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Abstract
Background: Environmental signals usually enhance secondary metabolite production in
Streptomycetes by initiating complex signal transduction system. It is known that different sigma
factors respond to different types of stresses, respectively in Streptomyces strains, which have a
number of unique signal transduction mechanisms depending on the types of environmental shock.
In this study, we wanted to know how a pH shock would affect the expression of various sigma
factors and shock-related proteins in S. coelicolor A3(2).

Results: According to the results of transcriptional and proteomic analyses, the major number of
sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH
(heat shock), sigR (oxidative stress), sigB (osmotic shock), and hrdD that play a major role in the
secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock
proteins including the DnaK family and chaperones such as GroEL2 were also observed to be
upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative
stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and
osmotic shock-related protein such as vesicle synthases were also upregulated in overall.

Conclusion: From these observations, an acidic pH shock was considered to be one of the
strongest stresses to influence a wide range of sigma factors and shock-related proteins including
general stress response proteins. The upregulation of the sigma factors and shock proteins already
found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced
actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for
actinorhodin production.

Background
Various environmental signals are known to enhance sec-
ondary metabolites production in Streptomycetes by initiating
complex signal transduction system [1]. There have been a

number of studies on the application of an environmental
stimulus for the enhancement of productivity. These envi-
ronmental stimuli include heat shock, cold shock, oxidative
stress, osmotic stress, acidic sock, alkali shock [2-6].
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It is known that different sigma factors respond to differ-
ent types of stresses, respectively in Streptomyces strains,
which have a number of unique signal transduction
mechanisms depending on the types of environmental
shock [1]. Those sigma factors coordinate gene expression
in response to various environmental and endogenous
signals.

A research group has performed a proteomic study to
identify the relationship between proteins expression and
environmental stresses, and proteins expression at each
phase of cell growth in S. coelicolor [7-9]. It was demon-
strated that almost all of the shock-related proteins were
found in the transient phase just before the stationary
phase, implying that various shocks induced the proteins
responsible for the initiation of the stationary phase.
Based on these findings, it can be deduced that certain
types of environmental shock could cause a premature
initiation of stationary phase and thus an earlier initiation
of secondary metabolites production.

We already observed that an acidic pH shock caused a
much earlier initiation of stationary phase and actinorho-
din (ACT) production when applied to a surface-grown
culture of Streptomyces coelicolor A3(2) [10]. In this study,
we investigated in transcription and protein levels, the
effects of acidic pH shock on the expression of various
sigma factors and shock related proteins in S. coelicolor
A3(2).

Results and discussion
Effects of pH Shock on cell growth and actinorhodin 
production
Actinorhodin is the most abundant product in S. coelicolor
A3(2). The highest level of actinorhodin production was
observed in the pH-shocked culture (designated as PS) in
our previous study [10]. In PS, the intracellular actinorho-
din of 0.54/(g-cell/L) and extracellular actinorhodin of
1.41/(g-cell/L) were obtained, respectively, which were
about 10 times higher than those of the pH non-control-
led culture (designated as PNC) and pH controlled culture
(designated as PC). Also, we performed transcriptional
and proteomic analyses to investigate pH shock effect on
the expression of regulatory and biosynthetic genes for
actinorhodin production [10]. Four regulators of PkaG,
AfsR, AfsS and ActII-ORF4 were observed to be activated
by pH shock. In addition, a number of genes known to be
associated with actinorhodin biosynthesis were upregu-
lated. In particular, the pathway-specific regulator of actII-
orf4 having DNA binding activity to actVI-orf1 and actIII-
actI intergenic region is necessary for the initiation of
actinorhodin biosynthesis [11]. Such enhanced expres-
sion of this regulator is considered to have led to the acti-
vation of other genes in the actinorhodin gene cluster.
Genes responsible for polyketide synthesis function for

actinorhodin production, ketoacylreductase (actIII),
polyketide beta-ketoacyl synthase alpha/beta subunit
(actI-orf1 and -orf2), actinorhodin polyketide synthase
acyl carrier protein (actI-orf3), and actinorhodin
polyketide synthase bifunctional cyclase/dehydrogenase
(actVII) [12-14] were also highly upregulated: over 5 fold
increased expression compared to that in PC (control).
Besides these genes in actinorhodin gene cluster, ActVI-
ORF1 and ActVI-ORF3 believed to be responsible for
pyran ring closure leading to the formation of the benzoi-
sochromanequinone (BIQ) chromophore [15-17] were
upregulated. Among 6 ActVA proteins upregulated,
ActVA-ORF4 and ActVA-ORF5 known to play a major role
in the reaction of C-6 and C-8 ring hydroxylation in the
biosynthesis of aromatic polyketide antibiotics [18] were
also upregulated.

