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Abstract
Background: Alternative splicing of exons in a pre-mRNA transcript is an important mechanism
which contributes to protein diversity in human. Arrays for detecting alternative splicing are
available using several different probe designs, including those based on exon-junctions. In this
work, we introduce a new method for predicting alternatively skipped exons from exon-junction
arrays. Predictions based on our method are compared against controls and their sequences are
analyzed to identify motifs important for regulating alternative splicing.

Results: Our comparison of several alternative methods shows that an exon-skipping score based
on neighboring junctions best discriminates between positive and negative controls. Sequence
analysis of our predicted exons confirms the presence of known splicing regulatory sequences. In
addition, we also derive a set of development-related alternatively spliced genes based on fetal
versus adult tissue comparisons and find that our predictions are consistent with their functional
annotations. Ab initio motif finding algorithms are applied to identify several motifs that may be
relevant for splicing during development.

Conclusion: This work describes a new method for analyzing exon-junction arrays, identifies
sequence motifs that are specific for alternative and constitutive splicing and suggests a role for
several known splicing factors and their motifs in developmental regulation.

Background
Eukaryotic gene expression is controlled by a series of bio-
logical events involving various interactions among pro-
teins, DNA and RNA that are subject to complex
regulation. One of the essential processes is pre-mRNA
splicing, in which the spliceosome complex recognizes
splice sites (SS) in the precursors of mRNA following tran-
scription, removes noncoding introns and joins neighbor-
ing exons to form mature messenger RNA that can be

further translated into protein sequence. Both 5' splice
sites (marking exon-intron boundaries, or donor sites) and
3' splice sites (marking intron-exon boundaries, or accep-
tor sites) consist of short basal signals well conserved from
yeast to human, but contain insufficient information to
accurately identify exon-intron boundaries in vertebrates
[1]. Consequently, there are numerous cryptic splices
embedded throughout the pre-mRNA transcript. Varia-
tions in the splice site detection process can create multi-
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ple transcript variants for a gene and is referred to as
alternative splicing. Alternative splicing events may
include the skipping or retention of entire exons, intron
retention or alternative usage of 3' or 5' splice sites. These
changes often lead to modifications in the encoded pro-
teins and have been shown to play a critical role in devel-
opment and disease [2-4]. Alternative splicing also
provides an efficient means to expand protein diversity
from the limited gene pool. It is estimated that 50–80% of
the approximately 25,000 human protein-coding genes
are subject to alternative splicing [5-7] underscoring the
importance of splicing regulation.

The correct recognition of splice sites is facilitated by var-
ious protein-protein and protein-RNA interactions. In
addition to exon-bridging or intron-bridging interactions
of splice sites, there are many non-splice-site sequences in
exons and adjacent introns, termed enhancers or silencers,
that stimulate or repress the splicing of constitutive or
alternative exons. Both enhancers and silencers have been
identified through in vitro and in vivo methods [8-11].
Large-scale identification of these sequence elements are
based on computational methods which analyze multiple
sequences simultaneously. Some authors have focused on
constitutively spliced exons [12-15], while others have
focused on identifying the sequence signals that discrimi-
nate between constitutively and alternatively spliced
exons [16-21]. More recent methods now take advantage
of the availability of genomes from related species to
make predictions based on evolutionarily conserved
sequences [22-25]. Although motif search methods such
as [26] identify sequences that are similar to previously
determined enhancers and silencers, most computational
approaches require as input a large collection of alterna-
tively spliced exons.

The most widely used method to identify alternative
splice variants is based on aligning EST and mRNA
sequences to the genome [27-29]. Application of this
method has provided estimates for the percentage of
human genes with multiple splice variants between 40%
and 60% [27-29]. However, EST-based methods are often
biased towards the transcript ends, prone to sequencing
errors, biased towards more highly expressed genes, lim-
ited by the availability of clone libraries for particular cell
and tissue types and not uniformly annotated. The recent
adaptations of microarray technology in the form of splice
arrays are now providing new directions for detecting
alternative splicing. DNA microarrays were originally
developed to measure expression levels for a large number
of genes simultaneously. Arrays for detecting alternative
splicing (splice arrays) contain probes specifically
designed to investigate splice events. They have been used
to explore splicing in yeast.[30,31] and in mammalian
cells (e.g., [6,32-34]). Several different designs reviewed in

[35] have been developed including tilling arrays, arrays
with specific probes that distinguish between known
splice forms [32,36], arrays based on exon probes [37,38],
exon-junction probes [6,39] or both [32,36,40,41]. Most
of the data analysis methods for splice arrays and levels of
alternative splice inference depend on the array design
(see review in [35]), and the design of these arrays typi-
cally rely heavily on known or predicted annotation of
gene structures. In summary, splice arrays have been
shown to complement the EST-based approaches by iden-
tifying a large number of novel alternative splices with no
previous EST support, despite a moderate validation rate
of ~50% by RT-PCR [6,42,43].

In this paper, we propose a new statistical approach for
identifying alternatively spliced exons from exon-junction
arrays, and predict a large set of alternatively skipped
exons. This is achieved using the most comprehensive
exon-junction array analysis to date [6], which monitored
all exon junctions of over 10,000 RefSeq genes in 52 tis-
sues samples. Our approach consists of a novel exon-skip-
ping score that serves as a quantitative measure of
evidence for alternatively skipped exons. By applying
kmer-contrast and regression-based sequence analysis
methods to the top ~8400 exons according to our score,
we are able to recover several known splicing enhancers
and identify additional novel candidate splicing regula-
tory motifs associated with skipped exons. Finally, we also
identify a set of development-related alternative splices
and their associated enhancers using a tissue-pair analysis
followed by de novo motif finding algorithms. Enrichment
analysis of gene ontology annotation supports the func-
tional roles of the predicted development-related alterna-
tive splices and suggests a new scheme for identification of
process-specific alternative splicing.

