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Abstract

Background: We have recently released a comprehensive, manually curated database of
mammalian protein complexes called CORUM. Combining CORUM with other resources, we
assembled a dataset of over 2700 mammalian complexes. The availability of a rich information
resource allows us to search for organizational properties concerning these complexes.

Results: As the complexity of a protein complex in terms of the number of unique subunits
increases, we observed that the number of such complexes and the mean non-synonymous to
synonymous substitution ratio of associated genes tend to decrease. Similarly, as the number of
different complexes a given protein participates in increases, the number of such proteins and the
substitution ratio of the associated gene also tends to decrease. These observations provide
evidence relating natural selection and the organization of mammalian complexes. We also
observed greater homogeneity in terms of predicted protein isoelectric points, secondary
structure and substitution ratio in annotated versus randomly generated complexes. A large
proportion of the protein content and interactions in the complexes could be predicted from
known binary protein-protein and domain-domain interactions. In particular, we found that large

proteins interact preferentially with much smaller proteins.

Conclusion: We observed similar trends in yeast and other data. Our results support the

existence of conserved relations associated with the mammalian protein complexes.
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Background

Knowledge of constraints governing systems provides a
means to predict events and mechanisms that cause their
breakdown. It may also allow one to speculate how such
systems might have evolved. One class of biological sys-
tems that have captured much interest involves protein-
protein interactions and protein complexes. Protein com-
plexes are groups of two or more proteins that physically
interact. Such interaction serves to spatially join, modify
or create novel functional capability from component
proteins. Once in a complex, proteins can achieve greater
structural stabilization and protection from proteases,
which result in significantly longer half-lives [1,2]. A
breakdown in complex assembly has been associated with
a number of diseases [3-5].

What forces have shaped the formation of complexes and
what is their effect? The formation of quaternary structure
is associated with greater constraint in the evolution of
proteins [6-8]. Recently, a large collection of manually
annotated mammalian complexes has become available
in the CORUM database [9]. The combination of data
from this resource and complexes derived from HPRD
[10] and BIND [11] allows for one of the largest investiga-
tions of complex-specific protein constraints in mamma-
lian species to date.

Recently, complexes have been investigated in the context
of intrinsic disorder [12] and aggregation propensity of
the subunits [13]. In this study, we focus on two charac-
teristics of complexes: the complexity of a complex as rep-
resented by the number of unique proteins in a complex
and the number of complexes a particular protein partici-
pates in. The number of protein subunits that bind
together fluctuates in the context of different conditions.
Complexes extracted from cells can be viewed as snapshot
samples of proteins that have come together with ade-
quate stability to be isolated. We subsequently derive
'complex participation' for individual proteins by count-
ing the number of complexes that they belong to, in our
large combined collection of protein complex samples.

Although these characteristics of complexes are dynamic,
their relation to properties of component proteins derived
in their isolated state can be studied. By deriving these
relations, we hope to gain insight into certain constraints
governing the organization of complexes. Here, we find
evidence that protein length, predicted secondary struc-
ture and isoelectric point, as well as the nonsynonymous/
synonymous substitution ratio of genes are associated
with our measures of complex complexity and participa-
tion.

Available data on protein-protein interactions have been
used extensively to predict complexes [14-25]. A strong
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discriminator between interacting and non-interacting
protein pairs appears to be the presence of domains
known to interact [26]. We assess the utility of known
binary protein-protein and domain-domain interactions
in predicting the composition and interactions in the
mammalian complexes that we have collected.

Methods

Complex and Interaction data

1732 experimentally verified protein complexes anno-
tated at MIPS [27] and stored in the CORUM database [9]
were combined with 631 complexes retrieved from HPRD
[10] and 538 complexes from BIND [11]. After removal of
redundancy, there were 2706 different complexes con-
taining 4543 different proteins from human, mouse, rat,
dog, rabbit, cow, pig and other mammals. Of these 2706
unique complexes, 665 are subcomplexes of other com-
plexes in the data. A more detailed description of the com-
plexes appears in the additional files [see Additional file
1].

The focus of this study was on mammalian complexes but
we also analyzed the MIPS yeast complexes stored in
CYGD [28]. We use a set of 1142 unique yeast complexes
consisting of 2755 proteins. A much larger set of yeast
complexes consisting of 5370 proteins in 2025 complexes
was produced by merging the MIPS yeast complexes with
the 893 complexes predicted by Friedel et al. [25]. We will
refer to this set of complexes as the 'extended yeast com-
plex set'. Possible estimates of the completeness of the
human and yeast complex data appear in the additional
files [see Additional file 1].

