glns) itself was, however, not regulated.

Remarkably, the expression of amino-acid catabolizing
enzymes themselves was barely affected by fasting. Only
the degradation of branched-chain keto-acids (products
of branched-chain amino-acid transamination elsewhere)
was upregulated, as shown by the upregulation of acetyl-
coenzyme A dehydrogenase, medium chain (Acaddm),
enoyl-coenzyme A, hydratase/3-hydroxyacyl-coenzyme
(Ehhadh), hydroxyacyl-coenzyme A dehydrogenase, short
chain (Hadhsc), acetyl-coenzyme A acyltransferase 1
(Acaal), and 3-hydroxy-3-methylglutaryl-coenzyme A
lyase (Hmgcl) - all within first the 24 hours (Figure 5).
This finding suggests that the adaptations in amino-acid
catabolism during fasting mainly occur outside the liver.
Since neither glutamate-pyruvate transaminase nor
ammonia-inducible liver glutaminase were upregulated,
the capacity of the liver to deaminate the amino-carriers
alanine and glutamine must have been sufficient.

TCA cycle and electron-transport chain

The strong induction of the urea cycle suggests a strong
stimulation of amino-acid oxidation or gluconeogenesis.
In agreement with this hypothesis, both the expression of
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Figure 3
Number of genes in the liver that are affected by fasting. A) Number of differentially expressed genes (> 1.4-fold

change in expression; P < 0.01) at each time point studied. The left-sided Venn diagram shows the number of up-regulated and
the right-sided diagram the number of down-regulated genes. Genes that were changed in expression at more than one time
point are shown in the overlapping areas. B) Supervised hierarchical cluster based on correlation and complete linkage.
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Adaptive changes in metabolic processes in the liver during fasting as analyzed by MetaCore™ software. A) The
gene content imported to MetaCore™ is aligned between the time points. The parameters for comparison are > |.4 fold
change and P < 0.01, and the annotation allowed for 56% of such genes to be linked. The unique genes changed at each of the
time points are marked as colored bars (orange, blue and red for 12, 24 and 72 hours, respectively). The set of common genes,
changed in all three conditions, is shown in blue-white hatching. The middle white box represents the similar genes (present in
2 out of 3 data points). The upper panel represents differentially regulated genes in all three time points of fasting, while the
lower one shows uniquely and commonly differentially expressed genes for 12 and 24 hours of fasting. B) Four groups of met-
abolic processes changed significantly in response to fasting, with the response of all peaking at 24 hours. The Y-axis shows the
significance of change, while the X-axis represents duration of fasting. The P-values of the pathways are calculated using the
hypergeometric distribution, where the P-value represents the probability of a particular mapping arising by chance, given the
numbers of genes in the set of all genes in pathways, genes in a particular pathway, and genes in the present experiment. The
pathways are grouped into processes as defined in MetaCore™ (version 4.3, build 9787). The dotted line represents the 0.05
significance threshold.

enzymes of the tricarboxylic-acid (TCA) cycle and oxida-
tive phosphorylation were induced in fasted liver, again
mainly at 24 hours. Aconitase 2 (Aco2), isocitrate dehy-
drogenase 3 (NAD+) (Idh3b), oxoglutarate dehydroge-
nase (Ogdh), dihydrolipoamide S-succinyltransferase
(Dist), fumarate hydratase 1 (Fh1) and malate dehydroge-
nase 1 (Mdh1) were all upregulated at 24 hours of fasting
(1.9-, 1.5-, 3.1, 2.0-, 1.4- and 1.6-fold, respectively; Fig-
ures 5 and 6), indicating an increased capacity of the cycle.
DIst and Fh1 were 2.0 and 1.6 times induced at 12 hours
of fasting, while Aco2 expression was also 1.8-fold
increased at 72 hours.

In agreement with an increased capacity of the TCA cycle,
the expression of the genes of the electron-transport chain
was strongly stimulated (Figure 7; a legend for the Meta-
Core canonical pathways is provided in Additional file 3).
Four genes belonging to NADH-ubiquinone oxidoreduct-
ase complex: NADH dehydrogenase [ubiquinone] la
subcomplex subunit 10 (Ndufa10), NADH dehydroge-
nase [ubiquinone] 1o subcomplex subunit 13 (Ndufal3),
NADH dehydrogenase [ubiquinone] flavoprotein 1
(Ndufv1l) and NADH dehydrogenase [ubiquinone] flavo-
protein 2 (Ndufv2), were all approximately 1.6-fold upreg-
ulated. Expression of the genes of the ATP synthase
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Figure 5