Results and discussion
Analysis of exon-junction array
The pre-processed array data described in [6] were
obtained from the NCBI Gene Expression Omnibus
(GEO) database with accession number GSE740. The
dataset contains the average background subtracted inten-
sity yi, j, k from two dye-swapped arrays for each exon-junc-
tion probe j of gene k in tissue i, where i is one of the 52
tissues surveyed and j = 1, ..., nk for gene k, which has nk
probes bridging nk+1 exons. Note that intensity patterns
of exon-junction (EJ) probes alone cannot distinguish
between intron retention or alternative 5' or 3' splice site
usage, and hence we only focus on the effective detection
of exon skipping in the 8618 genes containing 5 exons or
more (nk ≥ 4 on the array). For each gene, we fit a linear
model with terms for probe and tissue effects. Because of
the large number of effects that need to be estimated, we
must restrict the analysis to genes where there are enough
data points. We found that a minimum of 5 exons was an
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adequate cutoff that avoids over-fitting in our statistical
analysis but does not filter too many genes. For each gene,
5 exons corresponds to 4 exon-junctions (4 data points
per tissue) and consequently 3 adjacent exon-junction
pairs.

If we treat exon inclusion as a simplified binary "on" or
"off" event in each tissue, then conceptually, there are
three main signal sources, other than noise, for the
observed EJ probe intensity yi, j, k: (i) probe-specific effect
describing sequence binding affinity, (ii) tissue-specific
effect resulting from differential expression, and (iii) alter-
native splice (AS) effect determined by exon inclusion or
alternative splice site selection. A simple approach to
recover the variance components of individual signal con-
tribution is to use linear models on the properly trans-
formed data (EJ probe intensities), essentially assuming
that the transformed intensity is the sum of the probe, tis-
sue, AS effect and white noise. A skipped exon will result
in the two spanning EJ probes to be switched "off". This
supports an exon-skipping score that measures the magni-
tude and concordance of AS effects in adjacent EJ probes
spanning the same exon. Identifying exons that are alter-
natively skipped in some of the tissues surveyed is then
equivalent to the detection of scores that deviate across tis-
sues. In summary, our data analysis method can be
described as a three-step procedure:

1. Estimate the variance stabilizing transformation [44]
for the EJ probe intensities to satisfy the constant variance
assumption for linear models.

2. Fit a linear model on the transformed data to estimate
probe and tissue effects. The residuals of the fit ri, j, k repre-
sent AS effects adjusted for probe- and tissue-specific
effects.

3. Summarize exon-skipping events at the exon and gene
level by defining an exon-skipping score based on the
residuals ri, j, k and test for large deviations of this score
across tissues.

Note that [6], among others (e.g., [45]), also used a linear
model on log-transformed (step 1) intensities but esti-
mated linear model parameters by medians (step 2), fol-
lowed by ad hoc thresholding of the residuals ri,j,k to define
AS scores (step 3). We considered several alternatives to
this approach. First, the original method of [6] only exam-
ined individual exon-junctions by thresholding the resid-
uals into four categories from 0,1,2 and 3. The largest
residuals, those given a score of 3, were predicted as splic-
ing events. For each junction, the authors then tallied the
number of tissues where the residuals had a score of 3.
There appeared to be no systematic evaluation of neigh-
boring pairs of exon-junctions in this scoring procedure.

Therefore, as an alternative, we calculated the novel statis-
tic of residual products so that both flanking exon-junc-
tions for an exon contribute to its score. Second, our
preliminary analysis (data not shown) indicated that the
logarithm function used by [6] to stabilize the variance
may be insufficient. Therefore, we also tried alternative
transformations. Third, we used statistical significance
cutoffs to threshold the residuals (or residuals products).

In particular, at each stage of the three-step procedure, we
considered several alternative methods for the same
objective: applying the logarithm or arcsinh-based vari-
ance stabilizing transformation (VSN) function for stabi-
lizing variances in step 1; using the standard least square
fit (mean) or robust fit (median or median polish) for lin-
ear model parameter estimation in step 2; and measuring
deviations from normality of residuals in step 3 using the
non-parametric Kolmogorov-Smirnov (KS) test, a
weighed non-parametric Kolmogorov-Smirnov test
(WKS), parametric Wilk-Shapiro test (WS) [46] or simple
thresholding of the coefficient of variation (CV, standard
deviation normalized by the mean) on the residuals or
residual products (see Methods). We viewed the selection
of these options as an optimization problem, and deter-
mined the best procedure in terms of prediction accuracy
using control data. We used two sets of alternatively and
constitutively spliced exons curated from independent
sources as controls (see Methods). The positive control
(AS) consists of 164 genes supported by EST data. The
negative control (CS) consists of 282 genes selected from
the analysis of an Affymetrix exon array experiment that
show constitutive splicing across a panel of 11 tissues.
These two examples represent "approximate" controls
because they rely on available ESTs or other data on
selected tissues. However, we expect that they will be
dominated by the desired events.