We assembled 94906 pairwise eukaryotic protein-protein
interactions from BIND, DIP [29], HPRD, MINT [30],
Mpact [31] and MPPI [32]. 29074 of those interactions
were between different proteins from human, mouse or
rat and were used in this study. We also retrieved 127514
binary protein interactions by over 36500 proteins from
IntAct [33]. We will refer to interaction data from IntAct in
the text specifically with the word 'IntAct' to distinguish
from the interaction set we collected.

We refer as domain-domain interactions in the text as
those derived from known 3D structures of proteins,
obtained from the iPfam [34] and 3did [35] database.
There are 3654 such interactions between protein
domains in total. Pfam domains of protein sequences
were taken from Uniprot [36]. We assume that peptide
chains in PDB structures with C-beta atoms within 8 Ang-
stroms of each other interact.

We generated random complexes using two different ran-
dom models to evaluate significance of trends associated
with non-stochastic protein complex organization. For
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the random model in the main text (Model 1), we gener-
ated the same number of random complexes as found in
annotated complexes by picking the same number of pro-
teins as found in each of the annotated complexes from a
pool of all proteins collected from these complexes. We
picked proteins randomly with replacement throughout
the process of random complex generation to simulate
neutrality of protein reuse in the complexes. A second ran-
dom model (Model 2) of the complexes which uses the
complex complexity and participation preserving rewiring
method, first introduced by Maslov and Sneppen [37] was
also tested [see Additional file 1]. In certain parts of this
paper, we used sets of randomly generated complexes
(each set containing the same number of complexes as
found in the annotated complexes) in Monte-Carlo simu-
lations (denoted MC-test) to derive p-values for signifi-
cance statements. P-values of events were estimated by the
fraction of random simulations supporting the null
hypothesis.

Computed features of genes and proteins

Secondary structure was predicted with PSIPRED [38].
Our conclusions did not change when we repeated our
experiments using SSPRO [39]. The performance of
PSIPRED in terms of secondary structure content predic-
tion is benchmarked [see Additional file 2]. We measured
human protein evolutionary rates by non-synonymous to
synonymous substitution (dN/dS) ratios computed from
coding sequences of ortholog pairs from Ensembl [40].
Yeast (S. cerevisiae) gene dN/dS ratios were computed
using orthologs [41] from S. mikatae by PAL2NAL [42]
with default parameters and Codeml from the PAML
package [43]. The smallest dN/dS ratio was recorded for
each gene when more than one potential ortholog was
identified (our conclusions did not change if we chose the
larger one). The values of dN/dS depend on the calcula-
tion methodology but they should be comparable within
the same species pairs chosen. Note that only dN/dS ratios
less than 1 (computed from human-mouse orthologs)
were associated with the annotated human complexes.
The mean dN/dS ratio of individual genes encoding a
given protein complex was taken as a measure of selection
associated with the protein complex. We focused on a
measure of evolutionary rate reflecting more on changes
in protein sequence. We considered evolution at synony-
mous sites [44,45] to be neutral.

We refer to "pI" in the text as values obtained from BioP-
erl-based [46] isoelectric point prediction on protein
sequences. Essential genes for S. cerevisiae were taken from
CYGD [28]. Essential genes for human were gathered by
merging those from [47] and Table S6 of [48].

Statistics of trends in 2-D plots
We assessed trends concerning 2-dimensional protein
complex data by first applying standard linear regression
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to see if there is a noticeable slope different from a hori-
zontal line (observed when the y values do not depend on
the x values). We considered a given trend to be signifi-
cantly associated with non-stochastic protein complex
organization if the p-value reported by the t-test on the
slope of the regression line (the null hypothesis being a
slope = 0) was less than the maximum value observed
when 1000 sets of random human or yeast complexes
were generated. For example, when random complexes
were generated from entire sets of annotated complexes,
p-values associated with plots between mean dN/dS val-
ues and complex complexity for these random complexes
were always above 0.003; so we set this value as a thresh-
old of significance for such trends. However, the use of the
t-test by itself is potentially inadequate because it could be
significantly affected by biases in our snap-shot protein
complex samples. So in addition, we repeated the same
plots using sets of complexes likely to have different
biases. These include the MIPS yeast complexes, the
extended yeast complex set, sets of complexes where sub-
complexes were removed and sets of complexes in differ-
ent subcellular compartments. Unless otherwise stated,
only those trends in which all assessments (from the
regression line analysis to the analysis with other complex
datasets) are considered significant are reported. Analysis
was aided by the PROMPT tool [49].

Results and discussion

Complex Complexity and Participation

We first examined the distribution of complex complex-
ity, the number of unique proteins in a complex. Amongst
all mammalian complexes collected, the number of
unique proteins ranges from one for homo-oligomers to
142 (U2-type splicecosome [CORUM:351]). When the
number of unique proteins increases past 4, complexes
become increasingly rare following a power law-like dis-
tribution (Figure 1A). When we considered yeast com-
plexes, we saw similar trends [see Additional file 3].