Amino-acid catabolism in fasting liver. The map was created in the GenMAPP suite to show a comprehensive overview
of amino-acid metabolism in response to fasting. Warm colors (from yellow to red) represent down-regulation, while cold
colors (light blue to dark green) indicate an induction (see scale on the right border of the figure). Gray indicates no significant
change. Genes not coupled to reporters on the array are shown in white. Genes represented by more than one sequence on
the array are shown in dash-lined boxes, with the level of change depicted by the colored line surrounding the field. Each gene-
box is split into 3 units, representing (from left to right) a change in expression after 12, 24 and 72 hours of fasting compared
to fed animals.

complex, ATP synthase subunit o (Atp5a1), ATP synthase  Gluconeogenesis
8 chain (Atp5d) and ATP synthase lipid-binding protein ~ Phosphoenolpyruvate carboxykinase 1 (Pepckl), a key
(Atp5g1), was 1.6-1.9-fold induced at 24 hours. Ubiqui-  enzyme in the gluconeogenic route, was upregulated 2.0-
nol-cytochrome-c reductase complex core protein 1 , 2.5- and 2.7-fold on the microarrays and 3.2-, 3.2, and
(Ugcrel) was 2.2-fold upregulated after 24 hours, whereas ~ 2.9-fold in the qPCR measurements at 12, 24 and 72
the energy-dissipating uncoupling protein 2 (Ucp2) was  hours of fasting, respectively (Figures 5, and 6, and Table
1.8-fold downregulated at this time point (Figure 8).  2). Cytosolic glutamate oxaloacetate transaminase 1
Taken together, these data indicate that the capacity for ~ (Gotl) was also strongly upregulated at all three time
ATP synthesis in the liver is strongly upregulated during  points (5-, 6-, and 21-fold). In addition, malate dehydro-
the first day of food deprivation. genase (Mdh) and mitochondrial glutamate oxaloacetate
transaminase (Got2) were induced (1.6- and 1.8-fold
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Fasting upregulates genes of the malate-aspartate shuttle and the gluconeogenic enzyme Pepckl in mouse
liver. The color code of the GenMAPP view is the same as in Figure 5.
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Electron-transport chain. Experimental data are visualized on a MetaCore map as blue (for downregulation) and red
(upregulation) histograms (‘thermometers'). The height of the histogram corresponds to the relative expression value for a
particular gene, with numbers |, 2 and 3 representing 12, 24 and 72 hours of fasting, respectively. A legend for the Meta-
Core™ canonical pathways is provided in Additional file 3.
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respectively). Together, these data suggest an increased
capacity of the malate-aspartate shuttle across the mito-
chondrial membrane, which would accommodate an
enhanced carbon flux from the mitochondria.

All other steps that were affected by fasting were shared by
the glycolytic and gluconeogenic pathways and were reg-

Table 2: Comparison of intestinal and liver Pepckl expression in
fasting by qRTPCR, expressed in relative units after
normalization by 18 S expression (n = 6)

time (h) small intestine liver ratio
0 18 85 0.21
12 15 278 0.05
24 51 277 0.18
72 128 247 0.52

ulated during the first day of fasting only (Figure 6). Phos-
phoglycerate mutase 1 (Pgam1) was 1.4-fold upregulated
at 12 hours of fasting, while glucosephosphate isomerase
1 (Gpil), aldolase 1A isoform (Aldoa), triosephosphate
isomerase 1 (Tpil), glyceraldehyde-3-phosphate dehydro-
genase (Gapdh) and enolase 1a (Enol) were 1.5-,1.7-, 1.5-
, 1.7-, 2.1- fold upregulated at 24 hours of fasting, respec-
tively. These data indicate that the enhanced capacity of
the gluconeogenic pathway would largely depend on
enhanced TCA and malate-aspartate cycling, and that this
adaptive response in gene expression might be restricted
to a single day in the mouse.

Liver glycogen accumulation upon prolonged fasting
The near total return to "normalcy" of gene expression at
72 hours (only the genes for urea cycle enzymes, gluta-
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mate-synthesizing enzymes, and Pepckl remained
induced) was striking. Because glucose-6-phosphatase
expression was not upregulated, we explored the possibil-
ity that glucose precursors were channelled into glycogen.
As expected, (amylase-sensitive) periodic acid-Schiff
(PAS) staining showed the complete disappearance of gly-
cogen from the liver after 12 hours of fasting (Figure 9),
but some staining had returned at 24 hours and intense
staining was seen in 72-hours fasted liver. Whereas glyco-
gen was localized around the portal veins in fed liver, it
was deposited exclusively around the central veins after 72
hours of fasting, with sharp borders towards the empty
cells.

