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Abstract

Background: The Vesicomyidae (Bivalvia: Mollusca) are a family of clams that form symbioses with
chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents
and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their
endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced,
illuminating the possible nutritional contributions of the symbiont to the host and making genome-
wide evolutionary analyses possible.

Results: To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics
framework, including the existing genomic data combined with heterologous microarray
hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont
genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the
vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and
hydrothermal vents.

Conclusion: The results of this comparative genomics analysis emphasize the importance of the
symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear
to be metabolically capable autotrophs underscores the extent to which the host depends on them
for nutrition and reveals the key to invertebrate colonization of these challenging environments.

Background

Symbiosis between prokaryotic and eukaryotic cells is a
globally important phenomenon that influences the
physiology, ecology, and evolution of virtually every
organism on this planet [1-3]. Eukaryotic hosts expand
their ecological niches through symbiosis with these met-
abolically diverse bacteria and archaea. An illustrative case
is that of the chemosynthetic endosymbionts, which ena-
ble their hosts to populate and thrive in challenging envi-
ronments such as deep-sea hydrothermal vents and cold

seeps [4]. In these environments, reduced inorganic com-
pounds are generated either biotically (e.g. microbial sul-
fate reduction) or abiotically (e.g. hydrothermal
alteration). Chemosynthetic symbionts use the energy
derived from the oxidation of these molecules to fix inor-
ganic carbon [5]. Benefits for both partners in chemosyn-
thetic symbioses are evident. The bacteria gain further
access to the energy substrates they require from both oxic
and anoxic habitats while the animals are provided with
much, if not all, of their nutritional requirements [6-8].
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The intimate structural and metabolic coupling often
found in chemosynthetic symbioses underscores the
importance of these relationships to host survival.

The vesicomyid clams are one of the better studied chem-
osynthetic symbioses and exist at hydrothermal vents,
hydrocarbon seeps, and other chemically reduced envi-
ronments. They are also relatively young as a group, as
vesicomyid fossils date the formation of the symbiosis to
the Cretaceous, between 50-100 Ma ago [9]. These clams
have a greatly reduced gut and feeding groove [10] and,
based on isotopic evidence, are thought to depend almost
entirely on their endosymbionts for their carbon [11-13].
With respect to the animal host, the association is essen-
tial - no living vesicomyids have been found devoid of
symbionts. Furthermore, these symbionts have not yet
been found outside the host, have never been cultured in
the laboratory, and are thought to be predominantly
maternally transmitted each generation via the egg [14-
16].

Previous studies of other bacterial symbionts suggest that
symbiont transmission strategy is a predominant factor
governing nutritional symbiont genome evolution. Bacte-
rial symbionts transferred to the next host generation via
the egg (vertical transmission) experience population bot-
tlenecks upon transmission and few opportunities for
recombination [17]. Because of the underlying deletion
bias in bacterial genome evolution, and the limited
amount of gene flow available to these symbionts, their
genomes are minimized. For example, the genomes of the
vertically transmitted, mutualistic insect endosymbionts
Buchnera, Baumannia, Blochmannia, and Wigglesworthia are
all reduced in size and content [18-21], exhibiting few
chromosomal rearrangements, or horizontal gene transfer
events [22-25]. However, these insect nutritional symbi-
onts retain the genomic repetoire needed to provide key
metabolic intermediates, vitamins, and amino acids often
missing from their hosts' specialized diets [26], suggesting
that host nutritional needs might select for retention of
specific biosynthetic pathways. Conversely, those path-
ways redundant with host capabilities or nutrition are
often lost completely [26]. In contrast to the strictly verti-
cally transmitted symbionts, those that undergo occa-
sional environmental or horizontal transmission (lateral
acquisition) tend to have slightly larger genomes that
exhibit evidence of recombination. For example, Wol-
bachia pipientis, the ubiquitous insect reproductive para-
site, may be laterally transmitted [27,28], and their
genomes are littered with mobile genetic elements,
prophages and harbor clear evidence of past recombina-
tion events [29,30].

It must be noted, however, that transmission strategy for
many symbionts cannot be distinctly or clearly demar-
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cated; depending on the association, symbionts are per-
petuated via a spectrum from strict vertical transmission
to lateral acquisition. The insect reproductive parasites
(such as Wolbachia and CFBs) are vertically transmitted
but occasionally laterally acquired. Indeed, there is also
some phylogenetic evidence, in the form of incongruent
host and symbiont trees, against strict vertical transmis-
sion of the vesicomyid symbionts [31]. More recently, two
different strains of the vesicomyid symbionts have been
found within the same host, corroborating the lateral
acquisition hypothesis suggested by the phylogenetic evi-
dence above [32]. However, the vesicomyid symbionts are
found in host primary oocytes [15,16] and their genomes
are reduced, and exhibit a high A+T content [33,34], sug-
gesting that although occasional lateral transmission may
occur, the predominant transmission strategy used by the
vesicomyids is vertical.

