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Abstract

Background: Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related
to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the
domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions
(Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but
recent studies indicate that FIV causes moderate to severe CD4 depletion.

Results: In this study, comparative genomic methods are used to evaluate the full proviral genome of two
geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIV, subtype
B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIV,, subtype E (9899 bp) isolated
from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat
and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of
available full-length FIV consisting of subtypes A, B and C from FIV,,,, Pallas cat FIV,,,and two puma FIV,,
subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic
diversity both within and between species. Across all FIV,, gene regions except env, lion subtypes B and E
are monophyletic, and marginally more similar to Pallas cat FIV,,, than to other FIV. Sequence analyses
indicate the SU and TM regions of env vary substantially between subtypes, with FIV,, subtype E more
related to domestic cat FIV,, than to FIVp, subtype B and FIV,, . likely reflecting recombination between
strains in the wild.

Conclusion: This study demonstrates the necessity of whole-genome analysis to complement population/
gene-based studies, which are of limited utility in uncovering complex events such as recombination that
may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are
integral to the advancement of comparative genomics of human pathogens, as well as emerging disease in
wild populations of endangered species.
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Background

Feline immunodefiency viruses (FIV) naturally infect cat
species in the wild and are related to other lentiviruses
known to infect primates (human and simian immunode-
ficiency viruses, HIV and SIV), sheep and goats (caprine
arthritis encephalitis virus -CAEV), horse (equine infec-
tious anemia virus-EIAV), and cattle (bovine immunode-
ficiency virus-BIV). FIV is endemic in Felidae species [1-
12], many of which are considered endangered or threat-
ened with extinction [13]. A recent comprehensive survey
of serum and lymphocyte specimens from 3055 individu-
als affirm that at least 11 free-ranging and, if captive ani-
mals are included, as many as 31 species of cat are infected
with FIV [4]. Phylogenetic analyses of the pol-RT region
sequenced from six of these felid species, plus spotted
hyaena, Crocuta crocuta, affirm the high level of species-
specificity worldwide [4,11,14-17]. Each species specific
FIV forms a distinct monophyletic lineage, separated by
substantial genetic divergence that suggests virus-host
adaptation and rare episodes of interspecies transmission
in the wild [4,18].

The effects of FIV infection and disease are well described
in domestic cat (Felis catus) but less so in exotic felids.
FIV,,, infection in domestic cat is analogous to HIV infec-
tion of humans causing early flu-like symptoms, followed
by severe weight loss, chronic wasting disease, and
increased susceptibility to rare cancers and opportunistic
disease, neurologic disease and death [19,20]. Captive
and wild populations of two species, the African lion
(Panthera leo) infected with FIV,, and the puma (Puma
concolor), infected with FIV,,, exhibit less severe disease
associations. However, infected lions show a dramatic
decline in CD4+ subsets, a reduction of the CD4+/CD8+
ratio, reduction of CD8+phigh cells, and expansion of the
CD8+plow subset relative to uninfected lions [21-23]. Fur-
ther, FIV,, infected puma display a more generalized
response of lymphopenia expressed as a significant
decline in total lymphocytes, CD5+ T-cells, and CD5-
lymphocytes as well as a significant reduction in CD4+ T-
cells [23]. Like lions, seropositive pumas have a signifi-
cant decline in CD8+phigh cells but differ by not showing
compensatory expansion of CD8+low cells relative to
controls [23]. The results observed with FIV-infected lion
and puma parallels human (HIV) and Asian monkey
(SIV) CD4+ diminution, and suggests there may be an
immunological cost of FIV infection in these two species
of large cats.

Identification of genetic correlates of FIV virulence, infec-
tivity, and pathogenicity in different cat species is limited
due to a paucity of complete genome sequence. Only sub-
types A, B and C from domestic cat FIVp,, [24-26], sub-
types A and B from puma FIV,[14,27] and a single strain
(FIVy,,,) from Pallas cat (Otocolobus manul) [16] have
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been sequenced in entirety. Here we present full-length
provirus sequenced from FIV,, subtype B isolated from
lions in the Serengeti National Park in Tanzania and FIV,,
subtype E from lions dwelling in the Okavango Delta in
Botswana. These two FIV, subtypes exhibit a range in
sequence divergence throughout the genome, share
motifs unique to this lion-specific lentivirus, yet also
exhibit unusual and significant differences in the env gene.