Not all proteins are exclusive to a single complex. Having
defined complex participation as the number of com-
plexes that a particular protein is found in, we find that it
also follows a power law-like distribution (Figure 1B,
[Additional file 3]). Some of the proteins currently with
the highest complex participation include human integrin
beta-1 [Uniprot:P05556], histone deacetylase 1 [Uni-
prot:Q13547] and RING-box protein 1 [Uniprot:P62877]
which were annotated to be in 54, 39 and 24 complexes,
respectively so far.

The decrease in the number of complexes as the number
of subunits increase might be a reflection of the increased
difficulty in assembling and thus evolving larger benefi-
cial complexes. Although this trend seems to follow a
power law, as commonly reported for biological networks
[50], we could not ascertain if this truly is the case. Simi-
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Composition of mammalian complexes. A) The
number of complexes (y-axis) with a particular number of
unique proteins (x-axis) is plotted. B) The number of pro-
teins (y-axis) participating in a particular number of com-
plexes (x-axis) is plotted.

larly, we could not ascertain whether complex participa-
tion follows a power law. Our observed complex
complexity and participation distributions may be the
result of our complexes being samples of mammalian
proteins [51,52] derived under a variety of conditions
[Additional file 1]. The number of unique proteins in
yeast complexes was also observed to follow a similar-
shaped distribution and an exponential model of the data
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has been proposed [53,54]. In both mammalian and yeast
complexes, most proteins belong to few complexes, thus
supporting the idea of modularity [55] between com-
plexes in the context of the protein-protein interaction
network that have been examined.

The length of proteins in complexes

One of the simplest protein properties to study is the
length of the protein in terms of the number of amino
acids. The distribution of human protein lengths is
skewed towards smaller values and subsequently when we
sample uniformly from this distribution to generate ran-
dom complexes, the distribution of the protein lengths
remains skewed (Figure 2A). The mean length of proteins
in this distribution is ~500 amino acids (Figure 2A).

By picking proteins with replacement from the distribu-
tion of proteins in Figure 2A, we generated random com-
plexes and plotted the complexity of the complexes in
terms of the number of unique subunits against the mean
length of these subunits (Figure 2B). As complex complex-
ity increases the upper bound for mean lengths of proteins
drops (before 20 unique proteins) and levels out at ~510
amino acids for more complex complexes. Because the
mean length of proteins in the human proteome which
we sample from is ~500 amino acids, as one adds more
random proteins to complexes, the mean length of pro-
teins in the complexes tends to stabilize near 500 amino
acids. This observation was similarly made in annotated
human complexes (Figure 2C) and random complexes
generated from this annotated data (Figure 2D). A similar
asymptotic bound is thus formed in all our plots. For
example, mean lengths of 2000 amino acids were absent
in complexes of more than 20 subunits in both the ran-
dom and the complexes that we have collected. Like for
the random human complexes, the mean protein length
distribution for the real human complexes (Figure 2C)
was also skewed towards smaller protein lengths. Similar
plots were observed for all mammalian complexes that we
collected and Model 2 random complexes [Additional file
4]. These results suggest that the mean protein length in
complexes reflects to an observable degree the length dis-
tribution of proteins encoded in the proteome (Figure
2A). Similar observations were made when the median
length of proteins was studied in the context of complex
complexity [Additional file 5].

In contrast to randomly generated complexes, the com-
plexes that we have collected had much more variable
mean lengths, especially for complexes with large num-
bers of subunits. We observe this as an increased scattering
of points on the right side of the plot (Figure 2C). This
phenomenon was similarly observed in yeast complexes
[Additional file 6]. In particular, when complex complex-
ity increases past 20 different subunits, complexes with
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Protein length in human complexes. A) Length distribution of proteins in human complexes generated randomly from the
entire known human proteome. Mean lengths of proteins versus the number of unique subunits in: B) model | random com-