This mixed transmission strategy suggested for the vesico-
myid symbionts has the potential to influence the
genomic evolution of these bacteria. Research on the com-
parative evolutionary genomics of insect symbionts
[18,19,21,35,36] suggests that symbionts with strictly ver-
tical transmission strategies would lose genetic material
redundant with host capabilities and retain metabolic
pathways necessary for host survival. Occasional lateral
transmission might offer the opportunity for recombina-
tion and horizontal gene transfer, possibly mitigating the
negative effects associated with a reduction in population
size. Indeed, some evidence of recombination has been
found in the vesicomyid symbiont genomes, suggesting
that genomic evolution of these bacteria may not be as
straightforward as in strictly vertically transmitted symbi-
onts [32].

We chose a comparative framework, utilizing both
genomic and heterologous microarray data, to investigate
genome evolution in the vesicomyid chemosynthetic
symbionts. The genomes of the two fully sequenced vesi-
comyid symbionts, Ruthia magnifica, isolated from hydro-
thermal vents, and Vesicomyosocious okutanii, isolated from
cold seeps [33,34] were compared to each other and to
that of Thiomicrospira crunogena, a free-living chemoau-
totroph isolated from hydrothermal vents and the closest
sequenced relative of the vesicomyid symbionts [37,38].
The availability of sequenced vesicomyid symbiont
genomic data allowed us to develop microarrays for
genome-scale analyses of conserved gene content in other
vesicomyid symbionts. Indeed, the great amount of
genetic conservation and synteny between the two
sequenced vesicomyid symbiont genomes [39] suggests
that the use of cross-species microarrays in the vesicomyid
symbionts may be particularly informative. Affymetrix
microarrays based on the R. magnifica genome were con-
structed and hybridized to genomic DNA from two other
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related vesicomyid symbionts, those of Vesicomya sp. mt-
II and Calyptogena kilmeri. Vesicomya sp. mt-11 is part of a
cryptic species complex which includes the clam formerly
known as Calytogena pacifica [40].

A sampling strategy was chosen to illuminate possible
effects of phylogenetic relationships and host geochemi-
cal environment on vesicomyid symbiont genome evolu-
tion. These four symbionts include representatives from
each major clade of the vesicomyid symbiont lineage (Fig-
ure 1) and therefore allow us to estimate a vesicomyid
symbiont core genome. The symbionts investigated here
also live within hosts inhabiting two distinct chemosyn-
thetic environments: cold seeps and hydrothermal vents.
These habitats differ in their geochemistry with regards to
the quantity of oxygen, nitrate and redox state of sulfur
available for the symbioses. The data presented here sug-
gest a tremendous amount of genomic stasis and con-
served gene content in the vesicomyid symbiont lineage;
in the 50-100 Ma that the symbionts have been host asso-
ciated, their genomes have changed surprisingly little.
These data also support existing evidence for lateral acqui-
sition of the vesicomyid symbionts [31]. These results
underscore the importance of the symbionts' chemoau-
totrophic metabolism within their hosts; they emphasize
the extent to which host metabolic needs have contrib-
uted to genomic evolution in this endosymbiont lineage.

Results and discussion

Four chemosynthetic symbiont genomes were compared
in this study, two sequenced genomes (the hydrothermal
vent clam symbiont Ruthia magnifica and the cold seep
clam symbiont Vesicomyosocious okutanii) and gene con-
tent for two other strains (the symbionts from the cold
seep clam Calyptogena kilmeri and the hydrothermal vent
clam V. sp. mt-II) based on heterologous microarray
hybridizations (Figure 1). The R. magnifica genome was
used to build microarrays for heterologous hybridization
to other vesicomyid symbionts. Heterologous microarray
hybridization is especially useful when comparing strain-
level variation as arrays designed based on one of the
strains are likely to hybridize to the DNA of other strains
[41-44]. Below, differences between the sequenced
genomes are first discussed with reference to a free-living
chemoautotroph, Thiomicrospira crunogena. Although T.
crunogena is not part of the direct lineage of the vesico-
myid symbionts, it is the closest sequenced relative of the
chemosynthetic symbionts and provides us with some
perspective as to the gene content necessary to be a func-
tional chemoautotroph. We then discuss chemosynthetic
symbiont metabolism and evolution based on both
sequence and microarray analyses.

