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Abstract

Background: Increasing evidence shows that whole genomes of eukaryotes are almost entirely
transcribed into both protein coding genes and an enormous number of non-protein-coding RNAs
(ncRNAs). Therefore, revealing the underlying regulatory mechanisms of transcripts becomes
imperative. However, for a complete understanding of transcriptional regulatory mechanisms, we
need to identify the regions in which they are found. We will call these transcriptional regulation
regions, or TRRs, which can be considered functional regions containing a cluster of regulatory
elements that cooperatively recruit transcriptional factors for binding and then regulating the
expression of transcripts.

Results: We constructed a hierarchical stochastic language (HSL) model for the identification of
core TRRs in yeast based on regulatory cooperation among TRR elements. The HSL model trained
based on yeast achieved comparable accuracy in predicting TRRs in other species, e.g., fruit fly,
human, and rice, thus demonstrating the conservation of TRRs across species. The HSL model was
also used to identify the TRRs of genes, such as p53 or OsALYL/, as well as microRNAs. In addition,
the ENCODE regions were examined by HSL, and TRRs were found to pervasively locate in the
genomes.

Conclusion: Our findings indicate that |) the HSL model can be used to accurately predict core
TRRs of transcripts across species and 2) identified core TRRs by HSL are proper candidates for
the further scrutiny of specific regulatory elements and mechanisms. Meanwhile, the regulatory
activity taking place in the abundant numbers of ncRNAs might account for the ubiquitous presence
of TRRs across the genome. In addition, we also found that the TRRs of protein coding genes and
ncRNAs are similar in structure, with the latter being more conserved than the former.
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Background

The identification of transcriptional regulatory elements
that control the expression of each transcript is a funda-
mental and challenging problem in biology. Although tre-
mendous progress has been made, both experimentally
and computationally, the regulatory elements of genes are
still not well understood, and only a handful of them have
so far been experimentally verified [1]. The computational
identification of regulatory elements is difficult for several
reasons. First, genomic regulatory elements are usually
short and degenerate [2]. Second, they are usually distrib-
uted across large genomic regions from the distant 5'
upstream regions to the 3' downstream regions [3]. Mean-
while, ENCODE, a pilot project to identify all functional
elements in the human genome sequence, has revealed
that at least 93% of the human genome is transcribed in
different cells and that regulatory sequences are symmet-
rically distributed around transcription starting sites (TSS)
[4]. Thus, when searching these consensus sequences of
transcriptional factor binding sites (TFBSs), typically 6 to
10 bases, we may obtain a large number of matches, but
the majority of them have no relevant biological func-
tions.

Many mechanisms controlling gene expression, including
alternative TSSs and non-coding and antisense transcrip-
tional controls, have been discovered [4,5]. However,
most genes are controlled cooperatively by several tran-
scription factors (TFs) binding to various regulatory ele-
ments [6-8]. These cooperating regulatory elements are
often located in close spatial proximity to each other. Such
co-appearance of regulatory elements can potentially help
in the identification of transcriptional regulatory elements
and regions. In this paper, we aim to identify and charac-
terize such functional regulatory DNA regions. We term
these regions transcriptional regulatory regions (TRR) and
further define them as containing a cluster of cooperating
regulatory elements which can recruit transcriptional fac-
tors for binding and then regulating the expression of
transcripts. Once a TRR is identified, we show that further
experiments can be conducted to elucidate its regulatory
roles. Different from the widely recognized promoters
(e.g., core promoters and proximal promoters), which are
defined as DNA regions surrounding a specific location
(e.g., TSS) [9], TRRs include not only functional promoter
regions as a subset which participate in driving initiation
of transcription, but also functional DNA regions located
in introns, exons, or other intergenic regions, far away
from TSSs, but still exerting their implicit regulatory roles.

Since our present understanding of TRRs is limited and
primitive, we need an enhanced biological context to
improve our understanding. It has been known for years
that organisms as diverse as human, rat, Drosophila, and
yeast use the same set of conserved proteins to initiate
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mRNA synthesis and that these proteins are collectively
known as general transcription factors [10]. Therefore, we
propose the concept of core TRR, which refers to a DNA
region containing a cluster of conserved regulatory ele-
ments commonly occurring in the majority of TRRs. Using
this principle for the present study, we first focused on
predicting the core TRRs and then illustrated how these
core parts are common for different transcripts and con-
served across species.

By incorporating the idea of TF regulatory cooperation,
substantial work has been done in the identification of
regulatory regions in silico. For instance, Wasserman and
Fickett first proposed the concept of cis-regulatory module
(CRM) [6]. CRM refers to a DNA segment, typically a few
hundred base pairs in length, containing multiple binding
sites which recruit several cooperating transcription fac-
tors to a particular genomic location at a particular condi-
tion. Methods of identifying CRMs have been studied
intensively and have been applied to many different set-
tings [11-16]. Most studies were based on sets of poten-
tially co-regulated genes selected by using various
approaches, including, for example, gene expression
arrays and ChIP-chip data. These approaches mostly aim
to identify CRMs for specific biological processes and/or
functions [17].

In contrast, this study aims to predict TRRs, as defined
above, directly from the genomic sequences without addi-
tional (a priori) information, such as the sets of co-regu-
lated genes used as inputs of algorithms for CRM. The
main difference between core TRRs and CRMs is that
CRMs are characterized by a module consisting of func-
tion/gene-specific elements, while the core TRR is a cluster
consisting of the common and conserved parts of TRRs. In
fact, the identification and characterization of core TRRs
are made possible by their conservation. We have found,
moreover, that these conserved regulatory elements are
often shared by many kinds of TRRs for various biological
processes and functions. This study compares the possible
regulatory regions of various genes with random
sequences and/or coding sequences in order to identify
core TRRs. For simple model organisms, such as S. cerevi-
siae, intergenic regions can be taken as potential TRRs
since they are relatively short (with median length of 400
bp), and most of them have regulatory roles [1]. Even
though intergenic regions in most eukaryotic organisms
are generally very large and not well understood, we show
that the core TRRs are conserved among genes, not only in
one organism, but also across species.

To accomplish this, we developed the hierarchical sto-
chastic language (HSL) model which was previously used
to identify vertebrate promoters [18]. The hierarchical
structure model was also employed to identify CRMs [12].

Page 2 of 19

(page number not for citation purposes)



BMC Genomics 2008, 9:623

However, in this study, we extended the HSL model to
identify core TRRs based on a set of putative TRRs in yeast
(positive set) and a negative set, either of coding DNA
sequences or of randomly generated sequences. The HSL
model first identifies a set of k-tuples (k = 6 in this study)
that are significantly over-represented in the positive set
versus the negative set. Pairs of k-tuples selected in the first
step that are over-represented in the positive set compared
to the negative set are then further identified. A classifier
is then built to identify core TRRs in any given genomic
DNA region. The detailed description of the HSL model is
provided in the Methods section.

We first applied the HSL model to S. cerevisiae in order to
build a dictionary of vocabularies (tuple-pairs). It is
remarkable to observe that the vocabularies defined by S.
cerevisine were conserved across species such that the
model trained based solely on S. cerevisiae can be applied
to other species with similar accuracy. We then applied
the HSL model to identify TRRs of several genes, including
the human p53 gene, the rice gene OsALYL1, and others.
In addition, by applying our HSL algorithm to 50 experi-
mentally verified promoters of microRNAs in Arabidopsis
[19], our HSL model achieved accuracies similar to those
in protein coding genes for the identification of TRR
regions in upstream sequences, indicating that the core
part for transcription of microRNAs is similar to that of
protein coding genes. In addition, after applying HSL to
ncRNAs in ENCODE human genome regions, we found
that TRRs are located pervasively in the genomes and that
most TRRs might be responsible for the regulation of
ncRNAs. The TRRs of ncRNAs are more conserved than
those of protein coding genes. Therefore, by using TRR
analysis, this work provides important biological insights
into gene regulation.

Results

We developed an HSL model for detecting core TRRs. We
first showed that the HSL model based on yeast can be
effectively used to predict TRRs of other organisms,
including fruit fly, human and rice. We next applied the
HSL model to several other cases, including (1) core TRRs
of the p53 gene and genes potentially regulated by p53;
(2) prediction of core TRRs for a new rice gene, OsALYL1,
with experimental validations; (3) core TRRs of microR-
NAs of Arabidopsis thaliana; (4) core TRRs of the sense/
antisense gene pair PSCDH and SROS5 of Arabidopsis thal-
iana; and (5) core TRRs in non-coding human DNA
sequences.