plexes generated from the entire proteome C) annotated human complexes D) model | random human complexes generated
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mean protein lengths below 250 amino acids are rarely ~ complex [CORUM:306] have a mean length of 169 amino
generated randomly (Random Model 1: P < 10-°) but are  acids and the 37 subunits of the mouse mitochondrial
present in annotated mammalian and yeast complexes. = NADH dehydrogenase complex [CORUM:381] have a
For example, the 81 subunits of the human ribosomal = mean length of 234 amino acids.
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Although the complexes analyzed are samples of what is
in cells, it is a large set that has been manually annotated.
Assuming that the plots in Figure 2 capture length con-
straint bounds, they can provide rules of thumb for spot-
checking errors in newly isolated complexes. For example,
if an isolated human complex of 10 subunits had a mean
subunit length of 2000 amino acids, our plots suggest that
large numbers of additional missing subunits of length
2000 or more are unlikely. If such a complex did exist,
then it would be striking given both the annotated com-
plex data (Figure 2C) and data generated from random
complexes (Figure 2B, Figure 2D; [Additional file 4]).
Unusual property distributions associated with complexes
provide initial suggestions of errors in the composition of
the complexes or unusual constraints associated with
these complexes. For example, the average length of a
large sample of human mitochondrial proteins appears to
be much smaller than the average length of all human
proteins (means + standard deviation/medians are: ~320
+ 304/235aa vs. ~500 + 551/364aa, respectively; MW, KS-
test (Mann-Whitney, Kolmogorov-Smirnov tests): P < 10
57) in the Eukaryotic Subcellular Localization Database
[56] [Additional file 7]. Similar results were obtained
when we used the reference set from MitoP2 [57] as a
source of mitochondrial proteins. Despite large amounts
of protein turnover since the mitochondria prokaryotic
origin [58], most (> 97%) human mitochondrial proteins
have lengths less than 1000 amino acids. These results
suggest unusual size constraints associated with mito-
chondrial proteins. Mitochondria-related functions, the
need for proteins to import into the mitochondria [59],
the presence of reactive oxygen species which can impose
difficulties for protein folding [60] are possible reasons
which may have helped limit the incorporation of very
large proteins into mitochondria. The scarcity of large pro-
teins in the mitochondria, in turn, will likely limit mean
protein lengths of its complexes. Although many (300/
1962 = 15%) human complexes in our data have mean
protein lengths over 1000 amino acids (Figure 2C), none
of the 28 mitochondrial human complexes we annotated
so far exceed this limit. If mean protein lengths in com-
plexes reflect protein length distributions, we expect het-
ero-oligomeric mitochondria human complexes with
mean protein lengths over 1000 amino acids to be
extremely rare.

The relative lack of complexes with many (>20) different
large proteins (> 1500aa) in both mammals and yeast sug-
gests that evolving such complexes is also extremely diffi-
cult. Smaller subunits may be easier to fold, transport
[61], require less conformation sampling [2] and undergo
smaller entropic loss [[62] - Supplement] during complex
assembly. These factors may have contributed to the
absence of highly complex complexes with many large
proteins in our data.
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Natural selection and complexes

To understand observations from a more evolutionary
point of view, we analyzed non-synonymous to synony-
mous substitution ratios (dN/dS) derived from human
coding sequences and their alignments with orthologs
from mouse (Figure 3). One way of comparing selection
on coding sequences associated with different complexes
is by their mean dN/dS ratios derived from the same spe-
cies pairs.

For example, proteins from the human MBD1-MCAF
complex [CORUM:2759] are encoded by two genes with
a mean dN/dS ratio of 0.37, computed from mouse
orthologs. The sequences coding for this complex seem to
be under much less selective constraint than ones coding
the elF3 complex [CORUM:742] which is associated with
a mean dN/dS ratio of 0.04 (Stdv. = 0.03, median = 0.02).

It has been noted previously that easily alignable eukary-
otic mRNAs are over-represented for multi-subunit com-
plexes [63] due to increased sequence conservation. In
terms of trends, we find that as the complexity of the com-
plex increases, the mean dN/dS ratio of human genes of
associated constituent proteins tends to decrease suggest-
ing that complex complexity negatively correlates with
purifying selective pressure on genes (Figure 3D). The
trend is not extremely strong but such a trend was not
observed with random complexes (Figure 3C; [Additional
file 8]). In particular, complexes with more than 15 pro-
teins and mean dN/dS ratios below 0.07 are absent in our
random complex set. For example, the 20 genes from the
PA700 proteosome regulator complex [ CORUM:32] have
a mean dN/dS ratio of 0.03 but such complexes are not
likely generated randomly (Random model 1: P < 0.05).
A contributing reason can be derived by examining the
distribution of dN/dS ratios. The distribution of human-
mouse dN/dS ratios is skewed towards small values con-
sidering all known human genes with over 40% of the val-
ues < 0.1 (Figure 3A). The distribution of dN/dS ratios
associated with our sample of annotated complexes (Fig-
ure 3B) is likewise skewed with 60% of the values < 0.1.
In both cases, the mean dN/dS ratio is close to ~0.1. As
more randomly-selected proteins are added to form ran-
dom complexes, the mean dN/dS ratio for genes associ-
ated with the complexes tends to stabilize also at 0.1.
Thus, highly complex complexes with mean dN/dS ratios
substantially below 0.1 are rarely generated randomly.