As expected based on their maternal transmission, when
compared to T. crunogena [38], these symbiont genomes
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are reduced in size and G + C content (Table 1). The vesi-
comyid symbiont genomes are about half the size of T.
crunogena's genome; of the 2,193 proteins in the T. cruno-
gena genome, the symbionts encode ~40%. The T. cruno-
gena genome encodes enzymes and structures lacking
from many intracellular bacteria (flagellar apparatuses,
pili, extrachromosomal elements) but many of T. cruno-
gena's metabolic capabilities are found in the vesicomyid
symbiont genomes (Table 2). Indeed, there are proteins
unique to the vesicomyid symbionts when compared to T.
crunogena and a few of these may increase the symbionts'
functional potential within their hosts. For example, the
symbiont sulfur oxidation pathway includes both the Sox
(sulfur oxidation) and the Dsr (dissimilatory sulfite
reductase) enzymes [33], and therefore appears to be
more complex than that of T. crunogena, which encodes
the Sox system exclusively [38]. Thus, these symbiont
genomes encode for many of the metabolic pathways of
free-living chemoautotrophs despite being reduced in
size.

The sequenced vesicomyid symbiont genomes are quite
similar to each other in both gene content and order. Of
976 and 939 proteins encoded in the R. magnifica and V.
okutanii genomes respectively, 886 orthologs are con-
served across both, which share a relatively high (82.5%)
amino acid identity. The V. okutanii and R. magnifica
genomes also share an extraordinary amount of synteny,
as clear from a LAGAN analysis by Kuwahara et al., 2008.
Here, an analysis of synteny using MUMmer revealed that
a total of 82% of genes in R. magnifica remain in the same
genomic context and relative location in V. okutanii, with
a single inversion [39]. This 22.9 kb inversion is com-
prised of 14 genes including those involved in cofactor
biosynthesis (coaD, octaprenyl-diphosphate synthase),
potassium uptake (trkHA), regulation of nitrogen utiliza-
tion (ntrXY), and chaperonins (dnaKJ) (see Additional file
1). The inversion did not truncate any of the genes in the
region and their orientation does not seem to obviously
affect gene function as no operons are disrupted.

There is a striking similarity between these two vesico-
myid symbiont genomes, but a few substantial differences
stand out. Genes unique to R. magnifica and V. okutanii are
largely in the cell envelope and energy metabolism role
categories, respectively (see Additional file 1). The R. mag-
nifica genome has a large region comprised of 20 open
reading frames lacking in V. okutanii's genome (see Addi-
tional file 1). This region primarily encodes proteins pre-
dicted to be involved in the biosynthesis of
polysaccharides and peptidoglycan, components of the
cell envelope. The lack of this region in V. okutanii suggests
that perhaps the vesicomyid symbiont intracellular life-
style does not require the synthesis of peptidoglycan.
Conversely, the R. magnifica genome lacks V. okutanii's
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Molecular phylogeny of chemosynthetic symbionts based on 16S rRNA gene sequences. These uncultured symbi-
ont taxa are represented by their hosts' scientific name and symbionts, where named, are included in parentheses. A Maximum
Likelihood analysis (GTR + gamma) was used with 1,000 bootstrap replicates. Bootstrap values greater than 50% are shown at
nodes. Sequenced bacterial genomes in this analysis are boxed while those included in heterologous microarray analyses are
circled. Thiomicrospira crunogena, a free-living chemoautotroph used as a point of reference for the genomic comparisons, is
also highlighted. V = Vesicomya; C = Calyptogena; E = Ectenagena.
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Table I: Genome properties of Ruthia magnifica and Vesicomyososious okutanii (vesicomyid symbionts) and Thiomicrospira crunogena

(free-living chemoautotroph).

Size (Mb) G+C content (%) Protein coding (#) *Coding (%) rRNA operons (#)
R. magnifica 1.2 34.0 976 8l |
V. okutanii 1.0 316 939 86 I
T. crunogena 24 43.1 2191 89 3

*percentage of the genome predicted to encode proteins

dissimilatory nitrate reductase operon (see Additional file
1), which encodes energy metabolism proteins similar to
the membrane-bound, respiratory nitrate reductase
(NarGHIJ) found in Escherichia coli and other proteobac-
teria [34,45]. This operon may enable V. okutanii to utilize
nitrate as a terminal electron acceptor and may reduce
competition between host and symbiont for oxygen,
although this has yet to be demonstrated. This ability -
which may have significant implications for the associa-
tion's capacity to exploit hypoxic niches - may represent a
significant functional difference between these two sym-
bionts.

The heterologous microarray hybridizations of V. sp mt-I1
and C. kilmeri symbiont genomic DNA to the R. magnifica
array confirm the genomic stasis suggested by the
sequence comparisons with V. okutanii. Indeed, all of the
microarray features hybridized to the C. kilmeri symbiont
gDNA, indicating that this symbiont contains at least the
genomic repertoire of R. magnifica (Table 2, Figure 2),
while 92% of probed genes did not hybridize to the V. sp.
mt-II gDNA (See Additional file 1). Of this 8.1% of pro-
teins putatively absent from the V. sp. mt-II symbiont
genome, the majority (34/84) are of unknown function
and it is therefore difficult to predict how symbiont
metabolism and host interaction might be affected. A
total of 854 proteins are shared by all four vesicomyid
symbiont genomes and this core genome encodes path-
ways for sulfur oxidation, nitrogen assimilation and car-
bon fixation, as well as synthesizing the 19 amino acids
and 9 vitamins and cofactors, pathways central to their
chemoautotrophic metabolism.