Building the HSL model using S. cerevisiae sequences

The HSL model was applied to the identification of core
TRRs of S. cerevisiae. The model was trained using 2961
putative core TRR sample sequences (positive samples)
extracted from the regions (-500, +100) of these genes on
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chromosomes I-XII. Their initial ATG codon was used as
the origin for two reasons. The open reading frame (ORF)
is well annotated in the Saccharomyces Genome Database
(SGD), and the initial ATG codon of yeast genes has also
been used to evaluate signals such as histone modification
and nucleosome positions [20,21]. In contrast, S. cerevi-
siae coding DNA sequences (CDSs) and random DNA
sequences (RDSs) were used as the negative samples. A
primary dictionary of 534 k-tuples (k = 6), over-repre-
sented in the positive samples and under-represented in
both CDSs and RDSs, was constructed with a likelihood
ratio score for each k-tuple. Similarly, a second level dic-
tionary of 3070 pairs of k-tuples from the primary diction-
ary was further constructed. Since we used both CDSs and
RDSs as negative samples, we hypothesized that the dic-
tionary should be able to distinguish TRR sample
sequences from both CDSs and RDSs. For a given DNA
sequence, a score based on the tuple-pair (second level)
dictionary was given for each window of L base pairs
along the sequence to indicate the likelihood of core TRR,
where L can be chosen based on the required resolution,
and we used L = 300 in this study. A threshold can be
given to distinguish the core TRRs from non-core TRRs.
Table 1 shows the top 100 (3.26%) high-scored tuple-
pairs from the 3070 pairs. From Table 1, we can see that
most of the top-scored tuple-pairs contain the TATA box-
like motifs. We can also see some poly-T "TTTTTT" and
poly-A "AAAAAA" words in the selected pairs. It is inter-
esting to observe that poly-T and poly-A words are also
over-represented in human promoter within the top 3
ranks [22]. Other motifs, such as CAAT box-like motifs,
can also be found in the tuple-pair dictionary (out of the
top 100 ranks; not shown in Table 1).

Genomic analysis of core TRRs in S. cerevisiae

We studied the distribution of TRR scores of verified genes
in yeast. A total of 1317 genes on chromosomes XIII-XVI
with annotation "Verified" and ORF regions of more than
400 bp were selected from S. cerevisiae. We aligned these
1317 sequences using their initial ATG codon as origin
and calculated the average TRR scores for each aligned
position. The results are shown in Figure 1A. The average
scores peak in the region around -180 and decrease
sharply in the downstream of ATG codon (blue curve in
Figure 1A). Similar results were achieved for genes from
training samples on chromosomes I-XI (red curve in Fig-
ure 1A). It is well known that promoters tend to be located
in nucleosome-free regions, and a recent study [20]
showed that the region around -180 has the lowest aver-
age nucleosome-occupancy signal. This result is consistent
with our finding that the region around -180 is enriched
for TRRs. In addition, the standard deviation of TRR scores
generally increases with the mean TRR score (Figure 1A),
possibly resulting in a different TRR score curve for indi-
vidual genes.
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Table I: Top 100 high-scored tuple-pairs from tuple-pair dictionary.
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1-21

2141

41-60

61-80

81-100

TATATA-TTTTTT

TATATA-TTTTTC

TATATA-GTTTTT

TATATA-TTTCCT

ATATAA-CTTTTT

CATATA-TTTTTT

CATATA-CTTTTT

TATATA-AGTTTT

CTTTTC-TTTTTT

TCTTTT-CTTTTT

TATATA-ATATAT

TATATA-TATTTT

GTATAT-CTTTTT

CCCTTT-TTTTTT

ATATAA-TTTTCT

TATATA-TTTCTT

TATATA-ATTTTT

TATATA-TTGTTT

TTTTTC-CTTTTT

TATATA-AAAAAG

TATATA-TTTTTA TATATA-AAAGTA ATATAC-TTTTTT ATATAC-CTTTTT TATATA-TTTGTT
TATATA-CTTTTT TATATA-ATATAC ATATAA-ATATAT TATATA-ATATTT CATATA-TCTTTT
CATATA-TATATA CTTTTT-TTTTTT TATATA-TGTTTT TTTCTT-TTTTTT TTCTTT-TTTTTT
ATATAA-TATATA CATATA-ATATAT CATATA-TTTTTC TATATA-ACTTTT ATATAA-TCTTTT

TATATA-TTTTCT

ATATAA-TTTTTT

ATATAA-TTTTTC

ATATAT-GTATAT

ACATAT-TTTTTT

TATATA-TCTTTT

AATAAA-TATATA

TCTTTT-TTTTTT

AAAATA-TATATA

TATATA-TTTTTG

TATATA-CTTTTC

TTTTTC-TTTTTT

TATATA-CATTTT

ATAAAA-TATATA

CATATA-TTTTCT

TATATA-TTCTTT

TATATA-TCCTTT

TATATA-TATTTC

TTTTTC-TTTTCT

CCTTTT-TTTTTT

TATATA-CCTTTT

TATATA-TTATTT

AAATAG-TTTTTT

TATATA-TAAAAG

CTTTCT-CTTTTT

TATATA-GTATAT

TTTTCT-TTTTTT

TTTCCT-TTTTTT

TTTTTC-ATATAT

TTTTCT-TTTCTT

TATATA-TTTTCC

TATATA-TTTTAT

ATATAA-GTATAT

CTTTCT-TTTTTT

TTTTTC-CCCTTT

TATATA-TTCCTT

TTTTCA-TATATA

TATATA-TTTATT

CCTTTT-CTTTTT

ATATAT-TTTTCT

AAATAA-TATATA

TATATA-TATTCT

TAAAAA-TATATA

TCTCTT-TTTTTT

CTTTTC-CTTTTT

TATATA-ACATAT

TATATA-TTCTTC

ATATAC-ATATAT

ATATAT-CTTTTT

TATATA-ATTGTT

TATATA-TATATT

ATATAT-TTTTTT

TATATA-ATTTTC

ATATAA-TTTCTT

GTATAT-TTTTTT

TATATA-TTTTGT

AAAAAA-TATATA

TATATA-ATTCTT

TTTTTC-TCTCTT

TTTTTC-AAATAG

Furthermore, we tested if the HSL model could distin-
guish TRR-containing regions from those not containing
TRRs. We chose the region (-500, +100) of the 1317 genes
as positive samples. We also generated the same number
of negative samples with the same length as the positive
samples by randomly sampling from gene regions on
chromosomes XIII-XVI. For each sequence, if the maxi-
mum of the TRR scores along either sense or antisense
strand is higher than a given threshold, the sequence is
predicated to contain core TRRs. The true positive (TP)
rate is taken as the percentage of predicated TRRs in posi-
tive samples, while the false positive (FP) rate is the per-
centage of predicated TRRs in the negative sample set. By
setting different thresholds, a receiver operating character-

istic (ROC) curve for our prediction model in yeast can be
obtained and is shown in Figure 1B. When FP is set at
20%, the TP rate for yeast is 82%. Further studies of the
relationship between TRR scores and gene transcriptional
rates suggested a reasonable threshold score of TRR
between 15 and 20 (see Additional file 1). Using a thresh-
old score of 20 for core TRRs, our algorithm predicted
1163 (88.3%) out of the 1317 genes with core TRRs in the
region (-500, +100) with FP rate of 33.9%. Among them,
1022 genes and 141 genes were detected on sense and
antisense strands, respectively.

It should be noted that Lee et al. generated 5,015 TSS
annotations for yeast genes with high-confidence [23]. We
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Figure |

Core TRRs analysis for yeast. (A) The average score of 1317 genes on chromosomes XIII-XV| with annotation "Verified"
and with ORF regions of more than 400 bp from S. cerevisiae for each position in (-500, +400) (blue curve). The red curve is
the same as the blue curve, but using genes on chromosomes I-XIl with annotation "Verified" and with ORF regions of more
than 400 bp from S. cerevisiae. The "0" in the x-axis indicates the initial ATG codon. The dashed curves are generated by plot-
ting the mean TRR score of each position * | standard deviations of each position. (B) ROC curves for HSL model in yeast.
The x-axis represents the false positive (FP) rate; the y-axis represents the true positive (TP) rate. (C) The same as (A) except
we aligned genes by their TSSs. The average score of genes on chromosomes XIII-XVI with annotation of TSSs from [23] (blue
curve). The red curve is the same as the blue curve, but using genes on chromosomes I-XII. The "0" in the x-axis indicates the
TSS. The dashed curves are generated by plotting the mean TRR score of each position * | standard deviations of each posi-
tion.
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aligned genes by their TSSs from [23] and plotted the
mean TRR score for each position (see Figure 1C). As Fig-
ure 1C shows, we found almost the same curves as seen in
Figure 1A, except that the peak of Figure 1C shifts to 0 of
the x-axis (the location of TSS), while for Figure 1A, the
peak locates around 180 bp upstream of ATG.