Fatty-acid catabolism and ketone-body synthesis

The enhanced expression of fatty-acid catabolizing
enzymes was also limited to the initial phase of fasting.
The expression of the transcription factor Ppare, a major
regulator of fatty-acid oxidation, was 2.1-fold upregulated
at 24 hours of fasting (Figure 8). Furthermore, the mito-
chondrial carnitine/acylcarnitine fatty-acid translocase
(Cac or Sic25a20) was 1.6-fold upregulated at 12 hours,
while carnitine palmitoyltransferase 2 (Cpt2) on the inner
mitochondrial membrane was 1.8-fold upregulated at
both 12 and 24 hours of fasting. However, the expression
of Cptl, which is present on the outer mitochondrial
membrane and is sensitive to malonyl-CoA inhibition,
remained unchanged. The 4 acyl-coenzyme A dehydroge-
nases (Acad -v, -1, -m and -sh), involved in oxidation of very
long-, long-, medium- and short-chain fatty acids, were all
upregulated in the first 24 hours of fasting (1.5-2.6 fold).
The B-subunit of the trifunctional protein (Hadhb) was 2-
and 2.1-fold upregulated at 12 and 24 hours, respectively,
while another subunit, hydroxyacyl-coenzyme A dehydro-
genase, short chain (Hadhsc) showed increased expression
after 24 hours of fasting only, indicating altogether a
strong stimulation of fatty-acid oxidation at the gene-
expression level during the first day of fasting.

http://www.biomedcentral.com/1471-2164/9/528

The expression of HMGCoA synthase 2 (Hmgcs2) was also
strongly stimulated during the first day of fasting (3.4-
and 2.9-fold at 12 and 24 hours, respectively; Figure 5),
indicating an increased capacity of the synthesis of ketone
bodies from acetyl-CoA. This process is further facilitated
by increased expression of genes involved in branched-
chain keto-acid degradation (Acadm, Hadhsc and Ehhadh,;
see section on amino-acid catabolism) at 12 and 24 hours.
Interestingly, neither the cytoplasmic HMGCoA synthase
(Hmgces1) nor HMGCoA reductase (Hmgcr), the key
enzyme in de novo cholesterol synthesis pathway [26],
have changed the expression levels in fasted liver.

Among the genes involved in fatty-acid synthesis, enoyl
coenzyme A hydratase domain containing 3 (Echdc3) was
1.6 and 1.7-fold downregulated at 12 and 24 hours, while
stearoyl-coenzyme A desaturase 1 (Scdl) showed a 2.6-
fold decrease in expression at 72 hours of fasting. These
data underscore the importance of enhanced lipid catabo-
lism in the liver, which, in the mouse, apparently occurs
during the first day of fasting only.

Oxidative stress and unfolded protein response

The enhanced expression of TCA cycle and oxidative-
phosphorylation enzymes often causes oxidative stress.
Indeed, cytosolic superoxide dismutase (Sodl) was 2.2-
fold upregulated after 24 hours, and the early growth
response protein 1 (Egrl), its transcriptional regulator
[27], 2.9-fold. Furthermore, catalase (Cat) and stress-reg-
ulated mitogen-activated protein kinase 14 (Mapkl4)
were both 1.4-fold upregulated at this time point. In addi-
tion, metallothionein 1 gene, known to be involved in
protection against oxidative stress and metal toxicity [28],
was intensely upregulated (8.6-, 5.5- and 13.5-fold, at 12,
24 and 72 hours, respectively).

Interestingly, the 3 top-scoring processes obtained from a
biological-process enrichment analysis all belonged to the

oh o 12h

Figure 9

2ah 72h

Glycogen storage in mouse liver during fasting. In fed liver, periportal hepatocytes contain most glycogen (left panel).
Twelve hours of fasting totally depletes the glycogen stores, but at 24 hours, glycogen starts to re-accumulate and has accumu-
lated to high levels in pericentral hepatocytes after 72 hours of fasting (right panel). Portal and central veins are depicted by let-

ters "p" and "c", respectively. Bar: 0.1 mm.
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unfolded-protein response (endoplasmic reticulum (ER)
stress). To present the relevant data in a single figure, we
created a network using the shortest-path algorithm (Fig-
ure 10). The resulting network provides links based on the
known interaction data between the nodes from the query
data set, and also between the nodes that regulate the
given genes or metabolites. It shows 8 heat-shock and 6
other proteins, all upregulated 1.5-2.5 fold, indicating
upregulation of this stress-response pathway in fasted
liver. Downstream of the ER stress pathway, proteasome
degradation was also upregulated, but again only after 24

http://www.biomedcentral.com/1471-2164/9/528

hours of fasting (Figure 11). A list of these and some addi-
tional genes regulated in the ER stress and proteasome
degradation, with their change level, is shown in Table 3.