Interestingly, neither reducing environment nor phyloge-
netic position correlated strongly with genomic content.
The genomes of the two vent clam symbionts (R. mag-
nifica and V. sp. mt-II symbionts) did not share any gene
content to the exclusion of the two symbionts isolated
from seep clams (C. kilmeri and C. okutanii symbionts)
and vice versa. In fact, based on the comparative genomic
hybridization results, the C. kilmeri seep clam symbiont is
more similar to the vent clam symbiont R. magnifica than
to V. okutanii. This is a surprising result as the C. kilmeri
symbiont clades with V. okutanii in 16S rRNA phyloge-
netic trees (Figure 1). Also, the vent clam symbiont V. sp.

mt-II seems to share genomic excisions with the seep clam
symbiont V. okutanii in comparison to R. magnifica; the
same polysaccharide biosynthesis region absent from V.
okutanii is also missing from the V. sp. mt-II genome.
These results are inconsistent with predictions of symbi-
ont genomic content based on strict vertical transmission
and instead support a mixed transmission strategy for
these bacteria [31]. Occasional lateral transmission
events, bringing two distinct bacterial symbionts together
in the same host background, would provide the neces-
sary opportunity for recombination in this lineage leading
to this observed result: a mosaic of evolutionary histories
throughout the genome [32].

These four symbionts share a large fraction of their
genomic repertoires, such that the total conserved
genomic content within each functional role category
remains comparatively high (Table 2). When functional
differences between these symbionts are mapped onto a
circular representation based on the sequenced chromo-
somes, two large regions were found to be universally con-
served across all four symbiont genomes (Figure 2,
highlighted in green). One segment, near the origin of
replication, contains nearly all of the enzymes necessary
for cytochrome (cbb3-type) biosynthesis and the Calvin-
Benson-Bassham cycle (transketolase, pyruvate kinase,
phosphoglycerate kinase, glyceraldehydes-3-phosphate
dehydrogenase, fructose-bisphosphate aldolase). It also
harbors enzymes necessary for sulfur oxidation (sulfate
adenylyltransferase, APS reductase, ferredoxin) as well as
energy conservation (adenylate kinase, pyrophos-
phatase). The second segment, at 392,401 bp, encodes
genes involved in nitrogen metabolism (3-isopropyl-
malate dehydratase, asparagines synthase), heme biosyn-
thesis (delta-aminolevulinic acid dehydratase, 2-amino-4-
hydroxy-6-hydroxymethyldihydropteridine,  pyrophos-
phokinase, thiamine-monophosphate kinase) and ubig-
uinone biosynthesis. Thus, many of the genes encoding
enzymes thought to be fundamental to the symbioses are
well conserved across four vesicomyid symbiont strains.

Based on the sequence and microarray data, a reconstruc-
tion of the minimal gene set for the vesicomyid symbionts'
last common symbiotic ancestor (LCSA) is proposed (Fig-
ure 3). Genes present in at least one of the symbiont
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Differences in functional genomic content between the vesicomyid symbionts. The circular representations of the
sequenced genomes of Ruthia magnifica (outer) and Vesicomyosocious okutanii (inner) are shown with functional differences
between the symbionts colored based on role category. The C. kilmeri symbiont genome hybridized to all R. magnifica features
and therefore is predicted to encode at least the genomic repertoire of R. magnifica. Genes putatively absent from the V. sp.
mt-ll symbiont genome based on hybridization to the R. magnifica microarray are marked in black. Regions conserved across all
four symbiont genomes are highlighted in green.

genomes were assumed to have been present in the LCSA.
Below, we detail the commonalities and differences
between the symbiont genomes with regards to the chem-
osynthetic metabolisms thought to be important to the

symbiosis.

The chemosynthetic symbionts are autotrophic bacteria
but there is some question as to whether they are obli-
gately autotrophs or acquire some carbon from the host.
The genomic and microarray results from these four vesi-

comyid symbionts suggest they all have a complete Calvin
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Table 2: Number of genes dedicated to each role category in the vesicomyid symbionts.