Results and Discussion

Genomic Organization and Sequence Divergence of FIVp,,
Subtypes

FIV;;, subtypes B (accession number EU117991) and E
(accession number EU117992) share a similar genome
organization with other FIV which consists of LTR, gag,
pol, vif, orfA, env, and additional small ORFs that may rep-
resent accessory genes including rev (Table 1). The total
proviral genome size was conserved between FIV,, sub-
type B (9899 bp) and subtype E (9891 bp) (Table 1). FIV.
ri.8ag encodes three putative structural proteins of matrix,
capsid and nucleocapsid. Pol is conserved and encodes key
viral enzymes of protease, reverse transcriptase, RNAase,
dUTPase and integrase. FIV,, vif, an accessory protein
essential for viral replication, resembles that of FIVp,.
OrfA in FIV,,, is similar to FIV;,, and likely corresponds to
HIV tat, which targets transcription factors in the LTR. FIV.
. €nv encodes the putative leader, surface (SU), and trans-
membrane (TM) regions of the envelope glycoprotein,
essential components for viral binding to and entry into
the host cell. FIV,, rev is similar to HIV/FIV rev, and is
thought to be critical in viral replication. FIV,;, rev appears
to be encoded by splicing two exons: the first in the leader
region of env, the second located near the 3' region adja-
cent to env (Table 1).

The LTR of FIV,;, contains transcription and regulatory ele-
ments common to other FIV. These include the direct 2 bp
repeat (IR) defining the 5' and 3' termini of LTR, AP-4,
Aml-1 (EPB20), AP-1, TATA box, Poly A, and the cap tran-
scription initiation site (Figure 1). FIV},;, subtypes have
additional transcription factors characteristic of FIV, but
placed in alternate locations within the LTR U3 including
NF-AT and CREBP-1/c-Jun. These and other motifs were
determined by homology search with a threshold value of
85% with the Motif Search database [28] [see Additional
file 1]. Overall, lion LTRs are not identical between sub-
types B and E, differing by 15% in nucleotide substitu-
tions, comparable to that observed between FIV
subtypes A, B and C (Figure 1, Figure 2A).

Deep genetic divergence between FIV strains from differ-
ent cat species made alignments problematic. For coding
regions, we first translated each gene into amino acid res-
idues, which are less divergent as changes occur at a lower
rate of substitution, to serve as a "scaffold" for alignment
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Table I: Gene size and location within FIV, Subtypes B and E compared with previously published FIV_, FIVy,. and FIV_.

5'LTR 5'UTR Gag Pol Vif OrfA Env PPT 3LTR
FIVp, Subtype B (Serengeti)
Gene position 1-398 399-704 705-2213 2018-5464 5461-6171 6288-6542 6601-9213 9484-9498  9501-9899
Gene length (bp) 398 306 1509 3447 711 255 2613 15 398
Translated Protein Size (# aa) 503 1149 237 85 871
FIVp Subtype E (Botswana)
Gene Position 1-397 398-702 703-2199 2004-5450 5447-6211 6198-6452  6532-9222  9478-9492  9495-989I
Gene length (bp) 397 306 1497 3447 765 255 2691 15 397
Translated Protein Size (# aa) 498 1149 255 85 897
FIV¢, Petaluma (Subtype A)
Gene Position 1-355 356-627 628-1980 1868-5243  5236-5991  5992-6228 6266-8836 9098-9117  9120-9474
Gene length (bp) 355 272 1353 3375 756 237 2571 19
Translated Protein Size (# aa) 451 1125 252 79 857
FIV(, USIL (Subtype B)
Gene position 1-361 362-633 634-1983 1875-5248  5239-5994  5995-6231  6269-8830 9092-9110 9102-9462
Gene length (bp) 361 272 1350 3374 756 237 2562 17 361
Translated Protein Size (# aa) 451 1124 252 79 854
FIV¢, Subtype C
Gene Position 1-354 355-632 633-1985 1874-5248  5241-5996  5997-6233  6271-8835 9092-9100 9113-9466
Gene length (bp) 354 278 1353 3375 756 237 2565 19 354
Translated Protein Size (# aa) 451 1125 252 79 855
FIVO"IU
Gene Position 1-376 377-684 685-2181 1980-5432  5429-6187 61886448 6512-9103  9360-9375 9378-9751
Gene length (bp) 376 308 1497 3453 759 261 2592 16 374
Translated Protein Size (# aa) 499 1161 253 87 864
FIVp, PLV-14 Subtype A
(Florida)
Gene Position 1-311 312-615 616-2055 2199-5459  5419-6249 5759-5938 6250-8772 8771-8787  8790-9100
Gene length (bp) 311 304 1440 3261 831 180 2523 17 311
Translated Protein Size (# aa) 480 1087 277 59 841
FIVp, PLV-1695 Subtype B
(British Columbia)
Gene Position 1-306 307-638 639-2024 1886-5323  5298-6008 5972-6310 6283-8715 8772-8784 8787-9092
Gene length (bp) 306 332 1386 3438 711 339 2433 13 305
Translated Protein Size (# aa) 462 1146 237 113 8l

U3>

FIV-Ple Subtype B TGEGAGGTTGTGGTGGTCTTTGCCCCTCAGATTATGATGCTCTTACAGAATGTTCTTATAGCTGTAATAGA-AATTTAGATTAAAGGTTAAAGARAGAAT

FIV-Ple SUDLYPE E tufieeeereeerararnnnns . JA N T.T.C.Tu.A.Guu==eeeCevs oA T.GGAL.AG. . .G.AT..0.u.n G.C...
1 100