Core TRRs are conserved across eukaryote species

We next directly applied the HSL model trained by the
sample sequences of S. cerevisiae to predict core TRRs of
Drosophila melanogaster (fruit fly), Homo sapiens (human)
and Oryza sativa (rice), and the model achieved similar
accuracies.

We selected 1921 Drosophila melanogaster genes and 1844
Homo sapiens genes with experimentally verified TSSs from
the Eukaryotic Promoter Database (EPD) [24], since these
two are the only species for which over 1000 genes with
experimentally verified TSSs in the EPD have been accu-
mulated to date. In addition, the EPD database also con-
tains TSS annotations for 13,044 Oryza sativa genes, albeit
with less accuracy in the "Preliminary EPD entries" cate-
gory. These 13,044 Oryza sativa genes were also included
for the evaluation of the HSL model.

For each species, one set of positive sequence samples was
formed with the EPD default (-500, +100) regions of the
EPD genes (note that we used the TSS as their origin, not
the initial ATG codon, which was used for yeast), and two
sets of negative samples were constructed for separate
tests: (1) randomly chosen coding DNA sequences of the
same lengths as sequences in the positive sample and (2)
randomly permuted sequences of each sample in the pos-
itive set. In this paper, unless otherwise specified, the
sequences of negative samples are of the same length and
the same number as the sequences of the corresponding
positive samples.

Meanwhile, in order to evaluate the FP rates of HSL on
intergenic regions, we generated a different kind of nega-
tive sample known as random intergenic sequences by
Regulatory Sequence Analysis Tools (RSAT), a widely used
tool which can generate sequences based on nucleotide
composition of intergenic regions of each species [25,26].
Such randomly generated sequences were also used as
negative control in promoter identification [27]. We did
not use real intergenic regions as negative samples since
such regions are not well studied and contain a large
number of unknown TRRs [27,28]. However, for Oryza
sativa, we did not have such negative samples because
RSAT did not contain a trained rice-specific model.

Figure 2 shows the ROC curves of the HSL model in Dro-
sophila melanogaster, Homo sapiens and Oryza sativa. In the
case of the negative samples as protein coding DNA
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sequences, by fixing the FP rate at 20%, TP rates of Dro-
sophila melanogaster and Oryza sativa are 97% and 73%,
respectively; while, in the case of the negative samples as
permuted TRR sequences, TP rates of Drosophila mela-
nogaster and Oryza sativa are both around 78%. In the case
of negative set as random intergenic sequences, the TP rate
for Drosophila melanogaster is 54% when the FP rate is
20%.

However, TP rates of Homo sapiens in all 3 cases are below
50% with fixed FP at 20% (Figure 2B). The low human TP
rate on the region (-500,+100) may have resulted from the
complexity of human regulatory sequences and from the
fact that many core promoters may locate farther away
from the (-500, +100) regions of their corresponding
genes [29]. Thus, we further extended the sequences of
human positive samples to the upstream region; the cor-
responding sequences of negative samples were also gen-
erated with lengths equal to those in the positive sample
set. From Figure 2B, we can see that, by extending the
interrogating regions of samples, TP rates for human are
markedly increased. When the region is extended to
around (-1500,+100) and the FP rate is fixed at 20%, the
TP rates for human reached 80% for the permuted nega-
tive samples, 60% for the randomly generated intergenic
negative sample, but only 44% for the negative samples
generated based on protein coding DNA sequence. The
low TP rate in the case of protein coding DNA sequence as
negative sample may be explained as follows. Multi-pro-
moters and alternative splicing happen more frequently in
human, and some TRRs may also locate in the coding
areas. It has been shown that transcription not only starts
in 5' UTR and 3' UTR, but it can also start in exons [30].
Thus, negative samples of protein coding DNA sequence
may also contain TRRs, which could then result in overes-
timation of the FP. In addition, our studies were also
restricted to the EPD regions (-100,+100), which are usu-
ally conserved and regarded as the sites of core promoters
[9]. The results for human with biological implications
can be found in the Additional file 1.

Nevertheless, these observations demonstrate that the
basic elements of core TRRs are conserved across species
and that the HSL model based on yeast can be used to pre-
dict core TRRs across different species. The conclusion is
further supported by the successful application of the HSL
model (trained based on S. cerevisiae) to identify TRRs of
several genes in Homo sapiens, Arabidopsis thaliana, and
Oryza sativa L.

Core TRRs of the p53 gene

p53 is a vital transcription factor which regulates the
expression of genes involved in a variety of cellular func-
tions, such as apoptosis, cell cycle arrest, and DNA repair
[31]. At least 80 proteins have been identified to bind the
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ROC curves for HSL model in 3 testing species: (A) Drosophila melanogaster; (B) Homo sapiens; (C) Oryza sativa. The x-
axis represents the FP rate; the y-axis represents the TP rate.
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p53 gene, many of which can also influence its expression
[32]. It has also been shown that the p53 gene has two
promoters and can encode at least nine different p53 pro-
tein isoforms [33]. Transcription of the p53 gene can be
initiated from two distinct sites upstream of exon 1 and
from an internal promoter located in intron 4; intron 9 of
the p53 gene can be alternatively spliced to produce three
isoforms, including p53, p53-f and p53-y [33,34].

We applied the HSL model, trained from yeast, to predict
the core TRRs of the p53 gene and obtained the predicted
scores shown in Figure 3A. [Here we used a stringent
threshold, 20, which can achieve TP = 52.3%; FP = 26.7%
for negative sample of protein coding DNA sequence,
5.21% for permuted sequences, and 12% for randomly
generated intergenic sequences (Figure 2B)]. Comparing
our TRR result (Figure 3A) with the experimental results of
the p53 gene mentioned above, we can observe the fol-
lowing: (1) Two TRR signals ("P1" and "P2") are located
within the 3000 bp upstream region of exon 1 of the p53
gene, and they correspond to the two distinct transcrip-
tional initiation sites. (2) "P4" is the TRR signal located in
intron 4 of the p53 gene, and it corresponds to the alter-
native promoter of p53 located in intron 4. (3) In intron
9 of p53, we identify the two TRR signals "P5" and "P6",
and their regulatory functions need to be further studied.

The first intron of the p53 gene spans nearly 10 k bp with
multiple predicated TRRs, a finding which agrees with pre-
vious discoveries, indicating that the first introns of genes
in mammals tend to be longer than other introns and play
an important role in regulating gene expression (see [35]
for a recent summary). However, few concrete results have
been reported on the functions of this region. In our pre-
dictions, "P3" is the strongest core TRR signal and is con-
sistent with the recent available genomic landscape of
histone modifications in human T cells [36]. Histone H3
K9/K14 diacetylation (H3K9acK14ac) and H3 K4 trimeth-
ylation (H3K4me3) have been reported to be co-localized
with promoters and are associated with active genes
required for T cell function and development [36]. The
H3K9acK14ac and H3K4me3 signals of the p53 gene in T
cells are located in intron 1 and co-localized with the pre-
dicted "P3". Other TRR signals in the first intron of p53
were further supported by chromatin modifications [37]
and other information (see Discussion and Additional
file 1). In summary, the signals in the first intron indicate
some important regulatory events in this region.

Core TRRs of genes regulated by p53

As a TF, p53 can target many other genes [38]. The genes
controlled by p53 are expected to contain core TRRs near
p53 binding loci to help p53 exert its functions. To test
this hypothesis, we selected all 542 potential p53 binding
loci (with median length of 1122 bp) in the human
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HCT116 cell line detected by ChIP-PET assay [39]. Out of
these 542 loci, 392 (72.3%) had a significant core TRR sig-
nal (with a score of at least 20). Meanwhile, we also used
3 negative sample sets as negative controls: (1) equal
number of protein coding DNA sequences of the same
length as the identified p53 binding loci; (2) permuted
sequences of p53 binding loci and (3) randomly gener-
ated human intergenic sequences by RSAT. We found that
FP rates were 28.7%, 22.3% and 10.5%, respectively.