Discussion

The major architectural feature of fasting liver is a pro-
nounced decline in cell size (down to ~75% of its fed
diameter after 3 days of fasting) rather than a loss of cell
number. In addition, the liver's metabolic zonation in
upstream, periportal and downstream, pericentral regions
remains intact. These findings indicate that the liver can
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The unfolded-protein response in fasting. The network was generated and linked with available experimental data in the
MetaCore™ suite. Nodes with red or blue circles in top right corner of the network objects, represent up- or down-regula-
tion, respectively, with the shade indicating the intensity of the change. Detailed legend for MC networks is provided in Addi-

tional file 3.
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Proteasome degradation in fasting. The colour code of the GenMAPP view is the same as in Figure 5.

quickly resume its homeostatic functions once feeding
resumes. Our microarray data show that the adaptive
response of the liver to fasting at the level of gene expres-
sion is most pronounced during the early phase, with the
upregulation of ammonia detoxification persisting up to
72 hours of fasting. Since the technically similar study of
Bauer et al. [22] reported enhanced expression of lipid-
catabolizing and urea-cycle enzymes after 24 and 48 h of
fasting, the collective data show that the response to fast-
ing in the liver starts already at 12 hours of fasting and
becomes maximal between 24 and 48 hours. The hepatic
response to total food deprivation, therefore, does not
proceed through the global "sugar-fat-protein" sequence
that is described for the adaptation on the whole-body
level [1-5].

The expression of genes involved in lipid metabolism and
ketone-body synthesis, many under PPARa coordination
[29,26], was strongly regulated towards fatty-acid oxida-

tion and ketone-body formation. Interestingly, this adap-
tive response was seen between 12 and 48 hours ([22] and
present study) of fasting only, and then faded out. In the
rat, this response was recently reported to occur between
3 and 5 days of fasting [30]. Fatty-acid oxidation was
accommodated by the identical time frame of the upregu-
lation of the expression of TCA-cycle enzymes and the
proteins of the electron-transport chain in response to
fasting. The associated oxidative stress and mitochondrial
radical formation was apparently sufficiently strong to
induce the unfolded-protein (ER stress) response in liver.
Thus far, to our knowledge, activation of the unfolded
protein response has not been associated with fatty-acid
oxidation in the fasting liver, but it is induced by a high-
fat diet [31]. Similarly, mitochondria in fasting muscle
protect themselves against the oxidative stress that results
from fat oxidation [32] by accumulating the uncoupling
proteins UCP2 and UCP3 [33,34].
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Table 3: Genes involved in the protein-folding response and oxidative stress that are regulated by fasting

gene name

AH receptor-interacting protein

Cyclic AMP-dependent transcription factor ATF-4
Calreticulin precursor

Dna) homolog subfamily A member |

Glutaredoxin-|

Heat shock protein HSP 9083

Endoplasmin precursor

78 kDa glucose-regulated protein precursor
Heat-shock cognate 71 kDa protein

Heat-shock protein -1

Heat-shock protein (3-8

60 kDa heat-shock protein, mitochondrial precursor
Heat-shock protein 105 kDa

ubiquitin C

ubiquitin-conjugating enzyme E2B

protease (prosome, macropain) 26 S subunit, ATPase |
protease (prosome, macropain) 26 S subunit, ATPase 4
protease (prosome, macropain) 26 S subunit, ATPase 5
proteasome (prosome, macropain) 26 S subunit, non-ATPase, 4

proteasome (prosome, macropain) 26 S subunit, non-ATPase, ||
proteasome (prosome, macropain) 26 S subunit, non-ATPase, 13

gene symbol 12 h 24 h 72 h
Aip -1.78 -1.63

Atf4 2.60
CalR 1.67
Dnajal 1.40
Glrx 1.42
Hsp90ab | 2.06 2.45
Hsp90b 1 1.60
Hspa5 231 1.86
Hspa8 2.75 2.76
Hspb 1.76
Hspb8 1.93
Hspd| 2.47
Hsphl 237

Ubc 2.86 2.07 4.49
Ube2b 1.55
Psmcl 1.42
Psmc4 1.50
Psmc5 1.47
Psmd4 1.44
Psmd| | 1.44
Psmdl3 2.08