AP-4 EPB20 EBP20 CRE-BP-1/c-Jun AP-1

FIV-Ple Subtype B ATTAAAGTACTGTAGGAANCAGCTGTATRACCGC GCTT’AACCGCP{AACCAATTTCCTATTGC AT GACGCTGECTTGGCTGA! GAAA

FIV-Ple Subtype E ..... e e S RPN < N AP * [N N R Covineenanann ATC.A..Ac.uloerurnn.. AT. .G
101 NF-AT 200

TATAA <U3 | R>

FIV-Ple Subtype B TTTCCAATAAGTTAQTATATAAGGAACCTT-TTTAGACTGTTCGAGGCCACTTCTTTGGACTTGCATCTAGCTTGCTAGGGGCTTGTTCCTCTGAAGGGT

FIV-Ple Subtype E ...... GET.ToBueeeeeaaaennnn cece Tt eeeeeee e NS S
201 300

Poly A >R | US> <Us

FIV-Ple Subtype B CCTCAGGCAJAATAAATTTTGCTCGTGTGATTTGAACCCTGCCTGTGTCTGAGTCTTTTCTTTCCTGTGAGGCTCCGGAATCCGGGACGGAGACCTTGCA

FIV-Ple Subtype E ....c.oonufeeeeionnnans. S T ot eeeeesoaneoseacacsscaasaosanannannnns P

301 40

Figure |

Alignment of FIVp, subtype B and E LTR showing the U3,

R and U5 regions. Grey shadow indicates inverted repeat, boxed

regions indicate putative transcription elements common in FIV.
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C. Pol (3657 bp)

Oma Ple E
Oma Ple B
PEE  PcoB Ple B
FcaC Fea A
FcaB
Fca A Fca C
FcaB
Pco A
0.1
F. Combined No Env (6432 bp)
Oma Ple B
Ple E Ple E
Ple B PcoB
Oma
FcaB
FcaC
FcaB Fca A
FcaC

Pco A

Phylogenetic reconstruction based on nucleotide sequence of LTR and coding genes from full-length FIV nucleotide sequences
excluding env. (A-E) Shown are the maximum likelihood trees (ML) which are identical to tree topologies using maximum pari-
simony (MP) and minimum evolution (ME) for each gene region. See methods and Additional file 3 for specific parameters as
implemented in PAUP ver 4.10b. (E) OrfA phylogeny does not include FIVp_, subtype A due to lack of sufficient homology for
proper gene identification. (F) Phylogenetic tree of concatenated combined data of coding genes gag, pol vif, and orfA. All nodes
supported by 100% bootstrap proportions in ME, MP and ML analyses except for relative positions of FIV, subtypes which
were supported by bootstraps >50% but less than 100% within the FIV_, clade.

of nucleotides using the program RevTrans [29]. Our
results indicate that pol (3657 bp) is the most conserved
gene across FIV, albeit exhibiting substantial average pair-
wise genetic distances of 60% and 54% for nucleotide and
amino acid data, respectively (Table 2). Gag sequences
(1551 bp) differed by an average pairwise genetic distance
of 65.8% for nucleotides, a 53.2% amino acids (Table 2).
However, vif (870 bp), orfA (351 bp), and env (2958 bp)
were highly divergent. For these genes, sufficient homol-
ogy existed to both identify the gene, and to create a mul-
tiple sequence alignment across all FIV yet, phylogenetic
models for patterns of substitution at variable sites were
saturated resulting in an average genetic distance of 100%
for both nucleotide and amino acid data (Table 2). Such
differences in rates of evolution between viral genes cor-
roborate previous findings describing functional con-

straints for gag and pol [7,8,17], while also demonstrating
that vif, orfA, and env rapidly evolve in each host species.

Phylogenetic Analyses of FIVp, Subtypes

The evolution of FIV,, subtypes is defined by separate
phylogenetic analyses of each viral gene as well as com-
bined data of concatenated sequences representing the
entire coding region of FIV. LTR, gag, pol, vif and orfA
affirm the species-specificity of FIV both in individual
gene analyses (Figure 2A-E) and in the combined con-
catenated data phylogeny excluding env (Figure 2F). The
three subtypes of FIV,,,, from the domestic cat exhibit the
least amount of genetic divergence within each viral gene
phylogeny. Sharing a monophyletic lineage with distantly
related FIV,,,,, the FIV,,;, subtypes B and E have intermedi-
ate levels of genetic distance with each viral gene exam-
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Table 2: Estimates of genetic divergence of FIV genes.