Using the control data sets and receiver operating charac-
teristic (ROC) curve analysis, we found that the VSN trans-
formation performs better than log-transformation as
expected (data not shown), and that the fitting procedures
in Step 2 were indistinguishable in terms of prediction
errors (data not shown). Figure 1 shows the improvement
of our procedure (VSN, least square fit, WKS) over our
best reproduction of the method described in [6] using
exon-level summaries (CV score, see Methods). Note that
the AS calls in the previous work [6] were calculated from
consistent AS scores from individual arrays which were
not publicly available (only the average intensity of dye-
swapped replicates were released). Therefore, we could
not reproduce previous results in [6] but believe that the
CV score is similar in spirit to that approach. Figure 2
shows the distribution of the WKS-statistic at the gene
level for the two control sets. Overlaps in the distribution
between the positives and negative may be due to the
Page 3 of 15
(page number not for citation purposes)



BMC Genomics 2008, 9:551 http://www.biomedcentral.com/1471-2164/9/551
caveats regarding the control sets discussed above. Never-
theless, the values of the WKS-statistic are generally higher
for the positive controls versus the negative controls.

To further validate these results, we examined the WKS
scores on another set of positive controls; the positive RT-
PCR results in [6] and the 2656 RefSeq entries on the array
with "cassetteExon" events from the UCSC "knownAlt"
table hg18 annotation [47]. Although the RT-PCR set also
contain genes with alternative splice site selections and
intron insertions, the two new combined positive controls
had WKS-statistics significantly greater than the negative
control (Mann-Whitney test p-value = 4.9 × 10-4). Several
of the highest scoring examples using the WKS method,
such as UBA3 (ubiquitin-activating enzyme 3 isoform 1),
MAPKAP1 (mitogen-activated protein kinase associated)
and PPM1B (protein phosphatase 1B isoform 1) were
identified as "cassetteExon" gene entries from UCSC but
were low scoring using the CV method, which only uses
data from a single exon-junction. This illustrates that the
combined product score based on neighboring exon-junc-
tions can predict known examples which are missed by
single junction methods. In summary, given the original

linear model in [6], we derived a new exon-skipping score
that 1) is based on an alternative transformation which
improves the correction for non-constant variance and 2)
draws on information from both splice junctions of an
exon using the product residuals.

Using a score cutoff that balances the rate of true positive
and false positives in our original two controls, we identi-
fied a set of alternatively spliced genes and corresponding
exons (see Methods). We then determined the lowest
ranking genes and exons according to our score to obtain
an equivalently sized set of constitutive spliced exons. In
total we predicted 8433 alternatively skipped exons and
8113 constitutive exons. An analysis of the Gene Ontol-
ogy (GO) terms [48] for our predicted alternatively
spliced genes (see Methods) using GOstat [49] showed
enrichment in 114 GO terms. More than half of these GO
terms are related to metabolism, cell death, regulation,
transcription, splicing and protein targeting and localiza-
tion (See Additional file 1, Table S1), which are categories
consistent with prior studies [19,29,45].

Sequences associated with alternatively splicing
To identify sequence motifs associated with the regulation
of alternatively skipped exons, we adapted the contrast-
kmer-based RESCUE-ESE algorithm for splicing [12] and
the regression-based REDUCE program for transcription
factor binding sites [50]. The RESCUE-ESE algorithm

ROC curve comparing step 3 options based on control data setsFigure 1
ROC curve comparing step 3 options based on con-
trol data sets. The x-axis is the percentage of false positives 
(FalsePos) and the y-axis is the percentage of true positives 
(TruePos). The step 3 options described in the text are CV 
(thresholding of the coefficient of variation), KS (Kol-
mogorov-Smirnov test), WS (Wilk-Shapiro test) and WKS 
(weighted Kolmogorov-Smirnov test).

Boxplot of WKS-statistic (y-axis) at the gene level for each of the control setsFigure 2
Boxplot of WKS-statistic (y-axis) at the gene level for 
each of the control sets. The positive control set is 
labeled "Pos: Le et al." and the negative control set is labeled 
"Neg:AffyEx".
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accounts for the fact that splicing enhancers compensate
for weak splice site signals, and finds candidate exonic
splicing enhancers (ESE) for constitutive splicing from sta-
tistically over-represented hexamers in exons versus
introns and associated with exons defined by weak splice
sites versus strong splice sites. REDUCE enumerates all
possible kmers in the promoters up to a specified length
and uses a linear regression model to find kmers that
show significant correlation with gene expression levels
from a single microarray experiment. To identify putative
splicing regulatory elements associated with alternative
splicing, we used different contrast sets for RESCUE-ESE
and employed our exon-level statistic for REDUCE on
exons and their flanking intron sequences.

Exonic splicing enhancers (ESE) for alternatively and 
constitutively spliced exons
A direct contrast of alternatively skipped exons (AE) ver-
sus constitutively spliced exons (CE) in addition to differ-
ences in exons versus flanking introns gave 6 motifs
associated with the 5' splice site of AE (204 hexamers in
Additional file 1, Table S2) and 7 motifs for the 3' splice
site of AE (192 hexamers in Additional file 1, Table S3),
among which 5 motifs are in common. Several of the
motifs overlap known ESE motifs from deletion experi-
ments, functional SELEX or SR protein binding sequences
(see survey in [12]), such as the purine-rich AAGA for
SRp40, SRp55, SRp30a and SRp75, ACGA and TGAAG for
9G8, SC35 and ASF, and consensus GAAG for Tra2β [51]
and motif variants for ASF/SF2. Three of the 8 nonredun-
dant motifs (Figure 3) also match RESCUE-ESE predicted
and experimentally verified motifs for constitutive splic-
ing from [12], indicating that similar ESEs and splicing
factors are involved in both alternative and constitutive
splicing. For the kmers that define the predicted motifs,
there are ~1.1 to 2.2 times more kmer counts in alterna-
tive exons versus constitutive exons (Figure 3).