The role of the liver in gluconeogenesis during fasting is
well documented [35-37]. However, the expression of
enzymes associated with gluconeogenesis was upregu-
lated only during the first day of fasting and was mainly
confined to the malate-aspartate shuttle and Pepckl. In
fact, apart from Pepck1, the expression of none of the com-
mitted steps in gluconeogenesis was regulated. It is likely
that the enhanced expression of TCA-cycle and malate-
aspartate shuttle enzymes, and the enhanced expression
of Pepck1 enhance the flux towards either glucose-6-phos-
phate or lactate. It is, therefore, remarkable that the
expression of glucose-6-phosphatase, a periportal
enzyme, and pyruvate kinase, a mainly pericentral
enzyme, are not regulated, while the expression of lactate
dehydrogenase is only upregulated at 12 and 24 hours.
Similarly, the expression and activity of glucose-6-phos-
phatase in rat liver are upregulated mildly during the first
48 hours of fasting only [38]. Our unpublished data show
a similar response in the kidneys of fasting mice, in which
Pepck1 is 2-3 fold upregulated at all time points, whereas
glucose-6-phosphatase is not regulated. The pronounced
accumulation of glycogen in pericentral hepatocytes start-
ing after 24 hours of fasting, which was also observed in
72- and 96-hour fasted rats [39], indicates that pericentral
hepatocytes, which do not express glucose-6-phosphatase
[40,41], channel glucose-6-phosphate towards glycogen.
Since all relevant enzymes are also expressed in periportal
hepatocytes, which do not accumulate glycogen, we
assume that these hepatocytes contain enough glucose-6-
phosphatase to produce glucose.

The liver produces ~60% of the newly produced glucose in
starvation, while the kidneys account for ~40% [13]. A

recent, but controversial series of experiments suggest
that, in addition to the liver [35-37] and kidney [35,42],
the small intestine also has the capacity to produce glu-
cose upon prolonged fasting [43,6]. It contributes indi-
rectly, by providing lactate and alanine to the liver in
short-term fasting [17,44], and directly by the production
of glucose [6] (perhaps up to 27% of whole-body glucose
production in extended fasting in the rat [18]). The con-
cept is controversial, since other studies were unable to
detect glucose formation from glutamine in the isolated
small intestine of 72 hours fasted rats [45]. Furthermore,
the expression of the key gluconeogenic enzyme phos-
phoenolpyruvate kinase (Pepckl) in the mouse small
intestine was reported to amount to only 0.05-1% of that
in the liver after 12 h hours of fasting [46], also arguing
against intestinal gluconeogenesis. We, therefore, com-
pared Pepck mRNA levels in these two organs by qPCR in
the fed and 3-days fasting condition (Table 2). While
Pepckl expression in the gut at 12 hours of fasting only
amounted to ~5% of that in liver, its expression increased
to 18 and 53% of that in the liver after 24 and 72 hours of
fasting, respectively. This finding demonstrates that the
issue of intestinal gluconeogenesis during prolonged fast-
ing deserves additional study.

The plasma concentrations of both glucose and lactate
remained unchanged during the first 24 hours of fasting,
declined temporarily by 35-40% at 48 hours, and
returned to control values between 48 and 72 hours. The
maintenance of normal concentrations of glucose and lac-
tate during the first 24 hours of fasting is most likely the
result of gluconeogenesis in the liver and kidney. Since the
expression of enzymes that are shared by the glycolytic
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and gluconeogenic pathways, declines after 24 hours of
fasting, the observed decline at 48 hours may represent a
declining contribution of the liver to gluconeogenesis. As
we argued earlier, the accumulation of glycogen in the
pericentral hepatocytes between 24 and 72 hours of fast-
ing indicates that gluconeogenic intermediates flow
towards glucose-6-phosphate and accumulate as glycogen
due to the low expression of glucose-6-phosphatase in
these hepatocytes. Most likely, a similar or higher flow of
gluconeogenic intermediates is present in the periportal
hepatocytes, but is exported as glucose due to the high
concentration of glucose-6-phosphatese in these cells.
Furthermore, the putative production of glucose in the 72-
hour fasted intestine can also contribute to the circulating
glucose level.

The urea-cycle enzymes distinguish themselves from most
other genes in the liver in that they were upregulated in
expression throughout the period of fasting that was stud-
ied. Furthermore, cytosolic glutamate-oxaloacetate
transaminase, which mediates the availability of aspartate
to the urea-cycle enzyme argininosuccinate synthetase,
was also strongly upregulated at 72 hours. Similarly, Oat
and Prodh, which supply glutamate to glutamine syn-
thetase for glutamine synthesis in pericentral hepatocytes,
were strongly upregulated at all time points studied, but
glutamine synthetase itself was not regulated (and even
downregulated in another study [22]). Since few amino-
acid catabolizing enzymes were upregulated (the excep-
tion being the metabolism of sulphur-containing amino
acids), most amino-groups were probably carried to the
liver as alanine or glutamine, although neither glutamate-
pyruvate transaminase nor liver glutaminase was upregu-
lated. The coordinate control of ammonia detoxification
and the source of ammonia during prolonged fasting
therefore deserve attention.