FIV GENE

Gag Pol Vif OrfA! Env

Genetic distance
Nucleotide % Genetic Distance (GTR)

Average Pairwise 65.8 60.3 100* 100* 100*

(N=8)

Selected

comparisons
FIVpe B vs FIVp, E 20.3 20.4 33.1 27.9 100*
FIVpe B vs FIVg,0 28.8 293 44.3 55.8 42.7
FIVpe B vs FIVg, C 55.6 535 100* 100* 100*
FIVpe E vs FIVq,. 329 28.1 36.7 61.3 100*
FIVpe E vs FIVg, C 61.4 51.4 793 100* 64.4

Amino Acid % Genetic Distance (Pam-Dayhoff2)

Average Pairwise 53.2 44.1 100* 100* 100*
(N=8)
FIVpe B vs FIVp E 9.4 10.5 36.2 244 100*
FIVp B vs FIVg,. 24.8 20.1 59.1 58.4 428
FIVp B vs FIVg, C 47.6 382 100%* 100%* 100*
FIVp E vs FIVg0 253 19.9 42.1 68.3 100*
FIVpe E vs FIVg, C 46.2 379 91.9 100* 79.7

*100% genetic distance means sufficient homology present to create alignment, but no meaningful phylogenetic associations are detected.

| FIVPco A not included as no homologous OrfA identified.
2 See Methods

ined. Subtypes A and B of FIV,,, are the most divergent
and have substantial differences across the viral genome.
Thus, the hierarchical pattern of genetic divergence
among full-length genomic analyses of FIV,, FIV,;, and
FIVp,, recapitulates earlier evolutionary studies based on
portions of pol-RT and gag [4,7,8,10-12,17,30,31].

The relative differences in genetic diversity among FIV
strains may be correlated with the amount of time since
the virus entered modern felids and therefore, can be
interpreted in the context of the evolutionary and phylo-
geographic history of each host species. The domestic cat
evolved as a unique felid lineage only around 10,000 year
ago [32] from subspecies of wildcat Felis silvestris inhabit-
ing Near East Asia [33]. Preliminary results from limited
seroprevalence studies, indicate that FIV appears to be
absent from nearly all of the close relatives of domestic cat
[(genus Felis after [34]] except for French European wild-
cat F. silvestris [4,35]. Thus, the pattern of FIV,, divergence
may represent recent emergence combined with rapid
viral diversification within the domestic cat world-wide.
In contrast, the puma is one of the oldest species within
Felidae, sharing an evolutionary lineage with the African
cheetah (Acinonyx jubatus) and the New World jaguarundi
(Puma yagouaroundi) and arose approximately 4.5 MYA
[34]. The extreme divergence between subtypes A and B

within the FIV, lineage suggests an ancient origin of FIV
infection of puma, a result consistent with the published
pol-RT phylogeny marked by high levels of intra-subtype
divergence of FIV, subtypes from throughout the host
species range [4,8,11]. Lastly, the African lion species
arose approximately 2 MYA and spread throughout Africa,
Asia and the Americas [34]. However, due to episodes of
population reduction followed by expansion from East
Africa and recolonization, genomic diversity in modern
lion populations coalesces to approximately 325,000
years ago and is confined the African continent [36].
FIV,,,, is found in wild populations of the Eurasian Pallas
cat [4], a species that arose during the late Pleistocene
[34]. The monophyletic lineage of Pallas cat FIV,,, and
African lion FIV,, observed here suggest more ancient
inter-species transmission as the last time lions and Pallas
cats were in geographic contact was during the Pleistocene
when lion ranges spread throughout Asia, providing a
possible opportunity for FIV transmission between these
species [37].

Discordant env phylogeny between FIV . subtypes reveals
ancestral FIV recombination events in the wild

The patterns of phylogenetic divergence between FIV
strains from different cat species are concordant between
all viral gene regions with one notable exception, the env
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Figure 3
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B. Env (2958 bp)

Oma

PleB
PcoB

\ FIV-Ple

Pco A

Ple E

Fca A
FcaC
FcaB

Phylogenetic reconstruction based on nucleotide sequence of fulllength proviral FIV including env and separate analysis of env.
A. Phylogenetic tree of concatenated combined data of coding genes gag, pol vif, orfA and env. B. Phylogenetic tree of env
sequences only. Shown is the maximum likelihood tree (ML) identical to tree topology using maximum parisimony (MP) and
minimum evolution (ME) for each gene region. See methods and Additional file 3 for specific parameters as implemented in
PAUP ver 4.10b. All nodes supported by 100% bootstrap proportions in ME, MP and ML analyses except for relative positions
of FIVg, subtypes which were supported by bootstraps >50% but less than 100% within the FIV, clade.

gene. Phylogenetic analyses of the entire concatenated
coding region (9391 bp) and separate analysis of the env
gene (2958 bp) show the two FIV;, subtypes are no longer
monophyletic (Figure 3A and 3B). A closer examination
of the env gene shows only two shared regions of homol-
ogy between FIV, subtypes. The first spans the sites 1-
519 of env, containing exon 1 of rev (Table 1), within the
leader region exhibiting 80% nucleotide and 68% amino
acid homology between FIVj, subtypes. The second
region occurs at the terminal 3' region of env (sites 2506-
2958) with 87% and 71% genetic identity for nucleotides
and amino acid, respectively. Based on comparison with
FIVy,,, this region of FIV, may be the rev responsive ele-
ment (RRE), which is critical for targeting rev to the nucle-
olus of the cell [38]. As rev is conserved between lion
subtypes, it is likely that RRE must remain conserved as
well.