Interestingly, when the hexamers were subjected to the
additional contrast of splice site strength association
(weak splice site exons versus strong splice site exons) as
in the RESCUE-ESE analysis for constitutive splicing, the
number of significant kmers reduced drastically. The only
significant AE motif associated with weak splice sites is the
well known motif GAAGA from 13 and 6 non-redundant
hexamers in the 5' and 3' analysis respectively (Figure 4
and Additional file 1, Table S4). Two other AE-associated
ESE motifs, an A-rich and a TGGA motif, are linked to
strong splice sites. These results suggest that the GAAGA
motif and its associated splicing factors (9G8, ASF, SC35,
SRp40, SRp55, Rp30A, SRp75 all have been implicated)
may be critical for regulating alternative exons in the pres-
ence of very weak splices. This result may be due to the
observation that splice sites involved in alternatively
spliced exons tend to be weaker overall [25] and therefore,
splice site strength dependency will only pick up the

strongest enhancers. Using position-specific scoring
matrices to evaluate splice site strength, we did not
observe a bias in weaker splice sites in the entire group of
AE versus CE. However, correcting for overall gene effects,
the splice site scores in the AE were relatively smaller than
the scores in the CE (see Additional file 2).

We also focused the contrast analysis on constitutively
spliced exons to select for ESEs relevant for constitutive
splicing using CE versus AE and exons versus introns com-
parisons and found 23 motifs for the 5' analysis and 12
motifs for the 3' analysis. The majority of motifs detected
are CG-rich with diverse consensus patterns, most likely
reflecting the coding bias of CE (Figure 4 and Additional
file 1, Tables S5 and S6). Besides the CG-rich motifs, 6 of
the 23 non-redundant motifs found also overlap known
motifs or natural occurring enhancers, including CA-rich
motifs (CAAC, CCAC) for splicing factor YB1, TGCCGTT
for SC35 and functional SELEX motifs for Schaal-II-D
(TCTCC) [12]. The resulting motifs were similar when we
also restricted the comparison to weak splice sites. Finally,
no motifs were found to be associated with strong splice
sites in support of CE, consistent with the notion that
splicing enhancers are required only when splice sites do
not contain enough information in order to facilitate
unambiguous exon recognition.

Alternatively, we applied the REDUCE software to corre-
late sequence features with the exon-skipping score (see
Methods). Table 1 shows the most significant kmers (p-
value < .01, Bonferroni corrected). Kmers positively corre-
lated with the exon-level skipping score are associated
with alternatively spliced exons, while negatively corre-
lated kmers are associated with constitutively spliced
exons. Note that this regression-based approach is a natu-
ral extension of contrast analysis of AE versus CE, and
aims to evaluate the sequence association at the genome
scale without the need to dichotomize scores. The
REDUCE kmers were consistent with the above RESCUE-
ESE analysis; the top negatively correlated kmers for CE
are primarily G/C rich with a CACC-containing motif
(tCACCg), and the AAGAA motif was found to be the top
candidate for AE.

We applied similar contrast analysis to identify intronic
motifs associated with AE by selecting for kmers over-rep-
resented in introns flanking AE versus CE-associated
introns and in introns versus exons. We found A/T rich
motifs associated in introns flanking AE and pyrimidine
tract-like motifs and G-triplets in introns flanking CE (see
Figure 4, Additional file 2). Randomization runs were per-
formed on the exon data to assess the frequency of observ-
ing the predicted kmers in random data. The results
indicate that we are observing more predicted kmers than
expected by chance (see Additional file 2).
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Predicted non-redundant 3' and 5'SS associated AE motifs and their overlapping known motifsFigure 3
Predicted non-redundant 3' and 5'SS associated AE motifs and their overlapping known motifs. Predicted AE 
motifs IDs and motifs are listed in columns 1 and 2. The motifs are displayed graphically as logos in the order of the IDs in col-
umn 1. The Motif ID includes a label for whether it was discovered relative to the 5' or 3' splice site and a numeric identifier for 
the motif in parenthesis. For all the kmers that define each motif in Column 2, Column 3 lists the range of ratios of the occur-
rence of these kmers in alternative exons versus constitutive exons. See Additional file 1, Tables S2 and S3 for the list of all 
motifs, their kmers and their numeric identifier. RESCUE-ESE and known enhancers (column 4) are taken from the survey in 
[12].

AE Motif ID AE Motif Logo Ratios Overlapping Known Motifs 

5’(3)/3’(2) [1.28-2.04]/[1.18-1.74] RESCUE-ESE 3C  

5’(1,5)/3’(1,6)

[1.16-1.78]/[1.18-1.70]

[1.15-1.92]/[1.17-1.63]

Known exonic splicing enhancer in 

natural context GAGGAAGAA 

(trans-factors SRp40, SRp55, SRp30a, 

SRp75)

5’(2)/3’(7)                               

[1.18-1.72]/[1.19-1.58]

Known exonic splicing enhancer in 

natural context GATGAAGAG (trans-

factors 9G8/ASF,SC35)

RESCUE-ESE 5C/3D  

3’(3)
[1.17-1.53] RESCUE-ESE 5A/3G  

5’(4)/3’(5) 

[1.58-2.24]/[1.29-2.23]

Known exonic splicing enhancer in 

natural context GACGACGAG (trans-

factors 9G8/ASF,SC35)  and high 

affinity SELEX binding motif for 

9G8.