How a pH shock-signal can be transferred to the actinor-
hodin biosynthesis and regulatory genes at the lower level
of signal transduction system is still unknown. We, how-
ever, considered that signal transduction process initiated
by a pH-shock might proceed through sigma factors and
shock related proteins at the higher-level. Therefore, the
expression patterns of sigma factors and proteins known
to be induced by a variety of shocks were examined.

Expression analysis on a wide range of stress-response 
genes
Transcriptional analysis was mainly carried out using
DNA chip supplied by Surrey University with triplicate
biological repeat samples (Fig. 1 and 2). In addition, to
confirm the results from DNA chip analysis, RT-PCR anal-
ysis was performed (Fig. 3). A number of sigma factors
and shock-related proteins known to be associated with
secondary metabolite production, especially actinorhodin
production, were observed to be upregulated by an acidic
pH shock in overall. In 2-dimensional electrophoresis
analysis, three runs of gel electrophoresis were performed,
and averaged results were taken. For PNC, PC, and PS,
445, 463, and 324 protein spots were detected, respec-
tively [10]. In MALDI-TOF MS analysis, three proteins
associated with sigma factors and gas vesicle synthesis
were identified (Table 1). In 1-DE ESI-MS/MS analysis,
two chaperone proteins and one protein associated with
protection responses were identified for PNC and/or PS as
listed in Table 2. None of these proteins were identified in
PC.

Expression behavior of sigma factors with pH shock
All of the 96 sigma factors, functionally identified or only
putative, ever identified in S. coelicolor were analyzed for
their transcription levels. Among these sigma factors
tested, as many as 43 factors were upregulated in the pH-
shocked culture as observed by DNA chip analysis, while
only 17 factors downregulated (Fig. 1). Among those
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upregulated, especially, four functionally identified sigma
factor genes of sigT, sigU, sigB, sigQ and hrdB, and 15 puta-
tive sigma factor genes including SCO3709, SCO7323,
SCO0542, SCO1263, SCO0675 and SCO7754 were very
strongly upregulated by the pH shock. All of the well-
known sigma factor genes such as sigH, sigR, sigG, sigB,
hrdD, and hrdB were observed to be upregulated by the pH
shock. Besides, many other sigma factor genes of sigQ,
sigT, sigU, bldN were also upregulated in PS. In overall,
their expression pattern in PNC was similar to that in PS,
even though their expression levels were much lower than
in PS. To confirm these results, RT-PCR was performed on
four well-studied sigma factors of sigR, sigB, sigH and hrdD
(Fig. 3A). All of them were expressed in PS and PNC, while
none in PC, where pH change was suppressed. Among the
strongly upregulated factors, SigH, SigR, and SigB are
known to be induced by heat or osmotic, oxidative, and
osmotic stress in order. In addition, they are known to
have a major role in the secondary metabolite production
by activating some major genes related to their biosynthe-
sis [19-22]. SigH is known to play an essential role in the
onset of cellular differentiation and antibiotic production
[19,23,24]. S. coelicolor has sigB, which has a high homol-
ogy with bacillus SigB. SigB is known to control both
osmoprotection and differentiation [20]. In addition,
Cho et al. demonstrated in 2001 that SigB and CatB, cata-
lases were required for osmoprotection and proper differ-
entiation of S. coelicolor, and that CatB was under the
control of SigB. CatB was also observed to be upregulated
in PS [21].