Knowing that many proteins belong to more than one
complex, we also asked how this fact was related to selec-
tive pressure. We find that as the number of complexes a
protein participates in increases, the dN/dS ratio of corre-
sponding genes also tends to decrease (Figure 3F), sug-
gesting that complex participation also correlates
negatively with the dN/dS ratio. This trend is not observed
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when complexes were generated randomly by picking
proteins with replacement (Figure 3E). From such ran-
domly generated complexes, proteins participating in
more than 10 complexes rarely occur, but they are clearly
present in our annotated data. Binned average plots of Fig-
ures 3D and 3F appear in the additional files [see Addi-
tional file 9].

Because such results could potentially be sensitive to the
ortholog pairs compared, the quality of the gene models,
and peculiarities of human/mouse evolution, we also
repeated such analyses using a variety of other mammals
[see Additional file 10]. For human-dog, human-chimp
and human-rat orthologs, we observed similar trends
although in the closely related human-chimp case in
which complex complexity was plotted against mean dN/
dS, the trend was not statistically significant. We also had
similar observations with yeast complexes using S. cerevi-
siae — S. mikatae, S. cerevisiae - S. paradoxus orthologs. We
did not observe such trends from dN/dS ratios derived
from the more distant pairing of S. cerevisiae — S. castellii
orthologs (data not shown). For both mammalian and
yeast complexes, the trends appear to be conserved using
dN/dS ratios generated from a variety of ortholog-pairs
with some exceptions.

Related to dN/dS ratios is the gene conservation of
orthologs of the proteins in complexes. Compared to dN/
dS ratios, statistically significant differences in gene con-
servation are even more difficult to detect in closely
related genomes. However, over large evolutionary dis-
tances we noticed that highly complex complexes tend to
have conserved their subunits. For example, between yeast
and human, yeast complexes with more than 60 subunits
had more than 80% of their subunits also encoded in
human. This was not observed in random complexes
[Additional file 11]. Yeast complex proteins conserved in
human also participated in a significantly higher number
of complexes than those without a human ortholog
(mean =+ standard deviation/median complex participa-
tion of 8.0 + 6.8/6.0 vs. 4.2 + 4.3/3.0; MW, KS-test: P < 10
70). A significant difference in complex participation was
not observed for model 1 randomly generated complexes.
These results concerning dN/dS ratios and gene conserva-
tion portrays similar relationships between gene evolu-
tion, complex complexity and participation at different
time and constraint scales.

Because our conclusions are based on a limited sample of
complexes, we sought for extra datasets of protein com-
plexes. The combination of the annotated MIPS yeast
complexes with those that were predicted [25] allowed us
to test our hypotheses on a large set of complexes covering
5370 (88%) of the proteins encoded in the yeast pro-
teome. We continued to observe a significant negative cor-
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relation between mean dN/dS with complex complexity
and dN/dS with complex participation using such an
extended complex dataset [Additional file 12].

Often in a cell, complexes exist along side their subcom-
plexes. In our data, subcomplexes of complexes are
present. If we repeated our analysis with subcomplexes
removed, we still observed a significant negative correla-
tion between mean dN/dS with complex complexity and
dN/dS with complex participation |[Additional file 12].
Similar trends were also observed when we considered
nuclear localized and non-localized complexes separately
[Additional file 12].

As complexes are assembled or disassembled, the mean
dN/dS ratio should fluctuate as proteins are added or sub-
tracted from the complex. Nevertheless, there also seems
to be an asymptotic bound for mean dN/dS ratios as com-
plex complexity increases and dN/dS ratios as complex
participation increases. The conserved trends we observe
may be a reflection of these bounds. We find that genes
associated with our human complexes which are consid-
ered essential (see Methods) tend to have lower dN/dS
ratios (computed by human-mouse orthologs) and
encode proteins that participate in more complexes (MW,
KS-test: P < 0.01) compared with all genes in the human
complexes. We see the same significant trend for yeast
(dN/dS ratios computed with S. cerevisiae — S. paradoxus
orthologs). These results suggest that for proteins partici-
pating in increasing number of complexes, lower dN/dS
ratios tend to be associated with purifying selection to
maintain organism fitness. Essential S. cerevisiae complex
proteins tend to be found in complexes with more unique
subunits (MW, KS-test: P < 0.05) compared to other pro-
teins in the yeast complex data. However, such a trend was
not observed for human possibly because a significant
number of proteins which contribute to complex com-
plexity are not known to be essential. We conclude that
there is strong evidence of non-random association
between dN/dS ratios of genes and complexes of their pro-
tein products.

The finding that the number of protein-protein interac-
tions positively correlates with the level of conservation of
orthologs between species [64,65] is similar to our finding
that highly complex complexes tend to conserve their
orthologs. Previously, increased gene conservation has
been correlated with lower evolutionary rate [66]. We
have found that highly complex complexes tend to con-
serve their orthologs and have lower dN/dS ratios, in
agreement with these results.