3’(4)

[1.40-2.04] RESCUE-ESE 5B/3A  



BMC Genomics 2008, 9:551 http://www.biomedcentral.com/1471-2164/9/551
Development-related alternative splices derived from 
tissue-pair analysis
To investigate whether trans-acting elements (i.e., protein-
RNA binding proteins) are relevant for development, we
analyzed a comprehensive gene expression data set from
the Gene Expression Atlas [52], which contains results

from similar tissues lines as the exon-junction array. The
CEL files of the Gene Expression Atlas data were provided
by the authors and the data were preprocessed using
robust multi-array analysis (RMA) proposed by [53]. We
extracted genes encoding the family of serine/arginine
(SR) proteins, which contain both RNA-binding and pro-
tein domains and are known to facilitate the assembly of
the spliceosome by binding to ESEs [54]. Figure S1 in
Additional file 3 shows the processed log-intensity values
in adult and fetal lung, brain, and liver tissues for SR pro-
teins listed in [20]. In particular, SRp55, SRp40 and ASF/
SF2 (Figure 5) clearly show reduced expression in the
adult tissues compared to the fetal tissues in at least two
of the three examined tissue types.

These results imply that some SR proteins may be
involved in a general developmental response. To explore
this hypothesis, we further investigated the exon-junction
array, which has extensive results from different tissues
(e.g., liver), developmental stages (e.g., fetal) and disease
cell lines (e.g., lung carcinoma). Therefore, it is possible to
identify AS involved in specific biological process by
examining splice patterns between tissue pairs. For

Summary of motifs found in alternative and constitutive exons and flanking intronsFigure 4
Summary of motifs found in alternative and constitutive exons and flanking introns. Two alternative splice forms 
are indicated at the top. An alternatively spliced exon for the splice forms is labeled in red while a constitutively spliced exon is 
labeled in blue. The flanking intron for the alternative and constitutive exon is indicated by the dashed line. The arrows point to 
representative motifs associated with each of the sequences. Motifs found with respect to the 5' or 3'SS introns flanking consti-
tutive exons are labeled separately.

ALTERNATIVE EXON CONSTITUTIVE EXON

ExonsIntrons
Exons

Introns

5’ss

3’ss

Table 1: Significant kmers found by the REDUCE algorithm.

Kmer Correlation P-value

cctgg -0.0451 3.6e-36
aagaa 0.0310 1.8e-16
cgtgg -0.0233 1.1e-08
gtttt 0.0195 1.0e-05
gggaga -0.0199 2.1e-05
tatgg 0.0169 7.0e-04
tcaccg -0.0178 7.0e-04
tcaac -0.0161 2.2e-03
gaagat 0.0170 2.4e-03
tggagg -0.0168 3.3e-03
gccgg -0.0151 8.1e-03

The kmer, the correlation between the kmer counts and exon-
skipping score for each exon, and the p-value for the correlation are 
listed in columns 1, 2 and 3 respectively.
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instance, genes that show different splicing profiles in
fetal versus adult brain tissues may be indicative of func-
tional roles in the regulation of brain development
through splicing control. By comparing fetal versus adult
tissues for several different organs, we adapted our gene-
level exon-skipping score to obtain alternatively spliced
genes that are associated with development.

Within one gene, for each tissue i we have the product
score rij across exons j. We are interested in genes where
there are large differences in rij for pairs of tissues (e.g.,
fetal lung versus adult lung). Define d(i, i') = rij - ri'j as the
difference between two tissues, i and i', in exon j. Extreme
values (both positive and negative) for d indicate differ-
ences in exon-skipping levels between the tissues for that
exon. We calculated a gene-level tissue pair difference
score as the KS-statistic of d across all exons relative to a
simulated null model assuming normally distributed
residuals rij to gauge the differences in exon-skipping pat-
terns between two tissues. Genes with Bonferroni-
adjusted p-value < 0.05 were selected as candidate genes
for development-related alternative exon-skipping in
brain, liver, and lung tissues (Table 2). Many of our pre-
dicted genes are known to have multiple splice variants
which are regulated during development, including neu-
rofibromin 1 (NF1) in the brain for the RAS signal trans-
duction pathway [55,56], L1 cell adhesion molecule
(L1CAM) for nervous system development [57] and ion

transport pump gene ATPase isoform 4 (PMCA4) [58] and
fibroblast growth factor receptor 1 (FGFR1) for cell divi-
sion in brain development [59,60].

To systematically assess the functional validity of our pre-
dictions, we analyzed the functional annotation of the
predicted genes in the literature. Tissue-specific keywords
were searched in the abstracts listed in the PubMed entries
for each gene (see Methods). For example, for our lung-
developmental genes (column 1 in Table 2), we searched
for the keyword "lung" in each abstract, and a p-value was
derived for tissue-specific keyword enrichment compared
to all genes on the exon-junction arrays using Fisher's
exact test (Table 2). We also specifically searched for a
splicing-related keyword to check that the tissue annota-
tions are not only due to transcription related informa-
tion. In summary, all our predicted tissue-specific gene
sets showed statistically significant (p < .05) enrichment
for the respective tissue-specific keyword, splicing-related
keyword and for a combination of tissue-, splicing- and
development-related keywords. A separate analysis of the
GO terms in the 127 predicted brain-development associ-
ated genes with the "brain" keyword in PubMed showed
functional enrichment in 26 GO terms using GOstat (Ben-
jamini-corrected false discovery rate < 0.01). The most
common GO terms (11 out of 26) were those with func-
tions related to signaling and ion transport (Additional
file 1, Table S12), which are relevant for synaptic trans-

Differences in log-intensities (y-axis) between fetal and adult tissues for three SR proteinsFigure 5
Differences in log-intensities (y-axis) between fetal and adult tissues for three SR proteins. There are two repli-
cates for each fetal and adult tissue, which are labeled with the same color shade. Tissues (brain, lung and liver) are labeled in 
different colors.
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mission and neurogenesis. In summary, the two annota-
tion analyses collectively support the validity of our
predicted genes.