An important question is to what extent we can extrapo-
late the observations in a small mammal like the mouse
to larger animals like humans. The ability to tolerate the
absence of food does indeed decline with body size: in the
mouse the maximum duration of fasting is 4 days [47], in
rat 12-15 days [48], in children 4 weeks and in adult
humans 8-9 weeks [49,13]. Qualitatively, however, the
response to fasting is probably comparable between these
mammals, as long as the time scale is adjusted to the size
of the animal. Rather than questioning the comparability
of small and large animals, our data question whether the
implicit extrapolation of the "sugars-fats-proteins" succes-
sion of energy substrates during fasting that is based on
whole-body energy expenditure [1,50] to individual
organs is valid. Microarray studies in rodents that have
prospected the adaptive response to fasting of the small
intestine [6], liver ([22] and present study), muscle
[23,24,51], and a more limited study in kidney focusing
on circadian differences in gene expression [52], reveal a

http://www.biomedcentral.com/1471-2164/9/528

different scenario. Muscle and kidney respond to fasting
with a progressive change over time in mRNA concentra-
tions of enzymes involved in protein, carbohydrate and
fat metabolism. The response in liver peaked at 24-48
hours of fasting in mouse, while most adaptive changes
had abated by 72 hours. The intestine, finally, showed an
early, but temporary peak of adaptive changes in amino-
acid, carbohydrate and fat metabolism at 12 hours of fast-
ing, while a late response, existing almost exclusively of
amino-acid catabolizing and gluconeogenic enzymes,
gradually developed towards 72 hours of fasting. These
differences in pattern and amplitude of gene expression
change in different organs can be used to look for circulat-
ing biomarkers that reflect the functions of organs during
adaptive responses.

Conclusion

Based on whole-body energy expenditure, the "sugars-
fats-proteins" sequence of energy substrates during fasting
was suggested. In our extensive microarray studies of the
response to fasting in the gut [6] and liver (present study),
we found no support for this intuitively attractive model
at the individual organ level. The liver markedly differed
from the biphasic response pattern in the small intestine
(with peaks at 12 and 72 hours) in that its adaptive
response peaked at 24-48 hours of fasting, while most
adaptive changes had abated by 72 hours. Expression pro-
filing and pathway analysis revealed that genes involved
in amino-acid, lipid, carbohydrate and energy metabo-
lism responded most significantly to fasting, with no tem-
poral separation between them. Even though the liver lost
50% of its initial weight during 3 days of fasting, its basic
morphology remained preserved, showing that the liver
can quickly resume its homeostatic functions when feed-
ing resumes.

Methods

Animals and tissues

Livers were harvested from the same mice that were used
to study the effects of fasting on the small intestine [6].
Briefly, 6 week-old male FVB mice (Charles River, Maas-
tricht, The Netherlands) were fasted for 0, 12, 24, or 72
hours before sacrifice (N > 8 per group). The animals were
kept in metabolic cages to prevent the consumption of
bedding and were kept warm with an infrared lamp. Body
weight was determined daily. The daily rate of body or
organ mass loss was calculated as described [53]. The ani-
mals were sacrificed between 9:00 and 10:00 a.m. by cer-
vical dislocation. The liver was isolated quickly, freed
from the gall bladder, cut into pieces and either snap-fro-
zen in liquid N, and stored at -80°C, or fixed overnight at
4°C in 4% buffered formaldehyde or a mixture of metha-
nol, acetone, and water (2:2:1 by volume). The study fol-
lowed the Dutch guidelines for the use of experimental
animals and was approved by the AMC Animal Experi-
ments Committee.
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RNA isolation and quantification

Total liver RNA was extracted from frozen tissue with TRI-
zol reagent (Invitrogen, Breda, The Netherlands). The
RNA quality was assessed using the RNA 6000 Nano
LabChip® Kit in an Agilent 2100 bioanalyzer (Agilent
Technologies, Palo Alto, USA). Additional mRNA quanti-
fication for Cps (not present on the microarray) and the
qPCR validation of the changes derived from the microar-
ray read-outs was performed as described [54] (Supple-
mentary Table 2, Additional file 1). The gene-specific
primer sequences are shown in Supplementary Table 3
(Additional file 1). mRNA concentration was calculated
using the LinReg program [55]. The significance of the
qPCR data was assessed by Student's t-test.