In summary, we observed that the mean dN/dS ratios of
proteins in the collected complexes tend to decrease with

Page 8 of 16

(page number not for citation purposes)



BMC Genomics 2008, 9:629

increasing complex complexity. There seem to be at least
two major phenomena associated with this observation:

1) The skewed distribution of dN/dS ratios amongst genes
as depicted in Figure 3B. In particular, as complex com-
plexity increases, the mean dN/dS ratios of proteins in
complexes tend to stabilize towards the mean of this
skewed distribution.

2) increased selective pressure on proteins involved in the
organization and function of more complex complexes

The median of the mouse dN/dS values (Figure 3B) is 0.08
which is less than the mean of 0.1. When we plotted Fig-
ure 3D and related supplements using median dN/dS val-
ues instead of the mean, we also found the median dN/dS
decreased significantly with increasing number of unique
subunits. Such a trend was consistently found when
human-mouse, human-dog, human-rat, S. cerevisiae - S.
paradoxus and S. cerevisiae — S. mikatae dN/dS median val-
ues were used (for all plots, t-test: P < 7.1 x 10-7; selected
plots are shown in the additional files [Additional file
13]).

Thus, for the complex data available, we observed that
both the mean and median dN/dS ratios of genes nega-
tively correlates with the complex complexity.

Homogeneity of Protein and Gene Properties

Next, we examined similarities between proteins within
mammalian protein complexes (Table 1). Although not
necessarily similar to physiological pl, our predicted pl
values reflect sequence properties which may be of some
utility. We ask whether subunits in complexes tend to
have greater homogeneity than expected in terms of pre-
dicted plI values. Considering complexes of 3 or more
unique proteins, we found that the standard deviations in
protein pl are significantly lower in the annotated com-
plexes compared to those in model 1 random complexes.
Thus, the pl of a protein can be a feature which may be
useful in predicting whether the protein belongs to a par-
ticular complex or not. The need for subunits to co-local-
ize [67] and the presence of highly sequence similar
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paralogs in complexes [68] should be contributing factors
to our observation of lower than expected pl deviation
between complex proteins.

The common presence of paralogs in complexes and the
correlation between secondary structure and localization
[69] also contributes to explaining why we observed sig-
nificantly lower than expected deviations of secondary
structure content (percent helix, sheet and coil) in pro-
teins belonging to the annotated complexes versus those
in random complexes.

Similar to protein properties, we also found that the dN/
dS ratio of genes associated with annotated human com-
plexes are significantly more homogeneous compared
with those from randomly generated complexes. Some
examples of complexes with very low deviation of dN/dS
values include Ubiquitin E3 ligase [CORUM:386] and the
MKK4-ARRB2-ASK1 complex [CORUM:1297] with a
standard deviation of 0.0007 and 0.001, respectively. The
complex with the highest observed dN/dS deviation of
0.34 is the DNA ligase IV-XRCC4-XLF complex
[CORUM:359]. Significant differences between random
and annotated complexes were also observed when the
dN/dS ratio was computed with dog, rat, or chimp
orthologs (data not shown). These observations agree
with previous results providing evidence that yeast pro-
teins belonging to the same functional module tend to
have more similar evolutionary rates than those belong-
ing to different modules [70]. We observed similar results
when we examined yeast complexes [Additional file 14]
and when we generated model 2 random mammalian and
yeast complexes (data not shown).

To conclude, we suggest that pl, secondary structure and
dN/dS ratios can be used to help predict the probability
that a protein belongs to a particular complex. We did not
observe a significant difference in standard deviations of
protein length between proteins belonging to annotated
versus Model 1 random mammalian complexes. It may
still prove useful for the separation between real and erro-
neous complexes when combined with other properties.

Table I: Homogeneity of protein properties in mammalian complexes of 3 or more proteins.

Protein Complex Data Property Mean Stdev. Annotated Mean Stdev. Random
All mammalian pl 1.5+0.7(1.5) 1.8+0.7 (1.8)
All mammalian % Helix 144 + 7.8 (13.5) 18.6 £ 7.5 (18.6)
All mammalian % Sheet 9.5+59(8.7) 10.9 £ 5.4 (10.3)
All mammalian % Coll 10.3 £5.0 (9.8) 13.3£5.6(13)

Human (against mouse) dN/dS 0.07 + 0.05 (0.06) 0.09 + 0.06 (0.08)

The standard deviations of protein property values for each annotated complex are significantly smaller than ones for model | random complexes
(MC-test using 1000 complexes generated randomly with replacement: P < 0.001). The means + standard deviation of these standard deviations for
each property are shown in the last two columns along with median values (in parentheses).
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Comparison with pairwise protein interactions

The overlap between binary protein-protein and predicted
domain-domain interactions with proteins in our com-
plexes was assessed (Figure 4). On average, 57%, 46% and
71% of the proteins found in the complexes (of 3 or more
proteins) can be explained by known binary protein-pro-
tein, predicted domain-domain or either type of interac-
tions (see Methods), respectively. The entire annotated
protein complement of 24%, 10%, and 29% of these
complexes can be explained by binary, domain-domain
or either type of interactions, respectively. In addition we
find that 14% of binary protein-protein interactions can
be explained by domain-domain interactions which is in
the range of 4-19% identified by Schuster-Bockler & Bate-
man [71].