To identify potential cis-regulatory elements involved in
splicing regulation for development, we applied de novo
motif finding algorithms MEME [61] and BioProspector
[62]. To keep the number of exons manageable for these
algorithms, only genes predicted to undergo develop-
ment-related AS for all three tissues and had a "splicing"
or "development" keyword hit from the PubMed abstract
search were considered. Applying the motif algorithms to
alternatively spliced exons within these genes (see Meth-
ods and Additional file 1, Table S13), we repeatedly found
a "GAAGAA" motif (Figure 6), which is very similar to the
AE motif retrieved by our previous analyses and suggests
that this motif and its binding factors are also involved in

the developmental regulation of splicing. Furthermore,
since we previously found that this motif was more
strongly associated with weak splice sites rather than
strong splice sites, these results also suggest that the mode
of regulation for splicing during development may be due
to the combination of a weak splice site and the presence
of this enhancer. However, the appearance of the "GAA-
GAA" motif in exons predicted to undergo development-
related AS may just be an artifact of this motif appearing
in AS exons in general. To investigate this scenario, we
checked whether the "GAAGAA" motif appeared in the
development-related AS exons more frequently than all
AS exons (AE from above). We counted the occurrence of
the motif in both sets of exons and found that indeed the
occurrence of the motif was significantly higher than
expected in the development-related AS exons (p-value =

Table 2: Development-related alternatively spliced genes.

Lung Brain Liver

Significant genes 395 631 482

Genes with PubMed tissue keyword 27 (7%) 127 (20%) 52 (11%)
% of all genes with keyword 5% 11% 7%
p-value 3.57e-02 1.04e-12 9.62e-04

Genes with "splicing" keywords 92 (23%) 135 (21%) 93 (19%)
% of all genes with keywords 12% 12% 12%
p-value 5.46e-11 1.26e-12 8.01e-07

Genes with PubMed tissue, "development" or "splicing" keywords 135 (34%) 258 (41%) 160 (33%)
% of all genes with keywords 23% 26% 25%
p-value 3.14e-07 4.57e-16 2.21e-05

A keyword hit is defined as a gene that has at least 2 abstracts with the keyword. The numbers in parentheses indicate the percentage of genes with 
a keyword hit within that gene set. Tissue keyword is the tissue name.

Motifs found in development-related exonsFigure 6
Motifs found in development-related exons. Results are based on two motif-finding algorithms, BioProspector and MEME 
(see Methods). The common conserved sequence is underlined.
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.02, binomial test) based on the frequency of the motif in
general AS exons.

Experimentally verified binding sites in their natural con-
text and from SELEX experiments are listed in Additional
file 1, Table S14 for the three SR proteins that we identi-
fied based on the expression data as possibly involved in
general developmental roles (SRp55, SRp40 and ASF/
SF2). Most of these sequence elements contain the "GAA"
sequence and are similar to the motifs discovered by our
motif search in the development set of AS exons (Figure
5). The known binding sites, expression data, annotation
results, and motif analysis provide consistent evidence
supporting the hypothesis that these proteins may be
involved in the regulation of alternative splicing during
development.

Conclusion
We have developed a novel approach for the analysis of
exon-junction arrays that will specifically search for exon-
skipping alternative splice events. Our proposed score
evaluates the product of expression levels across exon-
junctions to more accurately reflect exon-skipping. Our
score also accounts for overall expression levels for a gene
and uses an improved variance stabilizing correction. We
have shown that the combination of these approaches
improves the discrimination of positive and negative con-
trol sets determined from independent data sources. We
could not, however, directly compare our method with
existing methods in [6] because that analysis was based on
individual array replicates, which we could not access.
Nevertheless, utilizing another source of external valida-
tion, we demonstrate that the annotations for our alterna-
tively spliced gene predictions were consistent with
previous literature. There are several other exon-junction
studies, but our method was not applicable because they
were either disease specific or a detailed examination of a
relatively smaller number of genes [39,63,64].

Following the array analysis, we examined our sequence
predictions for dual purposes; to validate our analysis of
the exon-junction array and to predict novel splicing
enhancers and silencers. The results from the sequence
analysis provide a further source of validation for the
quality of our alternative and constitutive exon predic-
tions. Using randomization trials, we found that our pre-
dictions were enriched in sequences that were not
contained in random sets of sequences. We also identified
several sequence signals that are consistent with the exper-
imental literature (e.g., GGG triplets and pyrimidine-rich
motifs in introns) and identified several motifs that are
highly specific. For example, the known exonic sequence
enhancer CACC was discovered in the constitutive exons
but not in the alternative exons. Another known
enhancer, GAAGAA, appears to be more specific to alter-
native exons than constitutive exons. Furthermore, we

found that the occurrence of GAAGAA is biased towards
exons with weak splice sites, while the other identified
motifs associated with alternatively skipped exons do not
have splice strength specificity. The sequence analysis also
shows that, although originally developed for gene
expression data [50], correlation-based methods utilizing
whole genome data like REDUCE are applicable to splice
arrays and corroborate the kmer enrichment analysis
without relying on pre-determined cutoffs.

By our definition, the alternative exons show patterns of
exon skipping among different tissues. The presence of
known exonic enhancers in these sequences supports the
hypothesis that depending on tissue-specific expression,
the corresponding binding factors are enhancing the splic-
ing of these exons, which would otherwise be skipped. An
alternative hypothesis, not supported by these results, but
also discussed in the literature [10], is that silencer
sequences in the exon or flanking introns prevent proper
splicing and are responsible for exon-skipping. These
hypotheses are not mutually exclusive because both
enhancer and silencer sequences may function coopera-
tively in splicing regulation. Furthermore, some sequence
elements have been shown to act as both enhancers and
silencers [65].