We provide an example using the p53 target gene
CDKN1A, which has been well characterized. Two p53
binding loci (indicated by the green horizon bars in Figure
4) were identified by ChIP-PET assay within the 12 k bp
upstream region of CDKN1A [39]. The two binding sites
located around the 11,447 bp and 2,600 bp upstream
regions of the CDKN1A TSS are indicated by the red
arrows (Figure 4). In addition, a ChIP-PCR assay con-
firmed the two binding sites with p53 binding activity,
and the locus in the 2,600 bp upstream region of
CDKN1A showed stronger binding ability than the one
around 11,447 bp [39]. We applied the HSL model to ana-
lyze the CDKN1A gene, and the core TRR scores are also
shown in Figure 4. Two strong core TRR signals around
the p53 binding loci were identified and showed consist-
ent results with the experiments: one around 2200 bp and
another around 11,447 bp upstream of the TSS of
CDKN1A, the latter having a slightly lower core TRR score.

We also applied the HSL model to two other well-known
p53 binding genes (S100A2 and PLK2) with known bind-
ing sites [39]. Both examples showed that the p53 binding
sites are located adjacent to or within the predicated core
TRR regions. Furthermore, the experimentally verified
TFBSs of p53 on S100A2 and PLK2 are located more than
2000 bp upstream of the TSSs. This again suggests that the
functional core TRR may locate far away from its TSSs. It
is also interesting to note that about 80% putative p53
binding sites identified by the p53MH algorithm [40]
(with their threshold score of 80) in these binding loci are
located adjacent to (less than 500 bp) or within our pred-
icated core TRR regions. The complete results of 542 p53
binding loci can be downloaded from http://bio
info.math.pku.edu.cn/TRR.

TRR prediction for the rice OsALYLI gene and
experimental validations

ALWAYS EARLY/LIN-9 homologous genes have been
shown to play essential roles in the cell cycles of many
species, such as Caenorhabditis elegans (nematode), Dro-
sophila melanogaster and Homo sapiens [41-43]. We recently
identified an ALWAYS EARLY/LIN-9 homologous gene in
Oryza sativa, which was named OsALYL1 (Oryza sativa
ALWAYS EARLYLIKET; in preparation for publication). To
analyze the regulation of OsALYL1, we first applied the
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Core TRRs analysis of the p53 gene in human. (A) HSL model result of the p53 gene using tuple-pair dictionary. The x-
axis represents the genomic positions of the p53 gene, and the y-axis represents the core TRR scores from the HSL model
using tuple-pair dictionary from S. cerevisiae. "P1" to "P6" indicate the 6 TRR regions supported in the literature [33,34,36]. (B)
HSL model result of the p53 gene using single tuple dictionary (534 k-tuples from S. cerevisiae).
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p53 binding loci by ChIP-PET assay are indicated by the green horizontal bars; the two p53 binding sites by ChIP-PCR assay are
indicated by the red arrows [39].

HSL model to the OsALYL1 sequence with threshold 20  found a core TRR signal in the immediate upstream of the
(in rice, TP = 60.3%, FP = 9.29% for DNA protein coding  TSS of OsALYL1 (Figure 5A). Meanwhile, it is interesting
negative sample and 6.19% for permuted sequences) and
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to notice that a stronger core TRR signal was also observed
in intron 11 of OsALYLI.

To experimentally confirm the predictions, the 5'-
upstream putative TRR region, which occupies an area
~1.2 kb upstream of the coding region, and the full length
of intron 11 were first fused to the GUS reporter gene and
were then cloned into binary vector pPCAMBIA1303 (Fig-
ure 5B). The constructed vectors were introduced into rice
respectively to obtain transgenic rice plants (TO genera-
tion). The histochemical assay for GUS activities in the
transgenic plants showed that both sequences possess
promoter activities (Figure 5B). This finding demonstrates
that the predicted sequences possess putative promoter
activities in both the upstream of the coding region and
intron 11. For details of the experiments, see the Methods
section. This result also shows that the promoter of a gene
can be located in introns. This is consistent with our pre-
vious findings, indicating that the promoter of the CKSFL
gene in human is in the intron of its upstream gene [44].

Core TRR and the initiation of microRNA formation
MicroRNAs are a class of short RNA sequences that play
important roles in post-transcriptional gene regulation in
complex organisms such as plants and animals. Studies
have indicated that microRNA genes possess the same
type of promoters as protein-coding genes [19,45,46]. To
obtain a more general understanding of the relationship
between core TRRs and the regulation of microRNAs, we
analyzed upstream sequences from TSSs of 52 microRNAs
identified in Arabidopsis via 5'-RACE [19] (the largest
dataset of experimentally verified TRRs of microRNAs for
a single species to date) by our HSL model. We obtained
the 52 microRNA promoter sequences (with lengths rang-
ing from 2 to 800 bp) from http://www.diana.pcbi
.upenn.edu/Supplementary/AthMirnaTFBS. html[45].
Two promoter sequences less than 400 bp in length were
discarded. Forty (80%) out of 50 microRNA upstream
regions contain significant HSL scores above 40, and the
minimum score was above 20 (Figure 6). After permuta-
tion of the 50 promoter sequences, 45 (90%) had scores
above 20, while only 13 (26%) of the permutated
sequences had scores above 40. For 2000 randomly gener-
ated intergenic sequences by RSAT, 94.5% had a score
above 20, while only 22.4% had a score above 40. These
results indicate that a high threshold is needed for micro-
RNAs of Arabidopsis. Meanwhile, for protein coding DNA
sequences of Arabidopsis having the same length as the
microRNA promoter sequences, only 15% had a score
above 20. This result shows that the upstream regions of
the microRNAs are equipped with functional TRRs for the
formations of microRNAs. Such result is consistent with
previous findings [19,27,45,46].
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Core TRRs analysis of microRNAs in Arabidopsis thal-
iana. The HSL model was applied to these 50 microRNAs'
800 bp upstream regions (some are less then 800 bp), and
the histogram shows the maximum scores of TRR by HSL in
the 800 bp regions of each microRNA.

Core TRR analysis of cis-senselantisense pairs

Eukaryotic genomes contain many overlapping pairs of
oppositely transcribed genes known as cis-sense/antisense
pairs [47]. Over 20% of human transcripts are indicated as
cis-sense/antisense pairs [48]. The proportions of cis-
sense/antisense pairs in model plants, such as Oryza sativa
L. and Arabidopsis thaliana, are similar to those in human
[49,50]. The function and underlying mechanisms of cis-
sense/antisense pairs are still unclear, except that these
pairs tend to be coexpressed [51]. It is therefore natural to
hypothesize that there would be a pair of promoters
located in the 5' ends of the genes in the cis-sense/anti-
sense pairs and that the promoter pairs may control the
genes to coexpress [51].

As an example, we considered the experimentally verified
cis-sense/antisense pair PSCDH and SROS5 in Arabidopsis
thaliana [5]. Both of them are essential for the derivation
of endogenous siRNAs [5]. The HSL model was applied to
scan both P5CDH and SRO5 strands in their regions, and
the results are shown in Figure 7. Two significant core TRR
signals were predicted by the HSL model, and these are
located at immediate upstream of the 5' end of both
P5CDH and SRO5. These two signals correspond to the
two core promoters of P5SCDH and SROS5 genes.
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Core TRRs analysis of cis-sense/antisense pair PSCDH and SRO in Arabidopsis thaliana. The x-axis represents the
genomic positions of the PSCDH and SRO pair, and the y-axis represents the core TRR scores from the HSL model using
tuple-pair dictionary from S. cerevisiae. The location of 24nt-SRO5-P5CDH siRNA on the DNA sequence is illustrated by the
black vertical line.

It has been shown that the overlapping transcripts of  (mainly in 3' UTR) of both genes. Our algorithm pre-
P5CDH and SRO5 in an antisense orientation form dou-  dicted a core TRR signal within the overlapping region
ble-stranded RNA (dsRNA) that could further generate = with maximum TRR scores around 35. The formed siRNA
both 24-nt and 21-nt short interfering RNAs [5]. The over-  is adjacent to this core TRR region. The 24nt-SRO5-
lapping regions of P5CDH and SRO5 are in the last exons ~ P5CDH siRNA is produced via a biogenesis pathway
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requiring DCL2, RDR6, SGS3 and NRPD1A with the
induction of SROS5 by salt stress. The 24nt-SRO5-P5CDH
siRNA may be formed with the help of the nearby core
TRR we predicted. Such results can help us to further
understand the structure of cis-sense/antisense pairs since
the overlapped sequences may have essential regulatory
functions.