192 PDB structures are available for our complexes (103
of which consist of at least 3 different proteins). A large
proportion of these structures are solved with protein frag-
ments rather than the full-length proteins. Many of the
interactions between peptides in these structures (see
Methods) are supported by binary protein-protein inter-
actions. The IntAct interaction set (excluding interactions
derived only from NMR or X-ray diffraction) covered on
average ~40% of detected interactions in a given complex
containing PDB structure. Interactions in 34 (18%) PDB
structures were fully explained by these IntAct binary
interactions. A similar coverage (Figure 4B: 45% mean
interaction coverage; 13% of complexes with all interac-
tions fully explained) is provided by these IntAct binary

A
3654 94906 Binary
Domain- Protein-Protein
Domain Interactions
Interactions
1969
Complexes
of 3 or more
proteins
Figure 4
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interactions even if we consider only complexes with 3 or
more distinct interacting peptides. In contrast, on average
53% of interactions in complexes with 3 or more distinct
interacting proteins are explained by predicted domain-
domain interactions. Predicted domain-domain interac-
tions explain all interactions in about 25% of such com-
plexes. Our results suggest that known protein-protein
and domain-domain interactions can aid substantially in
predicting interactions in our complex data. Many of
these binary and domain-domain interaction defined pro-
tein pairs may be subcomplex precursors of the mamma-
lian complexes which form during the course of assembly.
Some of these subcomplex precursors might be functional
complexes in current mammalian and ancestral organ-
isms [62].

Considering binary protein-protein interaction pairs in
IntAct, those found in our complexes, and those derived
from contacts in PDB structures associated with our mam-
malian complexes, we found that larger proteins tend to
have larger length differences with their interacting part-
ners (Figure 5, [Additional file 15]). For example, a large
protein of length 5000 amino acids was more likely to be
found interacting with a protein of ~1000 amino acids (a
4000 amino acid difference) rather than another protein
of 5000 amino acids. However, a protein of length 300
amino acids often was found interacting with another
protein of similar size. A number of reasons can explain
this observation. First, the length distribution of the pro-
teins is skewed such that relatively long proteins tend to

3654
Domain-
Domain
Interactions

127040 Binary
IntAct

Protein-Protein
_Interactions

103 PDB
Complexes

of 3 or more
proteins

Coverage by binary domain and protein interactions. Coverage is indicated by values in the Venn diagrams. Example:
A) Protein content coverage. 71% of the proteins in our complexes with 3 or more unique proteins can be explained by either
domain-domain or binary protein interactions. The full protein content of 29% of these complexes can be explained by either
interaction-type. 14% of binary ppi can be explained by predicted domain-domain interactions. B) Interaction coverage. 5% of
IntAct binary interactions could be explained from predicted domain-domain interactions. 77% of solved protein-protein con-
tacts in our complexes of known structure with 3 or more unique proteins can be explained by either domain-domain or
binary protein interactions. All solved contacts in 52% of these complexes can likewise be explained by these interactions.
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Large proteins tend to interact with relatively smaller partners. For each protein pair of different proteins, the length
of the larger protein (protein|) is plotted on the x-axis. A,B,C) The difference in length with its partner (protein2) is plotted on
y-axis. Larger proteins tend to have a larger length difference with their partners compared to proteins of smaller size. We see
this trend amongst A) IntAct binary protein-protein interactions and B) Random binary interactions generated from the IntAct
data C) binary interactions mapped onto all collected mammalian complexes. For all plots A-C, the trends are significant (t-
test: P < 0.001).

be rare (Figure 2A). Second, on average shorter genes  plexes tend to be composed of proteins with a shorter
appear to be more abundantly expressed [72,73] than  mean length may also be related to this phenomenon
longer genes. Thus, relatively large proteins may have a  since the evolution of large complexes may depend on
greater chance to encounter shorter proteins rather than ~ how often and easy it is to bring together undamaged
longer proteins. The observation that many complex com-  components. The relatively low dN/dS ratios of genes
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from highly complex complexes may also be associated
with this phenomenon (Figure 3D). Interestingly, similar
observations (fitting even better to the straight line) were
made with random protein-protein interactions (gener-
ated by picking proteins in each interaction pair randomly
with replacement) from the IntAct data (Figure 5B). The
relative low abundance of relatively large proteins in both
the real and random interaction data can explain the
trends in Figure 5A-C. The differences between real (Fig-
ure 5A, C) and random (Figure 5B) plots might be attrib-
uted to historical, selective constraints or experimental
error on certain protein-protein interactions. Binned plots
of Figure 5A are found in [Additional file 15].