Role Category T. crunogena V. okutanii  R. magnifica  *C. kilmeri  *V. sp. mt-Il  **Total conserved
Amino acid biosynthesis 92 91 92 92 91 88
Biosynthesis of cofactors, prosthetic groups, and carriers 100 109 107 107 103 101
Cellular processes 185 49 50 50 48 46
Cell envelope 145 64 79 79 63 58
Central intermediary metabolism 78 50 54 54 53 50
DNA metabolism 89 67 68 68 64 64
Energy metabolism 199 181 176 176 172 167
Fatty acid and phospholipids metabolism 37 26 27 27 27 26
Mobile and extrachromosomal element functions 32 0 0 0 0 0
Protein synthesis 141 122 124 124 118 115
Protein fate 130 8l 88 88 88 74
Purines, pyrimidines, nucleotides and nucleosides 48 42 42 42 40 40
Regulatory functions 109 24 26 26 24 22
Signal transduction 19 | | | | |
Transcription 41 31 31 31 29 29
Transport and binding proteins 205 82 84 84 82 80

Data based on genomics, microarray hybridization results, and validated by polymerase chain reaction and slot blot DNA hybridizations.
*lower estimates of genomic content based on microarray hybridization results and validation methods.
**total conserved gene content = genes shared by all four vesicomyid symbionts included in this study

cycle utilizing a form II RubisCO and that fixed carbon
can enter intermediary metabolism as phosphoglyceralde-
hyde. However, the vesicomyid symbionts intermediary
metabolism lacks alpha-ketoglutarate dehydrogenase, a
condition thought to be an indicator of obligate autotro-
phy [46]. The lack of a sugar phosphotransferase (PTS)
system in these symbionts plus the lack of organic carbon
transporters corroborates this idea. To ameliorate the
effects of an incomplete TCA cycle, a glyoxylate bypass is
hypothesized for R. magnifica, V. sp. mt-11, and C. kilmeri
symbionts but this key enzyme (isocitrate lyase) is miss-
ing from the V. okutanii genome [33,34] making regener-
ation of succinate in V. okutanii inexplicable (with the
known sequence data). The V. okutanii genome is also
lacking genes for malate dehydrogenase and fumarate
reductase, suggesting significant reduction in comparison
to R. magnifica. Perhaps V. okutanii employs the single cit-
rate transporter (found in all four symbiont genomes) to
take up TCA intermediates from the host. This putative
sugar transporter (a protein with two SLC13-permease
domains and a TrkAC domain) could theoretically func-
tion to move TCA cycle intermediates between host and
symbiont. Based on this evidence, the LCSA of the vesico-
myid symbionts is predicted to have been an obligate
autotroph.

However, unlike many free-living obligate autotrophs, the
vesicomyid symbionts do not have carboxysomes, poly-
hedral shaped "organelles" that contain RubisCO and car-
bonic anhydrase [47,48]. These structures are thought to
be involved in dehydration of bicarbonate to provide car-
bon dioxide (CO,) to RubisCO. Although the carboxys-
ome operon seen in other autotrophs is missing from the

symbiont genomes, all four vesicomyid symbionts encode
putative carbonic anhydrases. It may be that the host bac-
teriocyte environment maintains a high concentration of
CO, limiting the need for carobxysomes (as host respira-
tion is likely to contribute to available inorganic carbon).
As is known from the Riftia chemosynthetic symbiosis,
the host animals might actively trap carbon intracellularly
as bicarbonate, limiting the need for carboxysomes in the
vesicomyid symbionts [49]. Indeed, the vesicomyid sym-
bionts contain a form II rubisco, the form with low affin-
ity for CO,, known from organisms that exist in high
concentrations of carbon dioxide [13].

The LCSA for the vesicomyid symbionts is predicted to
have derived its energy for carbon dioxide fixation from
sulfur oxidation. Sulfur oxidation in all four vesicomyid
symbionts is predicted to proceed via the sox (sulfur oxi-
dation) and dsr (dissimilatory sulfite reductase) genes.
However, the V. okutanii genome encodes dsrJNRS while
R. magnifica's does not. Because this gene is lacking from
the R. magnifica genome, it was not queried in the V. sp.
mt-1I or C. kilmeri symbiont genomes. While the role of
these genes in sulfur oxidation is unclear, they are thought
to encode a triheme periplasmic cytochrome (Dsi]), a
gene for biosynthesis of siro(heme)amide (DsrN), and
cytoplasmic proteins of unknown function (DsrRS)
[50,51]. It is therefore unknown how symbiont metabolic
function might be affected by the retention of these genes.