Among them, hrdD showed the most sensitive response to
pH changes. Their anti-sigma factors were also observed to

be induced by the pH-shock (data not shown). This result
implied that they must play major roles in the signal trans-
duction system after a pH shock. The amount of the tran-
script from hrdD was reported to increase under sporulation
or/and nutrient shift down [25,26]. It is known to be prefer-
entially transcribed by the exponential phase RNA polymer-
ase. HrdD is known to recognize the promoter for actII-orf4
regulating the actinorhodin production. Also, The genes of
redD and actII-ORF4, pathway-specific regulators for antibi-
otic production in S. coelicolor A3(2), are reported to be tran-
scribed in vitro by an RNA polymerase holoenzyme
containing sigma factor, hrdD [27]. Therefore, it was consid-
ered that the enhancement of actinorhodin production was
due to the joint effect of the upregulation of regulatory genes
(pKaG, afsR, and afsS) and actinorhodin pathway specific
regulatory gene (actII-ORF4) (in our previous study) [10],
and the upregulation of hrdD (in this study). In addition,
two putative RNA polymerase sigma factors of SigK and
SCO7112 were observed to be upregulated by the pH shock
in 2-DE MALDI-TOF analysis (Table 1). Of these two, SigK
having a homology with SigB is known to be induced tran-
siently by heat and salt stress [28].

The analysis results and published information on these
sigma factors give a good insight into how a pH shock
could enhance actinorhodin production.

Expression behavior of heat shock-related proteins
DnaK family, the well-known heat shock proteins of
dnaK, dnaJ, clpB, and grpE [29-31] were observed to be
upregulated by the pH shock in the transcriptional level.
In the proteomic analysis also, DnaK was detected only in
PNC and PS (Table 2).

Table 1: 2-DE MALDI-TOF analysis results

Functional 
classification

Gene bank 
accession no.

Identity Size of protein 
(kDa/aa)

Caculated pI 
(Expasy)

Normalized Vol.

PNC PC PS

Adaptation SCO6502 putative gas vesicle synthesis 
protein (GvpG)

9.7/87 4.2 1.081 0.063 0.939

Sigma factor SCO6520 putative RNA polymerase sigma 
factor (Sig K)

30.0/266 5.5 0.013 0.011 2.651

SCO7112 putative ECF-family RNA 
polymerase sigma factor

32.8/298 5.9 0.128 0.084 -

Table 2: 1-DE ESI-MS/MS analysis results

Functional classification Gene bank accession no. Identity Size of protein (kDa/aa) Detection

PNC PC PS

Chaperones SCO4296 Chaperonin 2 (GroEL2) 56.8/541 no no yes
SCO3671 Chaperone protein dnaK (DnaK) 66.2/618 yes no yes