By contrast, the SU and TM regions of env differ substan-
tially between FIVj;, subtypes (Figure 4). A contiguous
region of env, from amino acid sites 181 through 931
(green in Figure 4), shows that FIV;;, subtype E is more
similar to FIVy, than to FIVy, subtype B. Further, env of
FIV,, subtype B, concordant with results from other gene
trees (Figure 2A-E), shares more homology with FIV,,,,
(blue in Figure 4). Moreover, the lack of monophyly
between FIV,, subtype B and FIV,,,, (Figure 3) is a conse-
quence of the recombinant env of FIV,, subtype E, as
exclusion of this subtype from the analyses (data not
shown) recovered the monophyletic relationship
observed with other genome regions (Figure 2A-E).

The predicted env protein from both FIV,, strains were
compared to other published FIV strains with respect to
inferred structural elements, with particular focus on
regions known to be important for receptor binding. Con-
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Figure 4

Multiple sequence alignment of amino acids of env from FIV,, subtypes B and E compared with FIV, subtypes A, B and C,
FIVp, subtypes A and B, and FIV,, .. Significant structures within the env gene inferred from Smirnova et al. 2005 are indicated
in colored boxes. Putative regions include: conserved amino acids (white box), variable regions V1-V9 (red box); epitope bind-
ing sites (orange box); conserved cysteine (red highlight); N glycosylation sites (yellow highlight). Homologous region shared
between FIV;, subtypes B and E are highlighted in grey. Amino acid sites |—176 contain the first exon of rev (see Table 1) in lion
FIVp, subtypes B and E. The portion of env proposed to be a result of recombination in FIVj, subtype E is highlighted in green.
The corresponding region of env thought to represent FIVp, without recombination, as it is more homologous to FIV,,,,, is
highlighted in blue. Amino acids sites 931-978 (grey) likely contain the RRE element shared by lion FIV;, subtypes B and E.

served (white in Figure 4) and variable regions (red in Fig-
ure 4) and epitope binding sites (orange in Figure 4) were
identified based on their locations in the domestic cat FIV
sequences [39]. The V3-V5 regions shared least homology
between the two strains. In FIVy,, this region has been

shown to contain the CXCR4 binding site [40], neutraliz-
ing antibody binding sites [41-43] and several epitopes
important for cell tropism and cell line adaptation [44-
46]. Within the V3-V5 region, several biochemical differ-
ences have been noted between domestic and non-

Page 7 of 13

(page number not for citation purposes)



BMC Genomics 2008, 9:66

domestic cat lentiviruses [39]. FIV, subtype B demon-
strated properties more similar to other non-domestic cat
lentiviruses including a negative charge and fewer cysteine
residues within this region. Conversely, FIV;,, subtype E
had a positive charge and more cysteines in V3-V5, more
similar to the domestic cat lentiviruses. Both lion FIVs had
similar numbers of predicted N-glycosylation sites (10
and 11 for B and E, respectively) and these numbers are
intermediate to the domestic cat FIVs (8-10) and the
other non-domestic FIVs (13-14). A similar trend of
lower charge and more cysteine residues in B than E was
noted in V3, the region implicated as receptor binding
domain for FIV [44,46,47]. In contrast, the more con-
served regions flanking V3-V5 were more positively
charged in FIVj,;, subtype B than in FIV};, subtype E, but
contained similar numbers of cysteine residues and puta-
tive N-glycosylation sites. Such differences suggest that
substantial divergence may occur in secondary and terti-
ary structures at the receptor-binding region of these two
lion lentiviruses.

Recombination in lentiviruses is not uncommon. In the
ongoing global HIV pandemic, at least 34 circulating
recombinant forms from HIV-1 subtypes have been so far
described in patients world-wide [48]. SIV full genome
sequence comparisons increasingly depict extant primate
lentiviruses with mosaic structures indicative of multiple
recombination events over time [49-54]. In FIV_,, recom-
bination in the V3-V5 region of env was detected between
subtypes A and B in feral cats [7], and different recombi-
nation frequencies occur between large regions of FIVp,,
subtype B in domestic cat experimentally infected with
FIVp,, B [31]. Whereas the frequency of FIV,;, recombina-
tion is not yet known, our studies show that over 40% of
Serengeti lions in Tanzania are multiply infected with FIV.
e SUbtypes A, B and C, which circulate freely within this
large population [6] and thus offer opportunities for
recombination.