Two distinct terminal electron acceptors (a cytochrome c
oxidase bcl complex and a dissimilatory nitrate reduct-
ase), are predicted to have been used by the LCSA. Based
on sequence data, R. magnifica is predicted to rely exclu-
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sively on oxygen as a terminal electron acceptor while V.
okutanii might use either oxygen or nitrate. The V. okutanii
genome nitrate reductase operon consists of upstream
molybdenum cofactor biosynthesis proteins (moaAD) fol-
lowed by narG and H, encoding the alpha and beta subu-
nits of nitrate reductase, narJ, the delta subunit which
inserts the molybdenum cofactor into nitrate reductase,
and narl, the gamma subunit which is a b-type cyto-
chrome that accepts electrons from quinone to transfer to
the alpha subunit [52,53]. When we aligned the V. okuanii
and R. magnifica genomes, we found evidence of this path-
way's prior existence in the R. magnifica genome. A degen-
erate pseudogene of the alpha subunit of V. okutanii's
nitrate reductase sharing 70/122 amino acids remained in
the analogous position in the R. magnifica genome (see

Additional file 1). This evidence suggests that the LCSA
was also capable of dissimilatory nitrate reduction. The
fact that this pathway has been lost from the R. magnifica
genome is surprising, given the concentrations of nitrate
(40 uM) that exist in deep ocean waters [54].

The loss of the dissimilatory nitrate reductase in R. mag-
nifica and retention of the pathway in V. okutanii may
reflect differences in host geochemical ecology. The C.
okutanii specimen for the V. okutanii genome project was
collected off Hatsushima Island, in the Sagami Bay seep
sites [34]. The vesicomyid hosts found at Sagami Bay keep
their feet buried deep within the silty sediment to access
sulfide and may spend the majority of their time in anoxic
conditions, where nitrate may be the more abundant oxi-
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dant [55]. As the eukaryotic host must use oxygen as a ter-
minal electron acceptor, perhaps the retention of the
nitrate reductase in the seep clam symbionts reflects a
means of reducing competition for oxygen between host
and symbiont. However, it is possible that the amount of
oxygen available to the symbiosis in different environ-
ments may not translate to distinct microenvironments
inside the bacteriocytes; the host hemoglobins [56,57]
may somehow buffer the symbionts against extreme
anoxic conditions. Further research on the metabolic
capabilities of the seep versus vent vesicomyids is needed
to determine if ecological differences have contributed to
the retention of the dissimilatory nitrate reductases.

A remarkable number of amino acid and cofactor biosyn-
thesis pathways are conserved across all four chemosyn-
thetic symbionts: 19 amino acids and 9 vitamints and
cofactors. Although the sequenced symbiont genomes
lack the gene encoding homoserine kinase (thrB), an
enzyme normally utilized in the threonine biosynthetic
pathway, there are kinases in all four genomes that could
theoretically provide this function. Similarly, only a single
cofactor biosynthesis pathway was incomplete; both
sequenced symbiont genomes lack the ubiD/X gene for
ubiquinone biosynthesis from chorismate. Because ubig-
uinone is required for their energy metabolism, however,
it is clear that they either must synthesize this cofactor or
obtain it from the host. Thus, the extant vesicomyid sym-
bionts, and therefore their LCSA, are capable of providing
all the amino acids and prosthetic groups needed by the
host.

Mechanisms for nutrient transport between host and sym-
biont are not obvious based on the genomic data.
Although all four vesicomyid symbionts encode a sec pro-
tein export system and the sec-independent Tat system,
the use of these pathways for transport of proteins to the
host would be energetically costly for the symbiont as the
terminal sequences would be wasted with each export.
Few known transporters for sugars, amino acids, or vita-
min/cofactors were found and instead the symbionts
encode ammonium permeases, nitrate/nitrite transport-
ers, and a sulfate exporter; transport mechanisms needed
for their chemosynthetic metabolism. Of relevance to the
symbiont host interaction is an ABC transporter system
found in the R. magnifica, V. sp. mt-Il and C. kilmeri sym-
biont genomes. This putative hemolysin transporter
(hlyDB, tolC and a calcium binding hemolysin) is missing
in V. okutanii without any trace of pseudogenes and, in
other organisms, is implicated in pathogenesis [58].
Experimental data are needed to determine what its role
may be in the vesicomyid symbionts. The lack of trans-
porters in the sequenced genomes and the high levels of
lysozyme in Calyptogena magnifica gill tissue [59] has been
cited as evidence that the hosts are actively, intracellularly
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digesting their symbionts. However, many molluscs
maintain high levels of lysozyme in their gills as a protec-
tive mechanism against pathogenesis [60], and also the
reduced peptidoglycan biosynthesis pathways in these
genomes would make lysozyme-based digestion unneces-
sary. It may be that the host utilizes other mechanisms for
the digestion of the symbionts such as proteases or reac-
tive oxygen species.