Examining the regulatory role of human non-coding DNA

regions

An increasing number of non-coding DNA regions
(including intergenic regions and introns), previously
regarded as "junks", have been shown to be apparently
functional [52,53]. Although protein coding sequences
are only ~1.2% of human genome, it was indicated that at
least one-third of the human genome is represented by
regulatory sequences for transcript expression [53]. To
gain insight into the functions of the non-coding regions,
we first studied the TRRs of ncRNAs, most of which are
widespread in the non-coding DNA region. We predicated
core TRRs on 685 human microRNAs from miRBase [54]
(only a small part of them are located in ENCODE regions
since they are from the whole human genome) and 6587
putative ncRNAs in ENCODE regions [55]. We took a
region 800 bp upstream of each end of the ncRNAs as can-
didate regulatory regions. (Most ncRNAs are derived from
the hairpin precursors; hence, both ends of the ncRNAs
may be functional [54]). For each ncRNA, if either candi-
date regulatory region from one end has a TRR score
above a given threshold, then the ncRNA is predicated to
have putative TRRs. By applying this rule with a threshold
of 20, we found that 63.6% of 685 human microRNAs
from miRBase and 63.2% of 6587 putative ncRNAs from
ENCODE regions had putative TRRs in their candidate
regulatory regions. These results are greater than the corre-
sponding percentage (52.3%) in the (-1500, +100)
regions of human EPD genes (see subsection "Core TRRs
of the p53 gene" above). We also found that the HSL
scores of TRRs for non-coding RNAs tend to be higher
than scores for protein coding genes (data not shown),
which therefore indicates that TRRs of ncRNAs are more
conserved than TRRs of protein coding sequences. This
finding is consistent with recent observations that
upstream sequences of ncRNAs are more conserved than
those of protein-coding genes among mammals [56,57].

We scanned the ENCODE human genome nucleotide
regions by HSL and predicted putative TRRs with a thresh-
old 20. There are a total of 44 ENCODE regions, and for
all the 44 ENCODE regions [4], the percentages of predi-
cated putative TRR regions vary from 6.2% to 50.8%, with
mean 24.7% and standard deviation 12.0%. A total of
22,221 TRRs was predicated in ENCODE regions, and
these data are summarized in Additional file 2. Consider-
ing that over 10,000-20,000 ncRNAs have been predi-
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cated in ENCODE regions (this number is still not
completed) [55,58], we postulate that most of our pre-
dicted TRRs in the non-coding regions may play essential
roles in the regulation of ncRNAs.

Discussion

Genomic annotations of core promoters (~80-100 bp
surrounding the TSSs) are of great importance to the
understanding of transcriptional regulation, and numer-
ous methods have been developed to identify core pro-
moters [9,59-61]. High throughput technologies through
expressed  sequence tag cDNA/ETS/mRNA/CAGE
sequences have been developed that can identify TSSs
with high accuracy [30,62,63]. Recent computational
methods, such as EP3, which utilizes DNA structure fea-
tures (e.g., GC content and chemo-physical properties of
DNA) [28], and CoreBoost_HM, which integrates histone
modification information [64], have been implemented
and have achieved great improvements. However, few
methods have been developed to identify functional reg-
ulatory DNA regions genome wide. For example, the EPD
database, one of the main promoter databases, does not
provide the real functional regulatory regions (TRRs, as we
have termed them here), but rather self-setting regions
around these experimentally verified TSSs [24,65]. In this
study, we found that many functional regulatory regions
are located far away from the TSSs or in the intron of
genes. This finding is consistent with the observations by
others [29,44]. Hence, our HSL model may serve as an
additional tool to supplement such computational meth-
ods as EP3 [28] and CoreBoost_HM [64] for genomic
annotations of potential DNA regulatory regions.

The fact that the number of experimentally verified sam-
ples of TRRs is limited makes statistical analysis of TRRs
difficult. For this reason, core promoters have been widely
studied, and the regions surrounding them may be good
candidates for TRRs. However, for genomes of higher
eukaryotes, core TRRs are often located in very long inter-
genic regions or even unknown regions. Moreover, higher
eukaryotic genes may frequently be regulated from multi-
ple alternative promoters. For these reasons, we chose the
S. cerevisiae genome as the model system in our study
because it contains relatively short intergenic regions
(median length shorter than 400 bp) and a small number
of introns [66]. Hence, the intergenic regions in yeast are
mostly regulatory regions and can be easily used as a
proxy for the sample of TRRs [1].

The concept of core TRR, which we defined earlier, is the
foundation of the studies conducted in this paper. Core
TRR is similar to cis-regulatory module (CRM) in that
both characterize functional regions by a cluster of regula-
tory elements. The main difference is that CRM is charac-
terized by a module consisting of function/gene-specific
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elements, while the core TRR is a cluster consisting of the
common and conserved parts of TRRs. In order to identify
CRMs, this difference leads to the need for algorithms to
obtain information for sets of co-regulated genes. In con-
trast, our HSL model requires no such a priori informa-
tion to elucidate the specific function of genes with
reasonably high accuracy. Among the many reasons for
this is the fact that TRRs are generally shared by many
genes. Therefore, there is no need to pre-select sets of co-
regulated genes. In addition, core TRRs are conserved, not
only among genes in closely related species, but also
across species. We showed that the vocabulary and scoring
system of HSL, trained based on sequences of S. cerevisiae,
can be applied to other organisms, such as Drosophila, rice
or human, with reasonable accuracy.

Once core TRRs, the conserved parts of TRRs, are
obtained, their surrounding regions may be considered
candidates of the TRRs. Thus, we can conduct further
research to study gene-specific and/or organism-specific
regulatory elements around TRRs. For example, p53
binding sites for the genes regulated by the p53 genes are
usually located around TRRs and thus cooperate with
other elements in the TRR region to exert their functions.
Since single TFs cannot function alone, but often func-
tion through cooperation with other elements in the
TRR, it is worth noting that TRR information can help us
eliminate nonsense matches of binding sites in genomic
searching.

The HSL model proposed for the identification of TRRs in
this study differs from existing approaches in several ways.
Unlike most probability models which assume certain
models of the underlying sequence, e.g., certain Markov
properties, HSL takes the approach of a simple scoring sys-
tem based on word counting for each layer and excludes
most vocabularies that do not appear frequently in the
sample sequences. If the number of samples is sufficient,
more layers of the HSL model can be added one by one
until the model reaches a high enough accuracy for the
identification of TRRs. For example, the HSL model using
a single tuple dictionary performed poorly everywhere in
the region in predicting core TRRs of the p53 gene in
human, as shown in Figure 3B. In contrast, the HSL model
using tuple-pair dictionary (second layer) identified 10
significant signals with scores higher than 20, as shown in
Figure 3A. Among them, six are consistent with current
biological understanding. Another advantage of the HSL
model is that the computational program is fast and easy
to implement.

Although the HSL model provides a useful tool to predict
potential core TRRs based only on DNA sequence infor-
mation, it may still yield high FP rates, especially for com-
plex organisms, such as Homo sapiens. The available high
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throughput epigenetic information showed that func-
tional TRRs are associated with a number of chromatin
modification signals [21,36,37]. The information from
high throughput assays on chromatin modifications and
protein binding was used as evidence to support the pred-
icated potential TRRs in ENCODE regions [67]. Histone
modification has also been utilized, which has greatly
improved the performance of TSS identification [64]. In
this study, this kind of information was used to support
TRRs predicted in the p53 gene and p53 target genes. As
additional examples, the TRR signals in the first intron of
the p53 gene and TRRs in both the upstream and inside
regions of the CDKN1A gene were further supported by
chromatin modifications [37] and other information (see
Additional file 1). The intricate mechanisms between
TRRs and chromatin modifications should be the subject
of future studies.

Since the non-coding DNA sequences are mostly tran-
scribed and remain to be annotated, it is difficult to obtain
real "non-TRR" regions to estimate the false positive rate
of HSL in the non-coding regions. It may be even harder
to obtain real "non-TRR" regions than to verify TRR
regions since many TRRs only function at specific condi-
tions. Even the use of randomly generated intergenic
regions by RSAT to obtain "non-TRR" regions may not
achieve satisfactory results. This was observed in our study
of human that had relatively high false positive rates (Fig-
ure 2B). A possible explanation for this result may lie in
the heterogeneity of human sequences (mixtures of GC-
rich and GC-poor regions), as well as the inability of RSAT
to generate accurate human intergenic sequences. Similar
problems with evaluations of motif-finding methods were
also observed when using random sequences by RSAT (see
http://rsat.ulb.ac.be/rsat/warnings.html). Meanwhile, our
results of p53 gene indicate that the false positive rate of
our method is not high since most predictions in p53
genes are supported by biological evidence.