The recombination of env in FIV infected lions has inter-
esting evolutionary significance because the divergence in
this region is extensive between the two subtypes. There-
fore, subtype E recombination may represent an ancient
event of recombination followed by a long period of
divergence, or a more recent recombination with a highly
divergent but as yet unsequenced strain either from lions
or another African felid species. Although FIV},, subtype E
env is more similar to FIVp_, than to any other known FIV
the extent of genetic divergence is still quite substantial,
i.e. 64.4% nucleotide relative to FIVy, subtype C (Table
2), suggesting that if recombination has occurred recently,
it is likely to have been with strain that has not yet been
sequenced for the env gene. This recombination event may
also have functional implications, as FIV},, subtype E env
has structural features more similar to pathogenic FIV,,.

http://www.biomedcentral.com/1471-2164/9/66

Further investigation into complete genome analyses of
FIVp, subtypes A, C, D and F as well as FIV from other
seropositive African felids, will likely provide new insights
into the role of recombination in env in the wild. Clinical
studies will help to clarify the significance of these recom-
bination events.

Conclusion

Ongoing efforts to sequence full genome FIV from all
seropositive exotic cat species will be essential to under-
standing the evolutionary trajectory of these viruses
including the origin and frequency of recombination
within FIV. This study demonstrates the necessity of
whole-genome analysis to compliment population/gene-
based studies, which are of limited utility in uncovering
complex events such as recombination that may lead to
functional differences in virulence and pathogenicity. The
changes observed in the env gene as a consequence of
recombination in FIVy, will provide important clues to
the natural history of these viruses and their hosts, and
may lead to insights into genetic determinants of patho-
genicity and virulence differences between domestic cat
and lion FIV; findings with important implications for
HIV pathogenesis in humans and virus attenuation in
wild populations of endangered species.

Methods

Cell Culture of FIVp,, Subtype E Botswana lion Ple-1027
FIV,,;, subtype E was isolated from PBMCs (whole blood
with EDTA) collected from wild lions in the Okavango
Delta in Botswana, viably frozen under field conditions
[23] and stored in liquid nitrogen. In preparation for cell
culture, viably frozen PBMCs from Ple-1027 were thawed
at 37°C, washed twice in LBT media (RPMI 1640 (Invitro-
gen Life Sciences, Carlsbad, Calif.) containing 20% fetal
bovine serum (Atlanta Biologicals, Norcross, Ga.), 1%
Glutamax I, 1 mM sodium pyruvate, 0.1 mM nonessential
amino acids, 5 x 10> M B-2-mercaptoethanol, 100 U of
penicillin/ml, 100 pg of streptomycin/ml, (all from Invit-
rogen Life Sciences), and 9 g of glucose (Sigma)/liter), and
resuspended at a final concentration of 1-1.5 x 10°¢ cells/
ml in LBT + interleukin-2 at 100 U/ml (Invitrogen Life Sci-
ences).

Domestic cat Mya-1 naive feeder cells [55] were prepared
for co-culture by cultivation in LBT + IL-2, plated in MEM
containing 10% fetal bovine serum, 100 U of penicillin,
100 ug of streptomycin/ml, and 1% glutamax, and dis-
pensed at 2 x 1076 cells/ml in appropriate media in a 24
well plate. Reconstituted lion PBMCs were then added to
Mya-1 cells at a volume of 400 ul (4-6 x 10> cells).

Media was collected biweekly and subjected to microtiter
reverse transcriptase assay as follows. Briefly, 15 ul of cul-
ture supernatant in triplicate was incubated with 50 pul of
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0.05 M Tris (pH 7.8) with 75 mM KCl, 5 mM MgCl,, 0.5
mM EGTA, 2 mM dithiothreitol, 5 nM oligo(dT), 0.05%
NP-40, poly(A) at 50 pg/ml, and 32P at 20 uCi/ml for 90
to 120 minutes at 37°C. Aliquots of 2.5 ul of each reac-
tion mixture were spotted onto a nylon filter (Wallac,
Turku, Finland) and allowed to dry. Un-incorporated
label was washed away with five 10 to 60 minute washes
with 0.03 M sodium citrate, pH 7.0, in 0.3 M sodium chlo-
ride (SSC) buffer, and the membrane was then fixed in
100% ethanol. Counts per minute were measured using a
Microbeta Counter (Wallac).

Starting on day 34 post co-culture, supernatant from lion
PBMC cocultures with Mya-1 cells had reverse tran-
scriptase (RT) values approximately 3 to 10 times naive
supernatant levels, indicating productive lentiviral repli-
cation. RT activity was not detected in any other control
supernatants through 49 days of culture.

RNA was extracted from 200 pl of supernatant from posi-
tive cultures using QIAamp viral RNA mini kit (QIAGEN)
and reversed transcribed to cDNA with Superscript II (Inv-
itrogen) according to manufacturer's instructions. PCR
was then performed to amplify a diagnostic region of pol
as previously described [4]. Amplicons were sequenced to
confirm the presence of a Botswana strain of FIV (FIV,
subtype E). One ml aliquots of supernatant were frozen at
-70°C. Aliquots were then thawed and used to inoculate
3 x 10° Mya-1 cells, which were grown 14 days to achieve
positive RT values as above. Cells were supplemented with
fresh media weekly and grown to 1 x 107 cells at which
point cells were harvested by centrifugation and cell pel-
lets were frozen at -70°C.