Protection responses SCO0999 superoxide dismutase 23.6/215 no no yes
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The result of DNA chip analysis for sigma factorsFigure 1
The result of DNA chip analysis for sigma factors. Putative RNA polymerase sigma factors (SCO0414; sigB, SCO0600; 
SCO0803; SCO0942; SCO1723; SCO1876; SCO2639; SCO2954; SCO3323; SCO3450; sigT, SCO3892; SCO4005; SCO4409; 
SCO4452; sigQ, SCO4908; SCO4996; SCO7099; SCO7192; SCO7314; sigG, SCO7341), hypothetical regulatory protein 
(SCO0542), conserved hypothetical proteins (SCO0675, SCO4757), putative anti sigma factor antagonists (SCO3692, 
SCO0781, SCO7323, SCO7754), probable ECF-family sigma factors (SCO0864, SCO5147), RNA polymerase principal sigma 
factors (hrdC, SCO0895; hrdD SCO3202), putative RNA polymerase ECF sigma factors (SCO1263, SCO3709, SCO4146, 
SCO4866, SCO4996), putative membrane protein (SCO3362), putative regulatory protein (SCO3691), putative anti anti sigma 
factor (SCO4410), RNA polymerase sigma factors (sigR, SCO5216; sigH, SCO5243), major vegetative sigma factor (hrdB, 
SCO5820), and putative anti-sigma factor (SCO7322) were upregulated in the pH-shocked culture, while putative RNA 
polymerase sigma factors (SCO0255; SCO2742; SCO5934; SCO6239; SCO7104), putative anti-sigma factor antagonists 
(SCO0672; SCO4027; SCO7619), probable ECF-family sigma factor (SCO0866), putative integral membrane protein 
(SCO1632), putative ECF sigma factors (SCO3715; SCO3736; SCO4864; SCO7144), hypothetical protein (SCO4939), RNA 
polymerase ECF sigma factor (sigJ, 1276), SCP1.161c, and SCP1.116 were downregulated in the pH-shocked culture.
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The result of DNA chip analysis for shock-related proteinsFigure 2
The result of DNA chip analysis for shock-related proteins. A) Heat shock proteins. B) Chaperones. C) Osmotic shock 
proteins. D) Proteins resistant to oxidative stress. Genes coding catalase (katA, SCO0379; catB, SCO0666), putative gas vesicle 
synthesis protein (gvpA2, SCO0650; gvpF2, SCO0651; gvpG2, SCO0652; gvpJ2, SCO0655; gvpL2, SCO0656; gvpS2, SCO0657; 
gvpO, SCO6499; gvpG, SCO6502; gvpL, SCO6506; gvpS, SCO6507; gvpK, SCO6508;), putative thioredoxin (SCO1084; trxA4, 
SCO5419), ATP-dependent protease ATP-binding subunit (clpB, SCO3661), molecular chaperone (dnaJ, SCO3669), heat shock 
protein (grpE, SCO3670; dnaK, SCO3671), chaperonin 2 (groEL2, SCO4296), putative glutathione peroxidase (SCO4444), 10 
kD chaperonin cpn10 (groES, SCO4761), 60 kD chaperonin cpn60 (groEL1, SCO4762), superoxide dismutase (sodN, 
SCO5254), putative DNA-binding protein (SCO6439), putative thioredoxin reductase (SCO7298), putative chaperone 
(SCO7523) were upregulated with pH shock, while genes coding thioredoxin (trxA3, SCO0885), superoxide dismutase (sodF2, 
SCO0999), heat-inducible transcriptional repressor HrcA (SCO2555), molecular chaperone (sugE, SCO2898), putative GroES-
family molecular chaperone (SCO2899), putative heat shock protein (hspR, SCO3668; htpG, SCO7516), thioredoxin reductase 
(NADPH) (trxB, SCO3890), conserved hypothetical protein (SCO5917), putative gas vesicle synthesis protein (gvpA, SCO6500; 
gvpF, SCO6501) were downregulated.
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RT-PCR analysis results of various sigma factors and shock-related proteinsFigure 3
RT-PCR analysis results of various sigma factors and shock-related proteins. A) Sigma factors. B) Proteins related to 
heat shock. C) Proteins related to oxidative stress.
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In DNA chip analysis, the genes coding well-known heat
shock proteins of dnaK, clpB, and grpE were observed to be
upregulated in PS (Fig. 2A). In particular, the transcription
of dnaK steeply increased after pH shock. It showed about
6.2-fold increased expression level one day after the pH
shock. On the contrary, the gene coding the repressor of
the DnaK family hspR, identified by Bucca et al. [31] for
the first time in 1995, was strongly downregulated by the
pH shock. In RT-PCR analysis, they were expressed one
day after the pH shock in PS, while its expression was
somewhat delayed in PNC to be observed 2 days after the
pH shock. It was not expressed in PC (Fig. 3B).

Among eight chaperone genes in S. coelicolor A3(2), five of
them (dnaJ, groEL2, groES, groEL, and SCO7523) were
upregulated. Especially, groES, groEL2, and SCO7523 were
strongly upregulated by the pH shock (Fig. 2B). Chaper-
onin 2 (or GroEL2) and a chaperone protein of DnaK
were also detected in PS by 1-DE ESI-MS/MS analysis
(Table 2). Especially, GroEL2 is known to be induced
either by heat shock or by undefined physiological gen-
eral stress signals [32,33]. It is associated with specialized
metabolic functions including stationary phase metabo-
lism, the stringent response, protein secretion, and cellu-
lar differentiation, playing a special role in the assembly
of multienzyme complexes that synthesize secondary
metabolites containing peptide or polyketide bonds [34].
Hence, we deduced that GroEL2's induction by the pH
shock have, at least partially, contributed to the enhanced
actinorhodin biosynthesis.