Microarrays

Three microarrays (Mouse Development Oligo Microar-
rays G4120A; 22 K; Agilent) per experimental condition
and a robust reference design were used [56]. Per microar-
ray, 20 ug mRNA, pooled from 2 livers, was reverse tran-
scribed with Cy3-labelled dCTP (Perkin Elmer, Boston,
USA), using the Agilent Fluorescent Direct Label Kit. Cy5-
labeled cDNA, produced from RNA pooled from the livers
of 6 fed animals, served as the common reference across
all arrays. Hybridized cDNAs were detected with Agilent's
dual-laser microarray-slide scanner and the data retrieved
with Agilent's Feature Extraction software 6.1.1. The data
discussed in this publication have been deposited in
NCBIs Gene Expression Omnibus (GEO; [66]) and are
accessible through GEO Series accession number
GSE10653.

Data analysis

The data were processed and analyzed as described [6]. In
brief, background-subtracted intensities were calculated
using foreground and background median signals, and
normalized with the quantile normalization method. An
ANOVA model was applied to the common reference
channel only, to remove outliers and local artefacts, and
detect non-uniform hybridization [57]. Differentially
expressed genes were identified with the Split-Factor
ANOVA directly by comparing the green (experimental)
and red (reference) signals, and indirectly, across-arrays,
by comparing the Cy3 signals of starved and fed animals.
A consensus between the direct and across-array ANOVA
ensures that the final results do not suffer from either dye-
gene effects or array-specific noise. Genes that received a
concordant significance call in 2 out of 3 microarrays (P <
0.01) from both the direct and across-array split-factor
ANOVA were taken into further consideration. Given the
high sensitivity of Agilent arrays [58], we opted for 1.4-
fold change as inclusion criterion for a gene.

To perform cluster analysis, Pearson correlation was set as
distance measure and complete linkage as agglomeration
method. The normalized log-ratio (Cy5/Cy3) expression
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values of the top 500 most differentially expressed genes
between fasted and normal fed mice were used to calcu-
late the correlation between samples. R/Bioconductor
[59] was used to create the clusters.

Pathway, network and gene-set enrichment analyses were
applied system-wide, using the MetaCore™ suit (GeneGo,
Inc., St. Joseph, MI, USA) [60,61]. The significance of
changes in expression in pathways or networks is based
on the degree of overlap between the user's dataset and a
set of genes corresponding to a network or pathway que-
ried. The problem is cast as the probability that a ran-
domly obtained overlap of a certain size between the
user's set and a network/pathway follows a hypergeomet-
ric distribution. Additionally, pathway analysis and visu-
alisation was performed using GenMAPP [62] (2.0 B-
version) software (Gladstone Institutes, UCSF, San Fran-
cisco, USA). In all applications, P < 0.01 and > 1.4-fold
change were used as inclusion criteria.

To assess the significance of the results other than micro-
array data, ANOVA and Student's t-test were employed.
The error bars in the figures represent the standard error of
the mean (SEM).

Histology and immunohistochemistry

Sections were stained with hematoxylin and azophloxine,
or immunohistochemically as described [6,63]. Mono-
clonal anti-glutamine synthetase (Transduction Laborato-
ries, Lexington, KY) and polyclonal anti-carbamoyl
phosphate synthetase (CPS, [64]) antibodies were used.
Antibody binding was visualized with goat anti-mouse or
goat anti-rabbit 1gG, both coupled to alkaline phos-
phatase (Sigma).

Periodic acid-Schiff (PAS) staining was performed to visu-
alize glycogen in the liver. The sections were incubated for
30 minutes in 0.5% periodic acid, followed by incubation
in Schiff's reagent for 30 minutes, and counterstained in
haematoxylin for 6 minutes. The identity of glycogen was
verified by predigesting a serial section with 0.1% o-amy-
lase for 45 minutes prior to staining.

Biochemical measurements

Blood ammonia levels were determined immediately after
collecting blood from the caval vein, using Ammonia
Checker II (model AA-4120, Kyoto Daiichi Kagaku Co.,
Japan) and the corresponding Ammonia test kit II
(Arkray, Inc., Japan).

For determination of free amino acids, 10 pL of plasma
(blood was collected in heparin-containing tubes, and
centrifuged for 5 min at 14,000 rpm at 4°C) was mixed
with 0.8 mg of lyophilized sulphosalicylic acid, centri-
fuged, and the supernatant stored at -80°C. Amino-acid
analysis was performed using a gradient reverse-phase
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HPLC system, with precolumn derivatization with o-phta-
ladehyde (Pierce) and 3-mercaptopropionic acid (Sigma),
and fluorescence detection [65]. Separation was per-
formed using an Omnisphere 3 column (Varian, Middel-
burg, The Netherlands).