Cell Culture of FIVp,, Subtype B: Serengeti lion Ple-458

Isolation and culture methods for FIVj, Subtype B are
similar to the methods described for Subtype E (above)
with the following exceptions. FIVj, Subtype B was iso-
lated from PBMCs from a wild, sero-positive lion (Ple-
458, Serengeti National Park), separated from
heparinized whole blood by sucrose gradient centrifuga-
tion using Histopaque (Sigma). Cells were mixed with
10% DMSO with 90% fetal calf serum and viably frozen
in nitrogen vapor in aliquots of ~10° cells per ml. Post-
freezing, thawed PBMCs (10¢ cells) from the wild lion
were co-cultivated with an equal number of lion donor
cells (Ple-73, captive, National Zoological Park, Wash.,
D.C,; this lion was sero-positive but had repeatedly tested
negative for virus isolation). All PBMCs were mitogen
stimulated with concanavalin A (5 ug/ml) for 72 hrs. Co-
cultures were propagated in RPMI 1640 with 10% bovine
serum and 10% human interleukin-2 (Gibco-BRL). Fresh
media was added every 72 hours and new donor cells (10°
cells) were added every 14 days. Replicating virus was con-
firmed in the supernatant by demonstrating both positive
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Mg,+ — dependent reverse transcriptase (RT) and the pres-
ence of typical lentiviral particles seen by electron micros-
copy [10]. Virus rich supernatants were clarified by slow
speed centrifugation and stored in liquid nitrogen freez-
ers.

In order to expand the culture sufficiently to harvest viral
supernatant for Western blot assays and to conduct the
genetic analysis, 1 ml RT positive supernatant (LLV-2, SV
lab) was used to inoculate 3201 cells (5 ml at 2 x 10%/ml),
FeLV negative lymphosarcoma cells [56]. Cells were main-
tained in equal parts Leibovitz's L-15 media and RPMI
1640 with 20% fetal calf serum with glutamine (2x) and
penicillin/streptomycin (1x). Initially, this culture was
difficult to maintain in 3201 cells because it caused rapid
cell death thus, in order to keep the culture alive, fresh
media and naive 3201 cells had to be added every 3-4
days. After 21 days post infection (dPI), fresh media con-
tinued to be added to the culture every 3-4 days, but the
addition of naive 3201 cells was stopped and the % viabil-
ity was allowed to decline (in the hope that a cell adapted
virus could emerge that would enhance our ability to grow
up viral stocks for use in Western blot assays). From dPI
28 to 49 the culture viability hovered between 18-24%,
but after dPI 52 it was clear that both the viability and cell
numbers began to improve (viability from 46 to 86%). By
dPI 71 the cell viability was holding at >90% and the cul-
ture was growing at 40-50% per day. Infected cells for
DNA extraction and genetic analysis of subtype B virus
were harvested on dPI 88, centrifuged, and the pellets fro-
zen at -70C.

DNA extraction, Cloning and Sequencing of

FIVp  Subtypes B and E

DNA was extracted and purified from frozen cell culture
pellets following the manufacturer's protocols established
for blood products (Quiagen). Following extraction, DNA
quality was checked by gel electrophoresis, and quantified
by spectrophotometer (NanoDrop).

FIVp, proviral DNA was amplified using long PCR to gen-
erate overlapping proviral genome regions of approxi-
mately 5 kb (Roche's Expand PCR kit). For FIV,, subtype
B, three over-lapping regions were amplified using the fol-
lowoing primer pairs: FSHItr2F and FIVpol6R (LTR-pol);
FIVgag2aF and FIVpol5R (gag-pol); and FIVpol5F and
FIVItr4R (pol-LTR) (see Additional file 2). For subtype E,
two over-lapping regions were amplified using the two
primer pairs FSHItr2F and FIVpol5R (LTR-pol), and
FIVgag2aF and FIVItr4R (gag-LTR) (see Additional file 2).
PCR reactions used 0.2-2.0 ug DNA with the following
thermocycling conditions: 94°C for 2 minutes; ten cycles
of 94°C for 10 seconds, 52°C for 30 seconds and 68°C
for 4 minutes; 25 cycles of 94°C for 10 seconds, 52°C for
30 seconds and 68°C for 4 minutes and 20 seconds, with
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each having an extension time 20 seconds longer than the
one before it; followed by 68°C for 7 minutes and 4°C
hold. Additional "internal" primers were developed to fill
in sequence gaps within each subtype (see Additional file
2) using the same PCR conditions listed above. Biometra
T1 thermocyclers were used for all PCR reactions and
amplicons were visualized on a 1% agarose gel.

The PCR products were cloned using TOPO TA XL cloning
kits (Invitrogen). The resultant colonies were grown on LB
agar plates with kanamycin and mini-prepped using Qia-
gen's REAL Prep 96. A restriction digest with EcoRI was
performed to confirm successful cloning. The ends of the
inserted PCR product were sequenced using the primers
provided with the cloning kit for additional verification of
FIVp, cloned products.