Expression behavior of oxidative stress-related proteins
The expressions of oxidative stress related proteins of cata-
lase, superoxide dismutase, peroxidase, and thioredoxin
system were investigated. (Fig. 3C and 2D, and Table 2). In
the transcriptional level, genes of catA, catB, sodN and sodF
were upregulated by the pH shock. Among them, sodN was
much more strongly upregulated than the others. Unfortu-
nately, in DNA chip analysis, another superoxide dis-
mutase gene, sodF could not be analyzed because of defects
on the DNA chip used. These dismutases and catalases are
representative antioxidant enzyme groups in the primary
and secondary metabolisms, respectively. Superoxide dis-
mutase (Sod) transforms preferentially reactive oxygen spe-
cies, especially oxygen radicals, to H2O2 [35,36], and then
hydrogen peroxide generated in the previous step is
changed to nontoxic H2O by catalase. Catalases of catA and
catB play major roles in the first and secondary metabolism
in S. coelicolor [37]. Also, Sod was detected in protein level
only in PS as shown in Table 2, which is consistent with
previous result of transcriptional analysis.

Peroxidases and thioredoxin systems were also observed
to be activated in overall by the pH shock. Especially, the
putative thioredoxin genes, SCO1084 and trxA4, and the

putative thioredoxin reductase gene, SCO7298 were
strongly upregulated. It is reported that the thioredoxin
system begins to work actively under the influence of SigR
when oxidative stress exists to generate NADP+ relieving
this stress [38-40].

Expression behavior of osmotic shock-related proteins
Expression profiles of sixteen gas vesicle synthesis protein
genes were investigated for the first time in transcriptional
level in this study (Fig. 2C). It has been speculated that gas
vesicles might serve a function responsive to osmotic
stress [20]. Among those, eleven genes were upregulated
in PS, while only two genes were downregulated. The pro-
tein of GvpG was also detected in PNC and PS through the
2-DE MALDI-TOF analysis (Table 1). This result might be
not sufficient to provide a direct evidence on the relation-
ship between gvp upregulation by acidic pH shock and
actinorhodin biosynthesis, since the function of gvp genes
is still not clear. It is, however, considered that these genes
might be candidates to mediate a pH shock signal to the
genes related to actinorhodin biosynthesis.

Conclusion
Based on these combined observations, an acidic pH
shock was considered to be one of the strongest stresses to
influence a wide range of sigma factors and shock-related
proteins including general stress response proteins. The
upregulation of the sigma factors and shock proteins,
especially HrdD, SigH, SigR, SigB and GroEL2, already
found to be associated in actinorhodin biosynthesis were
considered to have contributed to the enhanced actinor-
hodin productivity with the pH shock, mediating the pH
shock signal to regulators or biosynthesis genes for actin-
orhodin production.

Methods
Strain, media and culture conditions
S. coelicolor A3(2) M145 (ATCC BAA471) was grown on a
cellophane film placed on supplemented minimal
medium, solid (SMMS) at 28°C [38]. A SMMS with no TES
buffer was used to eliminate the buffering effect and thus
to allow pH changes during the culture (Fig. 4). The initial
pH was 7.2. Cells were cultivated for 2 days before being
transferred to a new SMMS plate with a pH of 4. Just
before the transfer, the pH of the medium was about 5.3.
The transferred cells were incubated for another 7 days (9
days in total). This pH-shocked culture was designated as
PS. The culture with no transfer to a new medium was des-
ignated the pH-non-controlled culture (PNC). For the pH-
controlled culture (PC), cells were cultivated on the nor-
mal SMMS medium with TES buffer to suppress pH
changes. The pH of the solid media was measured by
using TEST PAPER (Toyo Roshi Kaisha, Japan). A spore
stock in 20% glycerol stored at -70°C was used for inocu-
lation.
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Analysis
Cell and actinorhodin concentrations
Cell concentration was measured in dry cell weight
(DCW). Cells collected off the cellophane film were
washed with a phosphate buffer. The washed cells were
dried at 80°C for 24 hrs, and then weighed at room tem-
perature. The intracellular and extracellular amounts of
actinorhodin produced were separately measured follow-
ing the procedures previously reported [10,33,34].

Transcriptomic analyses
An RNeasy Midi kit (Qiagen) was used for RNA isolation
according to the manufacturer's instructions. The total
RNA was quantified using a NanoDrop ND-1000 (Nano-
drop, USA). RNA integrity was assessed using a Bioana-
lyzer (Agilent Technologies).