A useful feature of the Rosetta array is that both fetal and
adult samples were included for three different tissues. We
used this to develop a method for predicting genes with
pairwise tissue differences in exon-skipping and applied
our procedure to explore both the cis and trans-regulation
of splicing during development. Our method for pairwise
tissue analysis is not limited to the developmental com-
parison but can be extended to other tissues or cell lines
(e.g., cancer versus normal cell lines). We made gene pre-
dictions for three tissue types (lung, brain and liver) but
only looked at the intersection to focus on general devel-
opmental alternative splicing, which was motivated by
observed expression changes in specific SR proteins. Our
final predictions for development-related alternative
splicing were consistent with functional annotation and
literature searches. In our sequence analysis of the devel-
opment-related predictions, we found that a form of the
GAAGAA motif may also have a role in alternative splicing
during development. Furthermore, the changes in gene
expression between fetal and adult tissues for several SR
proteins that bind to this motif provide further evidence
for their roles in developmental regulation.

Because of the array design, our work focuses on the detec-
tion of exon-skipping. However, these data can also be
used to predict and analyze other types of alternative
splice events. In particular, if alternative splice site selec-
tion or intron retention occurs, we would observe varia-
tion in a single exon-junction across tissues, but not
necessarily in consecutive junctions, as observed with
Page 10 of 15
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exon-skipping. Therefore, a product summarization step
would not be necessary, but we could adapt our procedure
in other ways to predict alternative splice selection and
intron retention. We will, however, not be able to discrim-
inate between these other types of splice events because of
the nature of the array design.

A recent direction taken by several groups is to use
sequence conservation across multiple species to aid in
the search for enhancers and silencers [22-25,66,67].
Comparative approaches have also been used to examine
the conservation of alternative splice events by comparing
genomic or EST data from multiple species [29,68-71]. As
more splice array data become available from different
organisms and tissues, there may also be opportunities to
explore the conservation of splicing events from meta-
analysis of splice arrays, without relying on ESTs from
orthologous genes that are often limited across species.

Methods
Exon-skipping scores
Within each gene, the alternative splice (AS) effect for
every probe j and tissue i is estimated by the residual ri, j, k
from a linear model fit. To identify whether exon-skipping
has occurred in some tissues, we considered four exon-
skipping scores that measure the deviations of the residu-
als across tissues. All calculations described in this and all
other Methods sections are performed in the software R
http://www.r-project.org/ unless otherwise noted.

One score is based on the two-sample Kolmogorov-Smir-
nov (KS) test statistic of the residual products of adjacent
exon-junction (EJ) probes spanning exons j, pi, j, k = ri, j, kri, j

+1, k. For the exon-level score, residual products across tis-
sues i for exon j are examined, and for the gene-level score,
the residual products across tissues i and exons j for gene k
are examined. To obtain p-values based on the two-sample
KS test, we compared the observed residual products with
randomly sampled residual products from the null hypoth-
esis that that they are a product of normally distributed ran-
dom variables with mean 0, ri, j, k ~N(0, σ2), where σ is
sampled from the empirical distribution for all genes.

Exploratory data analysis showed greater variability for
genes with low overall expression signal and thus we con-
sidered a more appropriate exon-skipping score, the two-
sample weighted Kolmogorov-Smirnov (WKS = wkKSk)

test statistic. The linear weight function is constructed to
adjust for the overall expression signal strength and results
in increasing the weight of more highly expressed genes. It

is defined as  with

, where yi, j, k is the average background

subtracted intensity. To obtain p-values, observed values

of WKS were compared with randomly sampled WKS sta-
tistics based on the product of randomly sampled weights,
from a uniform distribution within the empirical range of
calculated weights for all genes, and randomly sampled
KS statistics, sampled from the theoretical distribution of
the KS statistic.

Another score is based on the coefficient of variation
(CV), a statistic that measures large variations and is
defined as the standard deviation divided by the mean.
For exon-level score, we calculated the CV of the residual

products across tissues,  and for the gene-level

score, we calculated the standard deviation across exons

within the gene, . This method is closest

to the Rosetta approach [6] which relies on a statistic sim-
ilar to the coefficient of variation.

Finally, we considered a score based on a direct test for
normality using the Wilk-Shapiro test (WS) [46]. In this
case we did not use the product summarization, but tested
the following hypothesis using the WS test: ri, j, k ~X where
X is distributed as N(0, σ2). As before, the tests are per-
formed across exons or genes to obtain the exon- or gene-
level scores respectively.

Controls

A collection of sample Affymetrix Human Exon 1.0 ST
array data (from [72]) was used to generate an independ-
ent set of negative controls. These arrays represent a collec-
tion of 11 tissues with 3 replicates each. All of the 11
tissues were included in the Rosetta data set [6] except
breast. Identifying gene sets from these arrays that demon-
strate no changes across all 11 tissues provide an inde-
pendent source of experimental evidence for constitutive
exons. The data are background-corrected, quantile-nor-
malized and summarized at the exon level using the
Robust Multi-Array Average (RMA) method [73] to gener-
ate a logarithm base 2 RMA value, xi, j, k, for each exon

probe set. To identify genes that are likely to be constitu-
tively spliced, we rank genes according to their expression
variability across the 11 tissues and across corresponding

core exon probesets, . The top 5%

least variable RefSeq genes that are both present in the
Affymetrix exon arrays and Rosetta exon-junction arrays
(n = 282) were selected as our negative controls.