Conclusion

Symbiosis is a ubiquitous and important ecological strat-
egy for bacteria and eukaryotes, allowing the partners to
inhabit environments that neither would be capable of
alone. However, for bacterial intracellular symbionts,
sequestration within a eukaryotic lineage through vertical
transmission can drastically affect symbiont genome evo-
lution, leading to a reduction in gene content and meta-
bolic capabilities. The vesicomyid symbionts may use a
mixed strategy for transmission with predominant vertical
transmission punctuated by occasional lateral acquisition
events [31]. These rare events may give the vesicomyid
symbionts the opportunity for recombination and hori-
zontal gene transfer, allowing them to reacquire genes lost
through genome reduction [32]. Indeed, in contrast to
other sequenced symbiont genomes, the chemosynthetic
symbionts of vesicomyid clams have relatively large chro-
mosomes with an extraordinary amount of encoded met-
abolic capability. Based on genome sizes of free-living
autotrophs (~2 Mb in size), the genome of the vesicomyid
clam symbionts is only reduced by half. Proteins shared
by all four vesicomyid symbiont genomes (which are
referred to as the core genome) include the complete
pathways necessary for chemoautotrophic metabolism.
As is clear from analyses between V. okutanii and R. mag-
nifica, the symbionts also share a large extent of conserved
synteny. Few functional differences were detected in the
comparative genomic analysis; indeed the only difference
likely to have ramifications for the symbiont metabolism
is the ability to use nitrate as an electron acceptor. The last
common symbiotic ancestor is predicted to have been an
obligate chemoautotroph, utilizing either nitrate or oxy-
gen for the oxidation of reduced sulfur compounds.

Invertebrates are able to thrive at hydrothermal vents due
to the metabolic capabilities of their symbionts. The vesi-
comyids, and indeed many hosts of chemosynthetic bac-
teria, have evolved small guts and reduced feeding
mechanisms and rely primarily on their symbionts for car-
bon and other nutrients. The data presented here suggest
a tremendous degree of conserved gene content in the
vesicomyid symbiont lineage, as these symbioses date to
50-100 MYA. This great extent of host dependency may
be pressuring symbionts to retain the necessary metabolic
pathways needed by the host.
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Methods

Data deposition

Microarray hybridizations can be found at the Gene
Expresion Omnibus (GEO) database (GSE13447). All
PCR primers used for validation of these microarray
results are attached in Additional file 1.

Strains

Comparative genomic analyses were conducted using the
genome sequences from the hydrothermal vent clam sym-
biont Ruthia magnifica (GenBank:CP000488), the cold
seep symbiont  Vesicomyososious  okutanii  (Gen-
Bank:AP009247), and Thiomicrospira crunogena (Gen-
Bank:CP000109) a free-living, gamma-proteobacterial,
sulfur-oxidizing chemoautotroph. Additionally, heterolo-
gous hybridization to an R. magnifica microarray was eval-
uated for two additional symbionts: the symbionts of
Calyptogena kilmeri from a Monterey Bay cold seep and the
symAy,; phylotype of Vesicomya sp. mt-1I clams from deep
sea vents on the Juan de Fuca Ridge (Goffredi et al., 2003,
Stewart et al., 2008).

Isolation of genomic DNA

Three Vesicomya sp. mt-II clams were collected from a
hydrothermal vent field on the North Endeavor segment
of the Juan de Fuca ridge (47°57.4'N, 129°05.9'W) using
the submersible Alvin (dive 2413, depth 2200 m). Three
C. kilmeri clams were collected using the ROV Tiburon
(depth 970 m) from the Montery Canyon (36°46.53'N,
122°5.21'W). Symbiont-containing gills were dissected
out of the clams, frozen in liquid nitrogen, and kept at -
80°C until processed. Thawed tissue was treated with
DNase (0.8 mg/ml, 50°C for 1.5 hr with gentle agitation)
to remove host DNA from the samples. This DNase treat-
ment was optimized and relative quantities of host and
symbiont DNA determined by slot blot hybridizations
using universal 16S (GCT GCC TCC CGT AGG AGT) and
18S (GCA ATA ACA GGT CTG TGA TGC CC) rRNA
probes. Although not quantitative, a qualitative estimate
of enrichment of symbiont DNA was achieved. Tissues
were ground in liquid nitrogen, placed in lysis buffer (20
mM EDTA, 10 mM Tris-HCI, pH 7.9, 0.5 mg/ml lysozyme,
1% Triton X-100, 500 mM guanidine-HCl, 200 mM
NaCl) and kept at 40°C for 2 hr. After subsequent RNase
and proteinase K treatments, the samples were centrifuged
and the supernatant loaded onto a Qiagen genomic tip
column and processed according to manufacturer's
instructions.

Microarray construction

NimbleExpress Probe Arrays with probes representing all
1022 open reading frames in the Ruthia magnifica genome
were produced by Affymetrix (manufactured in the 49 for-
mat) and were synthesized with approximately 20 oligo-
nucleotide probes (25-mers) per putative transcript and
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10-20 probe pairs within a probe set. For the design of the
R. magnifica arrays, we provided Affymetrix with partial
host genome sequence to further limit the probability of
host hybridization to the symbiont array. Each probe pair
contains a sequence complementary to the target
sequence (PM) and a sequence with a mismatch in posi-
tion 13 (MM). The ratio of PM/MM hybridization of tar-
get sequence in each probe pair over the entire probe set
is used to call expression levels. It should be emphasized
that because R. magnifica was used as the reference strain
for array design, genes not found in its genome were not
queried in the Vesicomya sp. mt-II and C. kilmeri symbiont
genomes. Also, low hybridization to the R. magnifica fea-
tures suggests that either the genes are absent in the target
sequence or are sufficiently divergent to prevent hybridi-
zation.