Recent studies showed that more than 93% of
ENCODE-analyzed human genome nucleotides are
transcribed in different cells [4]. In addition, the
genomes of all eukaryotes studied are almost entirely
transcribed, generating an enormous number of non-
protein-coding RNAs (ncRNAs), many of which play a
major role in regulation [3,4,68]. These ncRNAs are
transcribed separately by their own promoters (TRRs),
and they are regulated by regions with core parts similar
to those core TRRs for protein-coding transcripts
[19,45,46,69-71]. Thus, it is not surprising to find that
the core TRR regions can be located pervasively in the
genomes [72]. Meanwhile, for human, a number of sta-
tistical analyses have already revealed that non-coding
sequences (randomly selected sequences) are hierarchi-
cally organized and convey more biological informa-
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tion than protein-coding sequences [73,74]. Our results
indicated that TRRs are located pervasively in the
genomes, and most TRRs might be responsible for the
regulation of ncRNAs; the TRRs of ncRNAs are more
conserved than those of protein coding genes.

Conclusion

Evidence shows that genomes of eukaryotes are almost
entirely transcribed, generating a large number of protein
coding genes and an enormous number of ncRNAs. To
reveal the underlying regulatory mechanisms of these
transcripts, we proposed the concept of core TRR which
refers to a DNA region that contains a cluster of conserved
regulatory elements commonly occurring in the majority
of regulatory sequences that are essential for the expres-
sion of transcripts. We then constructed a hierarchical sto-
chastic language (HSL) model for TRRs in yeast based on
regulatory cooperation among core TRR elements. We
found that the HSL model trained based on yeast achieved
comparable accuracy in predicting TRRs in other species,
thus demonstrating the conservation of TRRs across spe-
cies. Examples such as p53 or OsALYLI, as well as the
microRNAs, indicate that the identified core TRRs by HSL
are highly accurate across species and can serve as proper
candidates for the further scrutiny of specific regulatory
elements and mechanisms. Our results also showed that
core TRRs of protein coding genes and ncRNAs are located
pervasively in the genomes and similar in structure, while
the latter are more conserved than the former.

Methods

DNA sequence preparations

A total of 2,961 sequences extracted from the region (-
500, +100) of 2,961 genes (with verified open reading
frame (ORF)) located on chromosomes I-XII of S. cerevi-
siae were set as the putative TRR dataset for our algorithm.
Ten yeast-coding DNA sequence (CDS) datasets with
10,000 sequences 601 bp in length were randomly sam-
pled from the yeast-coding DNA sequences. Ten random
DNA sequence (RDS) datasets with 10,000 sequences 601
bp in length were generated by independent and identical
distribution with the same nucleotide frequencies as the
yeast genomic sequences. All the S. cerevisiae DNA
sequences and gene features of ORF were downloaded
from the Saccharomyces Genome Database (SGD) (http:/
/www.yeastgenome.org/, version: Dec 2005). The 5,015
TSS annotations for yeast genes were from Lee et al. [23].

The putative promoter sequences (annotated TSSs) of
1921 Drosophila melanogaster, 1844 Homo sapiens genes
and 13,044 Oryza sativa genes were downloaded from the
Eukaryotic Promoter Database (EPD) [24]. The protein
coding DNA sequences of Drosophila melanogaster were
retrieved from the Ensemble database http://
www.ensembl.org/ by BIOMART; the protein coding DNA
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sequences of Homo sapiens were downloaded from the
CCDS database at the NCBI (version: Hs35.1, ftp://
ftp.ncbi.nlm.nih.gov/pub/CCDS/); and protein coding
DNA sequences of Oryza sativa were downloaded from the
TIGR Rice Genome Annotation database http://rice.plant

biology.msu.edu/.

The human p53 gene sequence was downloaded from the
UCSC Genome Browser with identification number hg17.
The annotation of p53 binding loci was from [39], and
the corresponding sequences were also retrieved from the
UCSC Genome Browser.

The annotation of 685 human microRNAs was from miR-

Base http://microrna.sanger.ac.uk[54] (version 11.0), and
the annotation of 6587 putative ncRNAs in ENCODE

regions was from http://genome.ku.dk/resources/
cmf encode[55]. The corresponding sequences were
retrieved from the UCSC Genome Browser with identifi-
cation number hg18.

The protein coding DNA sequences of Arabidopsis thaliana
were downloaded from the TAIR database http://
www.arabidopsis.org/. The promoter sequences of 50
microRNAs of Arabidopsis were downloaded from
http:www.diana.pcbi.upenn.edu/Supplementa
AthMirnaT FBS.html.

The random intergenic sequences of Drosophila mela-
nogaster, Homo sapiens and Arabidopsis thaliana were gener-
ated by Regulatory Sequence Analysis Tools (RSAT) http:/

/rsat.ulb.ac.be/rsat.

The HSL model Algorithm

The HSL algorithm consists of three steps. First, the k-
tuples (k = 6) that are over-represented in the putative TRR
dataset, while under-represented in both the CDS datasets
and the RDS datasets, are selected as the single-tuple dic-
tionary (SD). For each k-tuple W, we count its occurrences
on putative TRR dataset N(W). We approximate their
occurrences on the coding DNA sequence (or random

DNA sequence) by the normal distribution N(N w),
V (W)), and the z-score [75] is given by

N(W)_N(W) , (1)
VV(w)

where N (W) and V (W) can be estimated from the CDS
datasets (or RDS datasets). A k-tuple is kept in the SD dic-
tionary if its p-value is less then 0.05.

Z(W) =

Second, we consider cooperation between the k-tuples
in SD, which are grouped into pairs. The pairs that are
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over-represented in the putative TRR dataset, while
under-represented in the CDS datasets and the RDS
datasets, are selected as tuple-pair dictionary (PD) by
the same procedures as those for single k-tuple. For
each pair P; (i stands for the ith pair in the PD), a score
is defined as

Prob(P; | TRR) )

P)=1
() Og(Prob(P,.|CDS)

(2)
Third, for a given sequence, we scan the sequence using
windows of width L. For each position k on the given
sequence, a score is given by

N
T(k)= Y s(P)-1 Ll ®) 3

(p;ewindow[k——,k+—])
2 2

as its core TRR score. N is the number of pairs in PD, and
1 is an indicator function. A region on the given sequence
having a high score indicates that this region is rich in
motif pairs and has a high probability of being a core TRR.
A suitable threshold is suggested in the Results section.

P53 binding loci analysis

The p53MH program was downloaded from http://link
age.rockefeller.edu/p53/. For each input sequence, the
p53MH algorithm would give the top 3 highest scoring
binding sites. We set a loose threshold score of 80 [40] in
order to include more potential binding sites. A p53 bind-
ing locus with a predicted score greater than 80 was con-
sidered to contain a potential binding site in the binding
locus.

GUS activity under the control of the OsALYLI predicted
core promoter regions

According to the results of TRR prediction (Figure 5A), the
OsALYL1 (AK064472) 5'-upstream putative promoter
region, which contains ~1.2 kb upstream of the coding
region, and the full length of its intron 11 were fused to
the GUS reporter gene with the nopaline synthase termi-
nator and then cloned into the binary vector
pCAMBIA1303, respectively. In this paper, the construc-
tions were named as pALYL1::GUS and pIntron11::GUS,
respectively (Figure 5B). The constructions were intro-
duced into rice variety Taipei309 (Oryza sativa L. cv.
TP309), respectively, to generate transgenic lines. Proce-
dures for rice tissue culture and transformation with Agro-
bacterium tumefaciens were as described in [76].
Histochemical assay for GUS activity in transgenic plants
(TO generation) was performed as described in [77].

HSL web interface
A web interface for our HSL model is available from http:/

/bioinfo.math.pku.edu.cn/TRR.

http://www.biomedcentral.com/1471-2164/9/623

Abbreviations

CDS: coding DNA sequence; CRM: cis-regulatory module;
HSL: hierarchical stochastic language model; ncRNA:
non-protein-coding RNAs; PD: tuple-pair dictionary;
RDS: random DNA sequence; SD: single-tuple dictionary;
TF: transcriptional factor; TFBS: transcriptional factor
binding site; TRR: transcriptional regulation region; TSS:
transcriptional starting site.