The final full-length sequence for each over-lapping long
PCR product generated for each FIVj, subtype was
obtained using transposon bombing [GPS-1 kit (New
England BioLabs)]. In this method, transposons were ran-
domly inserted into one of the successfully transformed
plasmids for each primer combination for each sample.
The results were used to transform OneShot Chemically
Competent E. coli cells (Invitrogen) and grown on LB agar
plates with kanamycin and chloramphenicol and were
mini-prepped for DNA extraction using REAL Prep 96
(Quiagen). Restriction digest with EcoRI was performed
to confirm successful insertion of the transposon. Using
sequencing primers provided in the GPS-1 kit, 48 transpo-
son fragments/PCR reaction were sequenced using an
automated sequencer model ABI 3730.

Sequences (average read was approximately 600 bp) ran-
domly generated by transposon bombing of individual
clones defined multiple overlapping regions and were
assembled into the full-length viral genome using
Sequencher version 4.1 (Gene Codes Corporation) and
submitted to GenBank [accession number EU117991
(Subtype B) and EU117992 (Subtype E)].

Genetic and Phylogenetic Analyses of FIVp, Subtypes B and
E

Gene annotation of gag, pol, env, orfA, vif and rev from
open reading frames in lion subtypes B and E used trans-
lation into amino acids and comparison with existing full-
length FIV strains. The following sequences were used
from GenBank: for FIV,,, Subtype B in pumas strain PLV-
1695 accession number DQ192583[27]; for FIV,,, Sub-
type A in pumas strain PLV-14 accession number
u03982[14]; for FIV,,,, in Pallas cat accession number
AY713445[16]; for FIVy,, subtype C in domestic cat strain
C36 accession number AY600517[24]; for FIV, subtype
B, strain usil2489, accession number U11820; for FIVy,
[57]; Subtype A, strain PPR accession number M36968
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and strain Petaluma accession number
M25381[15,25,58]. Open reading frames were deter-
mined and regions of homology between FIV;, with other
FIV strains using pair-wise comparisons implemented by
BLAST of two sequences [59]. The boundaries of both the
5'LTR and 3'LTR regions were identified by the conserved
polypurine tract (PPT) shared by all FIV [60] and the
primer binding site (PBS) which mark the boundary
between the 3'LTR and the 5'LTR, respectively.

The genome of lion FIV,,;, was compared with existing full-
length FIV by multiple sequence alignments of each viral
gene. LTR regions were aligned using Clustal X [61] and
verified and edited by eye using Se-Al ver 2.0 [62]. Due to
large genetic divergence between FIV from different spe-
cies, alignment for coding regions of FIV used the program
REVTRANS ver 1.4 [29] which takes a multiple sequence
file, translates that file into amino acid residues, aligns the
amino acids, and uses this alignment as the scaffold for
nucleotide alignment. Aligned multiple sequence files
were imported into Modeltest ver 3.7 [63] and the opti-
mal model of nucleotide substitution was selected using
the AIC criterion (see Additional file 3).

Viral genes were analyzed separately, as well as combined,
for genome comparison and phylogenetic reconstruction.
Phylogenetic trees based on nucleotide data were
obtained using a heuristic search with three different opti-
mality criteria of maximum likelihood (ML), minimum
evolution (ME) and maximum parsimony (MP) as imple-
mented in PAUP* ver 4.0b10 [64]. Conditions for the ML
analysis included starting trees obtained by stepwise addi-
tion, and branch swapping using the tree-bisection-recon-
nection (TBR) algorithm. Specific conditions for the ME
search included starting trees obtained by neighbor - join-
ing, TBR branch-swapping algorithm, and no collapsing
of zero-length branches. The MP analyses coded gaps as
"missing", with step-wise addition of taxa and TBR branch
swapping. Support for nodes within the phylogeny used
bootstrap analysis with identical settings established for
each method of phylogenetic reconstruction and reten-
tion of node bootstrap values greater than 50%. The
number of bootstrap iterations consisted of 1000 for ME
and MP methods and 100 for ML. Additional analyses
were conducted on FIV coding sequences after translation
into amino acids. Genetic distances between strains were
derived using the Pam-Dayhoff model of amino acid sub-
stitution as implemented in MEGA verson 3.1 [65] with
gamma-correction (alpha = 2.5) and pairwise deletion of
missing data.
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Transcription factors present within FIVy,, LTR of lion subtypes B and E.
These motifs were identified by the setting a threshold similarity score of
85% for screening against the TRANSFAC database at the website http:/
[motif.genome.jp/.
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Additional file 2

Primers for lion FIV amplification. The primers span the entire proviral
genome of subtype E (Ple1027) and subtype B (Ple458). Shown are the
primer sequence, relative position and orientation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-66-S2.XLS]

Additional file 3

Parameters used in PAUP* analyses for LTR, each viral gene and com-
bined analyses. These parameters were determined using the program
Modeltest (see main text) and were implemented for the maximum like-
lihood and minimum evolution analyses in PAUP.
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