The positive control (AS) consists of 164 EST-supported
alternatively spliced genes that were placed on the arrays
in Le et al., 2004 [42].

w a a ak k k k k k= −/(max min )

a yk tissue i exon j i j k= max min , ,  

CV p
tissue i i j k 

( , , )

sd CV p
exon j tissue i i j k  

[ ( )], ,

affy range range xk
exon j tissue i

i j k=
  

, ,
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Constitutive and alternative exons
To determine a set of alternatively spliced genes, we used
a cutoff for the gene-level WKS-statistic that produced a
true and false positive rate of ~70% and ~25% respectively
on the controls. This cutoff resulted in 3912 predicted
alternatively spliced genes. Of the exons in these genes, we
then extracted exons in the 75th percentile according to
their exon-level KS-statistic, which resulted in 9178 pre-
dicted exons. The KS-statistic is used for the exon-level
score because the WKS-statistic has a gene-level correction
for expression variability that is the same for all exons in
a gene. Using the UCSC Genome Browser collection of
RefSeq sequences (July 2003), 8433 exons were identified
along with their neighboring introns (n = 13813) by
sequence matching. Multiple occurrences of neighboring
introns were removed. For the GO term analysis, we used
a more stringent cutoff and only examined genes in the
95th percentile according to their WKS-statistic (n = 431).
GO term enrichment was determined using the Ben-
jamini-Hochberg correction for controlling the false dis-
covery rate at the .001 level.

To obtain a similar sized set of constitutive genes and
exons so that the sequence comparisons would be bal-
anced, we evaluated the lowest ~15th percentile of genes
according to the gene-level WKS-statistic and extracted the
exons within these genes that scored below the median
exon-level KS-statistic. Using the UCSC Genome Browser
collection of RefSeq sequences, 8113 of these exons were
identified along with their neighboring introns (n =
10081). Multiple occurrences of neighboring introns were
removed.

Motif analysis
We performed a search for over-represented kmers in our
exonic and intronic sequences using the RESCUE-ESE
method as described in [12]. Briefly, using the Perl pro-
gramming language, counts for all kmers between two sets
of sequences are tallied and evaluated for significant over-
representation between the sets using a Z-test, and all
kmers with Bonferroni-adjusted p-value < 0.01 were clus-
tered and aligned into groups of motifs. Distances
between motifs were defined as the absolute deviation
between the nucleotide frequencies of two aligned posi-
tions in the best local alignment. Motif pairs with distance
less than 2 were deemed as a motif match. For kmer calcu-
lations with exons, the comparisons are 1) exons versus
introns and 2) constitutive versus alternative exons. We
also considered two comparisons for each of 5' and 3' SS
based on splice site strength scored by the position-spe-
cific weight matrices and applied the 1st and 3rd quartiles
of all known splice sites as the cutoffs for weak and strong
splice sites: 3) weak versus strong splice site exons and 4)
strong versus weak splice site exons. For kmer calculations
with introns, the comparisons are 1) introns versus exons
and 2) flanking introns of constitutive versus alternative

exons; 3) flanking introns of weak versus strong splice site
exons and 4) flanking introns of strong versus weak splice
site exons. All sequence analyses used intronic/exonic
sequences up to 200 bp from the SS and excluded the
splice site regions that cover the first 5 bp at each end of
exons and the first 20 bp and 10 bp for the 3' and 5' ends
of introns respectively.

In addition, we searched for novel sequence motifs utiliz-
ing the whole data set without the need to dichotomize
exons into AE and CE by applying the correlation-based
method REDUCE [50] to the splice site proximal
sequences and our exon-level score for measuring exon
skipping (n = 83789). REDUCE enumerates all possible
5–6 base pair kmers and finds those that show significant
correlation with expression values from a single microar-
ray experiment. Multiple kmers are identified by itera-
tively removing the significant kmers from sequences and
re-evaluating the correlation between the remaining kmer
frequencies and residuals of the linear regression fit from
the previous run (i.e., subtracting the contribution from
the previously selected kmer(s)). We masked the splice
sites by removing 5 bp at the 5' and 3' end of each exon.
The output lists all significant kmers with p-values
adjusted using the Bonferroni correction.

To look for motifs in the development-related AS exon
sets, we examined the genes that had appropriate keyword
hits (see below). Within these genes, sequences were
extracted for exons predicted to be AE based on our exon-
skipping score. De novo motif finders MEME [61] and
BioProspector [62] were applied to these selected exon
sequences subtracting the first 5 bp at either end of each
exon. BioProspector was run with the following options:
only examine the forward stand (-d), assume every
sequence has a motif (-a 1) and motif width range from 6
to 18 (-w 6,8,10,12,14,16). MEME was run with the fol-
lowing options: default value of only looking at the for-
ward strand, DNA sequence (-dna), several choices for the
expected number of motif occurrences (zero or one in
each sequence -zoops, one in each sequence -oops, varia-
ble number -tcm) and the motif width (-w 6,8,10,12, and
the range -minw 6 -maxw 20). For each of the 15 MEME
runs and the top three motifs from the 6 BioProspector
runs, we aligned the consensus sequences for the final pre-
dicted motifs with ClustalW [74]. All motifs and align-
ments are displayed in the Figures using WebLogo [75]

PubMed keyword search
For all genes in the Genome Browser RefSeq transcript list,
the software R http://www.r-project.org/, with the "anno-
tate" and "XML" packages was used to search each abstract
of the references listed in the PubMed report for this gene.
A hit for a gene was defined if the keyword(s) occurred in
at least two of the abstracts for the gene. For each keyword,
we performed a Fisher's exact test to evaluate whether the
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keyword appeared more frequently than expected by
chance in our gene set compared to all genes. For the splic-
ing keyword we searched for either "splicing" or "splice".

Abbreviations
AS: alternative splice; AE: alternatively spliced exons; CE:
constitutively spliced exons; CV: coefficient of variation;
EJ: exon-junction; ESE: exonic splicing enhancers; KS: Kol-
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ROC: receiver operating characteristic.
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