Authors' contributions

MQ and MD initiated the study. LW conducted the com-
putational analysis and implemented the algorithm. WF,
MD, FS and MQ helped with the computational design
and algorithm development. LW, WF, MD, FS and MQ
wrote the manuscript. DL contributed to some biological
implications of the results. Biological experiments were
conducted by DL, DZ, XL and LZ. All the authors read and
approved the final manuscript.

Additional material

Additional file 1

Supplementary Text. Comparison results of TRR with gene transcrip-
tional rates in S. cerevisiae and core promoter regions for human; biolog-
ical evidence for identified TRRs of the p53 gene and the CDKN1A gene.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-623-S1.doc]

Additional file 2

TRRs in ENCODE regions. Predicated TRRs by HSL in ENCODE
regions.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-623-S2 xls]

Acknowledgements

This work is supported by the National Natural Science Foundation of
China (No. 30570425, No. 10721403), the National High Technology
Research and Development of China (No. 2006AA02Z331, No.
2008AA02Z306), the National Key Basic Research Project of China (No.
2003CB715903), and the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry. FS is supported by
the NIH/NSF Joint Mathematical Biology Initiative grant DMS-0241 102
(USA). We thank Mr. David Martin for editorial assistance.

References

1. Walhout AJ: Unraveling transcription regulatory networks by
protein-DNA and protein-protein interaction mapping.
Genome Res 2006, 16(12):1445-1454.

2. Stormo GD: DNA binding sites: representation and discovery.
Bioinformatics 2000, 16(1):16-23.

3. Kapranov P, Willingham AT, Gingeras TR: Genome-wide tran-
scription and the implications for genomic organization. Nat
Rev Genet 2007, 8(6):413-423.

4.  Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR,
Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al.:
Identification and analysis of functional elements in 1% of the

Page 17 of 19

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-9-623-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-623-S2.xls
http://linkage.rockefeller.edu/p53/
http://linkage.rockefeller.edu/p53/
http://bioinfo.math.pku.edu.cn/TRR
http://bioinfo.math.pku.edu.cn/TRR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10812473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17486121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17486121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346

BMC Genomics 2008, 9:623

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

human genome by the ENCODE pilot project. Nature 2007,
447(7146):799-816.

Borsani O, Zhu }, Verslues PE, Sunkar R, Zhu JK: Endogenous siR-
NAs derived from a pair of natural cis-antisense transcripts
regulate salt tolerance in Arabidopsis. Cell 2005,
123(7):1279-1291.

Wasserman WW, Fickett JW: Identification of regulatory
regions which confer muscle-specific gene expression. | Mol
Biol 1998, 278(1):167-181.

Woagner A: A computational genomics approach to the iden-
tification of gene networks. Nucleic Acids Res 1997,
25(18):3594-3604.

Orphanides G, Lagrange T, Reinberg D: The general transcription
factors of RNA polymerase Il. Genes & development 1996,
10(21):2657-2683.

Zhang MQ: Computational analyses of eukaryotic promoters.
BMC bioinformatics 2007, 8(Suppl 6):S3.

Orphanides G, Lagrange T, Reinberg D: The general transcription
factors of RNA polymerase Il Genes Dev 1996,
10(21):2657-2683.

Gupta M, Liu JS: De novo cis-regulatory module elicitation for
eukaryotic genomes. Proc Natl Acad Sci USA 2005,
102(20):7079-7084.

Zhou Q, Wong WH: CisModule: de novo discovery of cis-regu-
latory modules by hierarchical mixture modeling. Proc Nat/
Acad Sci USA 2004, 101(33):12114-12119.

Thompson W, Palumbo M), Wasserman WW, Liu JS, Lawrence CE:
Decoding human regulatory circuits. Genome Res 2004,
14:1967-1974.

Sinha S, van Nimwegen E, Siggia ED: A probabilistic method to
detect regulatory modules. Bioinformatics 2003, 19(Suppl
1):1292-301.

Frith MC, Hansen U, Weng Z: Detection of cis-element clusters
in higher eukaryotic DNA. Bioinformatics 2001, 17(10):878-889.
Smith AD, Sumazin P, Zhang MQ: Tissue-specific regulatory ele-
ments in mammalian promoters. Mol Syst Biol 2007, 3:73.

Ji H, Wong WH: Computational biology: toward deciphering
gene regulatory information in mammalian genomes. Bio-
metrics 2006, 62(3):645-663.

Ma XT, Qian MP, Tang HX: Predicting polymerase Il core pro-
moters by cooperating transcription factor binding sites in
eukaryotic genes. Acta Biochim Biophys Sin (Shanghai) 2004,
36(4):250-258.

Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC:
Expression of Arabidopsis MIRNA genes. Plant Physiol 2005,
138(4):2145-2154.

Yuan GG, Liu |S: Genomic sequence is highly predictive of local
nucleosome depletion. PLoS Comput Biol 2008, 4(1):el3.
Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI,
Bell GW, Walker K, Rolfe PA, Herbolsheimer E, et al.: Genome-
wide map of nucleosome acetylation and methylation in
yeast. Cell 2005, 122(4):517-527.

Marino-Ramirez L, Spouge JL, Kanga GC, Landsman D: Statistical
analysis of over-represented words in human promoter
sequences. Nucleic Acids Res 2004, 32(3):949-958.

Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C:
A high-resolution atlas of nucleosome occupancy in yeast.
Nat Genet 2007, 39(10):1235-1244.

Schmid CD, Perier R, Praz V, Bucher P: EPD in its twentieth year:
towards complete promoter coverage of selected model
organisms. Nucleic Acids Res 2006:D82-85.

van Helden J: Regulatory sequence analysis tools. Nucleic Acids
Res 2003, 31(13):3593-3596.

Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov
AV, Frith MC, Fu Y, Kent W], et al.: Assessing computational
tools for the discovery of transcription factor binding sites.
Nat Biotechnol 2005, 23(1):137-144.

Zhou X, Ruan J, Wang G, Zhang W: Characterization and identi-
fication of microRNA core promoters in four model species.
PLoS Comput Biol 2007, 3(3):e37.

Abeel T, Saeys Y, Bonnet E, Rouze P, Peer Y Van de: Generic
eukaryotic core promoter prediction using structural fea-
tures of DNA. Genome Res 2008, 18(2):310-323.

Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu
Y, Green RD, Ren B: A high-resolution map of active promot-
ers in the human genome. Nature 2005, 436(7052):876-880.

31
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

http://www.biomedcentral.com/1471-2164/9/623

Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic
J, Semple CA, Taylor MS, Engstrom PG, Frith MC, et al.: Genome-
wide analysis of mammalian promoter architecture and evo-
lution. Nat Genet 2006, 38(6):626-635.

Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature
2000, 408(6810):307-310.

Braithwaite AW, Del Sal G, Lu X: Some p53-binding proteins
that can function as arbiters of life and death. Cell Death Differ
2006, 13(6):984-993.

Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodi-
mas DP, Saville MK, Lane DP: p53 isoforms can regulate p53
transcriptional activity. Genes &  development 2005,
19(18):2122-2137.

Murray-Zmijewski F, Lane DP, Bourdon JC: p53/p63/p73 isoforms:
an orchestra of isoforms to harmonise cell differentiation
and response to stress. Cell Death Differ 2006, 13(6):962-972.
Gazave E, Marques-Bonet T, Fernando O, Charlesworth B, Navarro
A: Patterns and rates of intron divergence between humans
and chimpanzees. Genome Biol 2007, 8(2):R21.

Roh TY, Cuddapah S, Cui K, Zhao K: The genomic landscape of
histone modifications in human T cells. Proc Natl Acad Sci USA
2006, 103(43):15782-15787.

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G,
Chepelev |, Zhao K: High-resolution profiling of histone meth-
ylations in the human genome. Cell 2007, 129(4):823-837.
Levine A), Hu W, Feng Z: The P53 pathway: what questions
remain to be explored? Cell Death Differ 2006, 13(6):1027-1036.
Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong
HC, FuY, Weng Z, et al.: A global map of p53 transcription-fac-
tor binding sites in the human genome. Cell 2006,
124(1):207-219.

Hoh |, Jin S, Parrado T, Edington J, Levine A}, Ott J: The p53MH
algorithm and its application in detecting p53-responsive
genes. Proc Natl Acad Sci USA 2002, 99(13):8467-8472.

Beitel GJ, Lambie EJ, Horvitz HR: The C. elegans gene lin-9, which
acts in an Rb-related pathway, is required for gonadal sheath
cell development and encodes a novel protein. Gene 2000,
254:1-2.