The methods of DNA microarray analysis used are
detailed at http://www.surrey.ac.uk/SBMS/Fgenomics/
Microarrays/ and in the previous report [10]. Briefly, for
RNA labeling, 15 μg of total RNA and 1.7 μl of random
primer (Invitrogen) were mixed and incubated for 10 min
at 70°C, snap cooled on ice and then 6 μl of 5× First
strand buffer, 3 μl of 100 mM DTT, 0.6 μl of dNTP (25
mM each dA/G/TTP, 10 mM dCTP), 2 μl of a Super Script
II (Invitrogen) and 1.5 μl of Cy3-dCTP (Amersham Bio-
sciences) were added to make a final volume of 30 μl. The

mixture was incubated for 10 min at 25°C in the dark and
further incubation was done for 120 min at 42°C in the
dark. Ten microliter of 1 N NaOH was added to the incu-
bated mixture. After incubation for 10 min at 70°C, 10 μl
of 1 N HCl was added for RNA denaturation.

For genomic DNA labeling, 3.5 μg of genomic DNA, 1 μl
of random primer (Invitrogen) and distilled water were
mixed to make a final volume of 41.5 μl. The mixture was
heated to 95°C for 5 min and snap cooled on ice and then
added with 5 μl of 10× Klenow buffer, 1 μl of dNTP (5
mM each dA/G/TTP, 2 mM dCTP), 1.5 μl of Cy5-dCTP
(Amersham Bioscience), and 1 μl of Klenow fragment
(New England Biolabs, UK). Oligonucleotide DNA micro-
arrays representing 98% of S. coelicolor ORF's (fabricated
in the Functional Genomics Laboratory, University of Sur-
rey, UK) were used http://www.surrey.ac.uk/SBMS/Fge
nomics/Microarrays/html_code/Oligo_array.html.
Hybridization was carried out using a Pronto! Universal
Hybridization kit (Corning, USA) according to the sup-
plier's instruction. Equal amounts of Cy3-labeled and
Cy5-labeled samples were mixed and dried completely
using a vacuum centrifuge. The dried sample was redis-
solved in 40 μl of a Pronto! Universal Hybridization Solu-
tion for long oligonucleotides. The resulting
hybridization solution was heated to 95°C for 5 min and
applied to a microarray. The hybridized microarray was

Experimental design for solid culture to investigate effects of acidic pH shockFigure 4
Experimental design for solid culture to investigate effects of acidic pH shock.
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incubated for 16 hrs at 42°C and then scanned with an
Affymetrix 428 scanner (Affymetrix, USA). The 16 bit-TIFF
image obtained was analyzed using BlueFuse 2.0 (BlueG-
nome, Cambridge, UK) and GeneSpring GX 7.3.1 (Agilent
Technologies). RT-PCR was carried out by using the
primer pairs listed in Table 3. Transcript detection analysis
was carried out by using a SUPERSCRIPT One-Step RT-
PCR kit (Invitrogen) with 0.25 μg of total RNA as tem-
plate. ScoF, a cold shock protein of S. coelicolor, was used
as the internal standard (Fig. 3).

Proteomic analysis
Cells were suspended in TE buffer containing COCKTAIL
(Roche), and then disrupted with a cell homogenizer.
Samples containing 100 μg proteins were prepared from
the supernatant for the subsequent 1D- and 2D-analyses.
For 1D-LC/ESI-MS/MS analysis, protein samples were
treated by 1D-SDS-PAGE. Protein bands were excised and
digested in-gel with trypsin. To identify the major pro-
teins, tryptic peptides were submitted for Electrospray
Ionization Quadrupole-Time of Flight instrument (ESI-Q-
TOF MS). Peptide mass fingerprints were analyzed by
using the MASCOT http://www.matrixscience.com. In
2D-gel electrophoresis, 18 cm IPG strips pH 4~7 (Amer-
sham Biosciences) were used for the first-dimension isoe-
lectric focusing. Gels were stained with a silver staining kit
(Amersham Biosciences) and scanned by using a UMAX
power look 1120 scanner (UMAX, Taiwan). Image analy-
sis was performed by using Phoretix 2D Expression (Non-
Linear Dynamics, UK). Protein identification was
performed by using a Matrix Assisted Laser Desorption/
Ionizing-Time of Flight (MALDI-TOF) mass spectrometry
system (Voyager DE-STR, PE Biosystem, Framingham,
MA) in NICEM (National Instrumentation Center for

Environmental Management). Other experimental condi-
tions were detailed in our previous report [10].
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