Microarray Hybridization

The DNA was prepared for biotin end-labeling and
hybridization by DNase treatment (0.5 U per 10 ug DNA
in 100 pl for 15 min at 25 C). After validation of fragment
sizes (50-100 bp) via gel electrophoresis, DNA was pre-
cipitated with ethanol and labeled for one hour using ter-
minal deoxynucleotide transferase and biotin-ddUTP
(Enzo BioArray). The reactions were used directly for
Affymetrix hybridization. Labeled gDNA targets were
hybridized to these arrays using the ProkGE_WS2v3 fluid-
ics protocol on the GeneChip 400 Fluidics Station
(Affymetrix, Inc). Hybridization cocktails were assembled
using the GeneChip reagents and contained 100 pl of 2x
hybridization mix, 2.5 pl of oligo B2, 10 pl of 20x con-
trols and 6 pg of labeled target. As positive controls, Bacil-
lus subtilus DNA clones were spiked into our cocktails.
Each experiment (Vesicomya sp. mt-1I symbiont, C. kilmeri
symbiont) was performed in triplicate with at least 2 bio-
logical replicates (two distinct clam individuals).

Microarray Data Analysis

Hybridization intensity data were extracted from the array
images and scaled universally across all experiments and
normalized using Resolver microarray software (Rosetta
Syllego). Values derived from the hybridization of R. mag-
nifica gDNA to the arrays were used as a baseline for the
genomic analyses. Absence/presence of the R. magnifica
homologs in C. kilmeri and Vesicomya sp. mt-1I were deter-
mined by comparing hybridization signals between the
baseline and the two strains. Probe sets with a ratio of
>0.25 were considered present, and those with a ratio of
<0.25 were considered absent or excessively divergent.

Verification of the microarray hybridization thresholds

The use of these hybridization intensity thresholds was
validated using PCR and slot blot nucleotide hybridiza-
tions. We randomly chose 20 genes, and primers were
designed (see Additional file 1) based on the R. magnifica
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and V. okutanii genomes and bands were generated (data
not shown). Five genes called as "absent/divergent" were
also targeted for amplification but could not be amplified
(data not shown). We also selectively targeted the polysac-
charide biosynthesis region from R. magnifica (absent in
V. okutanii and V. sp. mt-II symbiont) using slot blot
hybridizations. A probe was designed to target the o-anti-
gen polymerase gene from R. magnifica for hybridization
against V. sp. mt-Il and C. kilmeri symbiont gDNA. R. mag-
nifica, V. sp. mt-Il symbiont, and C. kilmeri symbiont
whole genomic DNA extracts were denatured (0.4 M
NaOH, 10 mM EDTA, 10 mins at 100°C) before loading
onto the Bio-Dot SF Microfiltration Apparatus (Biorad)
and Zeta-probe mebrane (Biorad). After applying vac-
uum, the membrane was washed in 2 x SSC and DNA was
crosslinked using the UV Stratalinker 2400 (Stratagene).
After prehybridization at 30°C with ExpressHyb
(Clonetech) hybridization buffer, radioactively (y-32P-
ddATP) end-labeled 300 bp fragements (T4 PNK) were
hybridized to the membrane overnight at 42°C. The
membranes were then washed at 25°C three times in 50
mL of 2 x SSC, 0.1% SDS and once in 0.1 x SSC, 0.5% SDS
before exposing film for 2 hours and subsequent develop-
ment.

Bioinformatics

To find putative orthologous proteins between the
sequenced genomes, the program RSD (Reciprocal Small-
est Distance algorithm) [61] was used to compare the R.
magnifica genome to that of the V. okutanii genome. A le-
3 cutoff for the significance threshold and an alignment
length threshold of 80% were used which yielded a total
of 858 conserved orthologous proteins. We then used
reciprocal BLAST to identify another 28 orthologous pro-
teins. The MUMmer 3 software package [62] was used for
analysis of synteny and the BLAST program [63] was used
to indentify percent identity and similarity between the
conserved proteins.
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Additional material

Additional file 1

Supplementary tables and figures for "Comparative Genomics of
Chemosynthetic Symbionts". Schematic representation of genomic com-
parisons between V. okutanii and R. magnifica. Also included are tables
listing unique gene content in the V. okutanii and R. magnifica compar-
isson as well as tables of microarray data from the hybridization of V. sp.
mt-II symbiont to the R. magnifica array. Finally, a list of primers used
to validate the microarray data are included.
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