Explaining evolutionary rate

In this work, we have hinted at various explanations such
as the ease of complex assembly to reason why more com-
plex complexity and participation negatively correlates
with our measures of evolutionary rate. We believe that
these explanations are contributing factors but clearly a
systems approach [74] is warranted. The ability of a pro-
tein to change sequence is related to the mutability of its
encoding gene, its subsequent expression, the conse-
quences of errors in the gene's products which is related to
the magnitude of expression and finally the degradation
of those products. Fitness effects for the individual and the
population under historical environmental constraints
needs to be taken into account to completely understand
why certain sequences have been transmitted for millions
of years of evolution. A challenge is to uncover which fac-
tors are more important than others in explaining evolu-
tionary rate [75-77]. Factors associated with proteins early
in their expression such as transcription and translation
[78] error rate or more general factors such as protein
abundance would affect the evolutionary rate of all pro-
teins. However, factors which are related to later events in
a protein's life cycle such as functional molecular interac-
tions will likely explain evolutionary rate differently for
different types of proteins. For example, transcription fac-
tors which bind DNA will have sequences constrained by
the need to bind DNA. Such constraints would be absent
for those proteins that do not bind DNA. If shorter pro-
teins are more abundantly expressed, and more complex
complexes tend to contain smaller proteins, higher
expression of smaller proteins in more complex com-
plexes could help explain our observations of lower dN/
dS ratios. While expression appears to be important, the
functional and non-functional [79] interactions of the
protein and its precursors with other proteins [7,80] or
molecules most likely play a major role in defining the
protein's relation to organism fitness. It can be very chal-
lenging relating evolutionary rate to these different fac-
tors, especially when some of these factors are measured
with substantial noise or are unknown [81,82]. While the
processes leading up to complex assembly can help
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explain protein evolutionary rate, there may be factors not
directly related to complex formation yet to be fully
accounted for. Some progress has been made in teasing
apart contributions to evolutionary rate [83].

Part of the reason why deriving mechanisms explaining
evolutionary rate has captured so much interest is because
such data is readily available from comparative genomics.
However, without knowing mechanisms explaining evo-
lutionary rate values, its significance and the utility of
associated information becomes limited. In particular, its
relation to protein function and disease needs to be
worked out. By combining other information such as
those derived from complexes, one might gain a deeper
insight. For example, just knowing whether a protein
complex contains a certain number of proteins or whether
a protein belongs to a certain number of complexes may
significantly help us predict its relation to certain fitness
effects and future diseases, given information on its evolu-
tionary rate. It has also been observed by many that pro-
teins related to genetic diseases in OMIM [84] tend to be
relatively long [85,86] and it might be interesting to work
out how this relates to specific sequences and structural
features in the complexes.

Conclusion

In conclusion, we have found relations and trends
between the dN/dS ratio, primary sequence properties,
secondary structure, complex complexity, participation
and localization using large samples of protein complexes
derived under certain distributions of conditions. There is
a large evolutionary distance between yeast and mam-
mals. Protein complexes and their subunits are not neces-
sarily conserved between distant species [87]. The
different environments which mammals and yeast occupy
may have produced different evolutionary pressure on the
protein complexes. Despite these differences, many of our
observations appear to be conserved for the mammalian
and yeast complex data that we have. We suggest that our
observations have been significantly influenced by con-
straints during the evolution of the complexes. Because of
these constraints, numerical boundaries were discovered
when we related properties such as protein length to com-
plex complexity. Proteins at these property value bounda-
ries are interesting because they are exceptional and
possibly point to unusual pressures or homeostatic adap-
tations that allow for their presence in cells. For example,
by studying highly complex protein complexes composed
of very large proteins, one might uncover new mecha-
nisms that allow for their assembly and the assembly of
later evolved proteins. We also observed that random phe-
nomena (as in neutral drift) from skewed origins can
appear highly stable when averaged over large numbers
(Ex. Figure 2B, D; Figure 5B). Compared to randomly gen-
erated phenomena, biologically-derived characteristics
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can appear less structured despite these circumstances (Ex.
Figure 2C, Figure 5A). Our focus in this study is mainly on
information about the presence of certain protein com-
plexes. Once data on the abundance, stoichiometry and
dynamics of mammalian protein and protein complexes
become available on a large scale, one can obtain other
views.
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