For glucose and lactate measurements, plasma was acidi-
fied with 1 volume 2 M (12%) perchloric acid, centrifuged
for 15 minutes, and neutralized with 1 M MES/2 M KOH.
Plasma glucose and lactate concentrations were measured
enzymatically, using the NOVOstar reader (BMG Labtech
GmbH, Offenburg, Germany).

Abbreviations

Acaal: acetyl-coenzyme A acyltransferase 1; Acad/-v,-1,-m,-
sh: acyl-coenzyme A dehydrogenase/very long, long,
medium and short chain; Acaddm: acetyl-coenzyme A
dehydrogenase, medium chain; Aco2: aconitase 2; Aip: AH
receptor-interacting protein; Aldoa: aldolase 1A isoform;
ANOVA: analysis of variance; Asl, Arly: argininosuccinate
lyase; Assl, Assy: argininosuccinate synthetase 1; Atf4:
Cyclic AMP-dependent transcription factor ATF-4 Atp5al:
ATP synthase subunit a; Atp5d: ATP synthase & chain;
Atp5g1: ATP synthase lipid-binding protein; Cac,
Slc25a20: carnitine/acylcarnitine fatty-acid translocase;
Calr: calreticulin precursor; Cat: catalase; Cps: carbamoyl-
phosphate synthetase; Cpt2: carnitine palmitoyltrans-
ferase 2; Cy3, Cy5: fluorescent dyes of the cyanine dye
family; DlIst: dihydrolipoamide S-succinyltransferase;
Dnajal: DnaJ homolog subfamily A member 1; Echdc3:
enoyl coenzyme A hydratase domain containing 3; Egrl:
early growth response protein 1; Ehhadh: enoyl-coenzyme
A, hydratase/3-hydroxyacyl-coenzyme; Enol: enolase la;
ER: endoplasmic reticulum; Fhi: fumarate hydratase 1;
FVB: mouse strain sensitive to Friend leukaemia virus B;
Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Glrx:
glutaredoxin-1; Gotl: glutamate-oxaloacetate transami-
nase cytosolic; Got2: glutamate-oxaloacetate transaminase
mitochondrial; Gpil: glucosephosphate isomerase 1; GS,
Glns, Glul: glutamine synthetase; HA: hematoxylin, azo-
phloxin; Hadhb-trifunctional protein, B-subunit; Hadhsc:
hydroxyacyl-coenzyme A dehydrogenase, short chain;
Hmgcl: 3-hydroxy-3-methylglutaryl-coenzyme A lyase;
Hmgcs2: 3-hydroxy-3-methylglutaryl-Coenzyme A syn-
thase 2; Hsp90abl: heat shock protein HSP 90-beta;
Hsp90b1: endoplasmin precursor; Hspa5: 78 kDa glucose-
regulated protein precursor; Hspa8: heat shock cognate 71
kDa protein; Hspbl: heat-shock protein beta-1; HspbS:
heat-shock protein beta-8; Hspdv: 160 kDa heat shock pro-
tein, mitochondrial precursor; Hsphl: heat-shock protein
105 kDa; Idh3b: isocitrate dehydrogenase 33 (NAD+);
KOH: potassium hydroxide; Mapki4: mitogen-activated
protein kinase 14; Mdh1: malate dehydrogenase 1; MES:
2-(N-Morpholino)ethanesulfonic acid; Ndufa10: NADH
dehydrogenase [ubiquinone| 1a subcomplex subunit 10;
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Ndufv: NADH dehydrogenase [ubiquinone] flavoprotein;
Oat: ornithine aminotransferase; Ogdh: oxoglutarate
dehydrogenase; PAS: Periodic acid-Schiff; Pepck, Pckl:
phosphoenolpyruvate carboxykinase 1; Pgaml: phos-
phoglycerate mutase 1; Ppara: peroxisome proliferator-
activated receptor, « isotype; Prodh: proline dehydroge-
nase; Psmc: protease (prosome, macropain) 26 S subunit,
ATPase; Psmd: proteasome (prosome, macropain) 26 S
subunit, non-ATPase; qPCR: quantitative polymerase
chain reaction; RNA: ribonucleic acid; Scdl: stearoyl-
Coenzyme A desaturase 1; Sodl: superoxide dismutase;
TCA: tricarboxylic acid cycle; Tpil: triosephosphate iso-
merase 1; UbC: ubiquitin C; Ube2b: ubiquitin-conjugating
enzyme E2B; Ucp2: uncoupling protein 2; Ugcrcl: ubiqui-
nol-cytochrome-c reductase complex core protein 1
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