Bhatt AM, Zhang Q, Harris SA, White-Cooper H, Dickinson H: Gene
structure and molecular analysis of Arabidopsis thaliana
ALWAYS EARLY homologs. Gene 2004, 336(2):219-229.
Gagrica S, Hauser S, Kolfschoten |, Osterloh L, Agami R, Gaubatz S:
Inhibition of oncogenic transformation by mammalian Lin-9,
a pRB-associated protein. Embo | 2004, 23(23):4627-4638.

Xu M, Han W, Qian M, Ma X, Ding P, Wang Y, Xia D, Rui M, Wang
L, Zhang Y, et al.: Last intron of the chemokine-like factor gene
contains a putative promoter for the downstream CKLF
super family member | gene. Biochem Biophys Res Commun 2004,
313(1):135-141.

Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou
AG: MicroRNA promoter element discovery in Arabidopsis.
Rna 2006, 12(9):1612-1619.

Lee Y, Kim M, Han ], Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA
genes are transcribed by RNA polymerase Il. Embo | 2004,
23(20):4051-4060.

Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G:
In search of antisense. Trends in biochemical sciences 2004,
29(2):88-94.

Chen J, Sun M, Kent W/, Huang X, Xie H, Wang W, Zhou G, Shi RZ,
Rowley |D: Over 20% of human transcripts might form sense-
antisense pairs. Nucleic Acids Res 2004, 32(16):4812-4820.

Li L, Wang X, Xia M, Stolc V, Su N, Peng Z, Li S, Wang ], Wang X,
Deng XW: Tiling microarray analysis of rice chromosome 10
to identify the transcriptome and relate its expression to
chromosomal architecture. Genome Biol 2005, 6(6):R52.
Yamada K, Lim }, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM,
Wu HC, Kim C, Nguyen M, et al.: Empirical analysis of transcrip-
tional activity in the Arabidopsis genome. Science 2003,
302(5646):842-846.

Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura
M, Nishida H, Yap CC, Suzuki M, Kawai J, et al.: Antisense tran-
scription in the mammalian transcriptome. Science 2005,
309(5740):1564-1566.

Mattick JS: The human genome as an RNA machine. Scientist
2007, 21(10):61-63.

Page 18 of 19

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17571346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16377568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9571041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9571041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8946909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8946909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17903284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8946909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8946909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15466295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11673232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11673232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17224917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16984301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16984301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15253150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15253150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15253150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16040653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18225943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18225943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17873876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17873876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17352530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17352530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16645617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16645617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16645617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16575404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16575404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16131611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16131611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16601753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17043231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17043231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17512414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16557269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16557269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16413492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16413492
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15538385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15538385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15538385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14672709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14672709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14672709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16888323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15102435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15960804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141073

BMC Genomics 2008, 9:623

53.
54.
55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Levine M, Tjian R: Transcription regulation and animal diver-
sity. Nature 2003, 424(6945):147-151.

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase:
tools for microRNA genomics. Nucleic Acids Res 2008:D 154-158.
Torarinsson E, Yao Z, Wiklund ED, Bramsen ]B, Hansen C, Kjems |,
Tommerup N, Ruzzo WL, Gorodkin J: Comparative genomics
beyond sequence-based alignments: RNA structures in the
ENCODE regions. Genome Res 2008, 18(2):242-251.

Mahony S, Corcoran DL, Feingold E, Benos PV: Regulatory conser-
vation of protein coding and microRNA genes in verte-
brates: lessons from the opossum genome. Genome Biol 2007,
8(5):R84.

Carninci P, Kasukawa T, Katayama S, Gough ], Frith MC, Maeda N,
Oyama R, Ravasi T, Lenhard B, Wells C, et al.: The transcriptional
landscape of the mammalian genome. Science 2005,
309(5740):1559-1563.

Washietl S, Pedersen S, Korbel JO, Stocsits C, Gruber AR, Hacker-
muller J, Hertel ], Lindemeyer M, Reiche K, Tanzer A, et al.: Struc-
tured RNAs in the ENCODE selected regions of the human
genome. Genome Res 2007, 17(6):852-864.

Down TA, Hubbard TJ: Computational detection and location
of transcription start sites in mammalian genomic DNA.
Genome Res 2002, 12(3):458-461.

Zhang MQ: Computational prediction of eukaryotic protein-
coding genes. Nat Rev Genet 2002, 3(9):698-709.

Davuluri RV, Grosse I, Zhang MQ: Computational identification
of promoters and first exons in the human genome. Nat Genet
2001, 29(4):412-417.

Cooper ), Trinklein ND, Anton ED, Nguyen L, Myers RM: Compre-
hensive analysis of transcriptional promoter structure and
function in 1% of the human genome. Genome Res 2006,
16(1):1-10.

Trinklein ND, Aldred §), Saldanha AJ, Myers RM: Identification and
functional analysis of human transcriptional promoters.
Genome Res 2003, 13(2):308-312.

Wang X, Xuan Z, Zhao X, Li Y, Zhang MQ: High-resolution
human core-promoter prediction with CoreBoost HM.
Genome Res 2008.

Cavin Perier R, Junier T, Bucher P: The Eukaryotic Promoter
Database EPD. Nucleic Acids Res 1998, 26(1):353-357.

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel D, Jacq C, Johnston M, et al.: Life with 6000
genes. Science 1996, 274(5287):563-547.

King DC, Taylor J, Zhang Y, Cheng Y, Lawson HA, Martin J, Chiarom-
onte F, Miller W, Hardison RC: Finding cis-regulatory elements
using comparative genomics: some lessons from ENCODE
data. Genome Res 2007, 17(6):775-786.

Amaral PP, Dinger ME, Mercer TR, Mattick JS: The eukaryotic
genome as an RNA machine. Science 2008,
319(5871):1787-1789.

Cai XZ, Hagedorn CH, Cullen BR: Human microRNAs are proc-
essed from capped, polyadenylated transcripts that can also
function as mRNAs. RNA 2004, 10(12):1957-1966.

Zhou XF, Ruan JH, Wang GD, Zhang WX: Characterization and
identification of microRNA core promoters in four model
species. Plos Computational Biology 2007, 3(3):412-423.

Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A: The
expanding RNA polymerase lll transcriptome. Trends in Genet-
ics 2007, 23(12):614-622.

Koch F, Jourquin F, Ferrier P, Andrau JC: Genome-wide RNA
polymerase Il: not genes only! Trends in biochemical sciences 2008,
33(6):265-273.

Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng CK,
Simons M, Stanley HE: Linguistic Features of Noncoding DNA-
Sequences. Physical Review Letters 1994, 73(23):3169-3172.
Roman-Roldan R, Bernaola-Galvan P, Oliver JL: Sequence compo-
sitional complexity of DNA through an entropic segmenta-
tion method. Physical Review Letters 1998, 80(6):1344-1347.

Leung MY, Marsh GM, Speed TP: Over- and underrepresentation
of short DNA words in herpesvirus genomes. | Comput Biol
1996, 3(3):345-360.

Hiei Y, Ohta S, Komari T, Kumashiro T: Efficient transformation
of rice (Oryza sativa L.) mediated by Agrobacterium and
sequence analysis of the boundaries of the T-DNA. Plant |
1994, 6(2):271-282.

77.

http://www.biomedcentral.com/1471-2164/9/623

Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: beta-glu-
curonidase as a sensitive and versatile gene fusion marker in
higher plants. Embo | 1987, 6(13):3901-3907.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 19 of 19

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17991681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17991681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17506886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17506886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17506886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17568003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17568003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17568003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11875034
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18997002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18997002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8849441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17567996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17567996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17567996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18369136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18369136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15525708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15525708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15525708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17352530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17352530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17352530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18467100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18467100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10057305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10057305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8891954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8891954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7920717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7920717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7920717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3327686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3327686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3327686
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Building the HSL model using S. cerevisiae sequences
	Genomic analysis of core TRRs in S. cerevisiae
	Core TRRs are conserved across eukaryote species
	Core TRRs of the p53 gene
	Core TRRs of genes regulated by p53
	TRR prediction for the rice OsALYL1 gene and experimental validations
	Core TRR and the initiation of microRNA formation
	Core TRR analysis of cis-sense/antisense pairs
	Examining the regulatory role of human non-coding DNA regions

	Discussion
	Conclusion
	Methods
	DNA sequence preparations
	The HSL model Algorithm
	p53 binding loci analysis
	GUS activity under the control of the OsALYL1 predicted core promoter regions
	HSL web interface

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

