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Abstract
Background: Several classification and feature selection methods have been studied for the identification of differentially
expressed genes in microarray data. Classification methods such as SVM, RBF Neural Nets, MLP Neural Nets, Bayesian,
Decision Tree and Random Forrest methods have been used in recent studies. The accuracy of these methods has been
calculated with validation methods such as v-fold validation. However there is lack of comparison between these
methods to find a better framework for classification, clustering and analysis of microarray gene expression results.

Results: In this study, we compared the efficiency of the classification methods including; SVM, RBF Neural Nets, MLP
Neural Nets, Bayesian, Decision Tree and Random Forrest methods. The v-fold cross validation was used to calculate
the accuracy of the classifiers. Some of the common clustering methods including K-means, DBC, and EM clustering were
applied to the datasets and the efficiency of these methods have been analysed. Further the efficiency of the feature
selection methods including support vector machine recursive feature elimination (SVM-RFE), Chi Squared, and CSF
were compared. In each case these methods were applied to eight different binary (two class) microarray datasets. We
evaluated the class prediction efficiency of each gene list in training and test cross-validation using supervised classifiers.

Conclusions: We presented a study in which we compared some of the common used classification, clustering, and
feature selection methods. We applied these methods to eight publicly available datasets, and compared how these
methods performed in class prediction of test datasets. We reported that the choice of feature selection methods, the
number of genes in the gene list, the number of cases (samples) substantially influence classification success. Based on
features chosen by these methods, error rates and accuracy of several classification algorithms were obtained. Results
revealed the importance of feature selection in accurately classifying new samples and how an integrated feature selection
and classification algorithm is performing and is capable of identifying significant genes.
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Background
Microarray technology allows scientists to monitor the
expression of genes on a genomic scale. It increases the
possibility of cancer classification and diagnosis at the
gene expression level. Several classification methods such
as RBF Neural Nets, MLP Neural Nets, Bayesian, Decision
Tree and Random Forrest methods have been used in
recent studies for the identification of differentially
expressed genes in microarray data. However there is lack
of comparison between these methods to find a better
framework for classification, clustering and analysis of
microarray gene expression.

Another issue that might affect the outcome of the analy-
sis is the huge number of genes included in the original
data that some of them are irrelevant to analysis. Thus,
reducing the number of genes by selecting those that are
important is critical to improve the accuracy and speed of
prediction systems. In this study, we compared the effi-
ciency of the classification methods; SVM, RBF Neural
Nets, MLP Neural Nets, Bayesian, Decision Tree and Ran-
dom Forrest methods. We used v-fold cross validation
methods to calculate the accuracy of the classifiers. We
also applied some common clustering methods such as K-
means, DBC, and EM clustering to our data and analysed
the efficiency of these methods. Further we compared the
efficiency of the feature selection methods; support vector
machine recursive feature elimination (SVM-RFE) [1][2],
Chi Squared [3], and CSF [4][5]. In each case these meth-
ods were applied to eight different binary (two class)
microarray datasets. We evaluated the class prediction effi-
ciency of each gene list in training and test cross-valida-
tion using our supervised classifiers. After features
selection, their efficiencies are investigated by comparing
error rate of classification algorithms applied to only these
selected features versus all features.

Supervised classification

Supervised classification, also called prediction or dis-
crimination, involves developing algorithms to priori-
defined categories. Algorithms are typically developed on
a training dataset and then tested on an independent test
data set to evaluate the accuracy of algorithms. Support
vector machines are a group of related supervised learning
methods used for classification and regression. The sim-
plest type of support vector machines is linear classifica-
tion which tries to draw a straight line that separates data
with two dimensions. Many linear classifiers (also called
hyperplanes) are able to separate the data. However, only
one achieves maximum separation. Vapnik in 1963 pro-
posed a linear classifier as a original optimal hyperplane
algorithm [6]. The replacement of dot product by a non-
linear kernel function allows the algorithm to fit the max-

imum-margin hyperplane in the transformed feature
space [1-6]. SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional space.

 is called the kernel function [6].

There are four basic kernels: linear, polynomial, radial
basic function (RBF), and sigmoid [7].

In decision tree structures, leaves represent classifications
and branches represent conjunctions of features that lead
to those classifications. There are advantages with deci-
sion tree algorithms: they are easily converted to a set of
production rules, they can classify both categorical and
numerical data, and there is no need to have a priori
assumptions about the nature of the data. However mul-
tiple output attributes are not allowed in decision tree and
algorithms are unstable. Slight variations in the training
data can result it different attribute selections at each
choice point within the tree. The effect can be significant
since attribute choices affect all descendent subtrees [5].
ID3 (Iterative Dichotomiser 3) is an algorithm used to
generate a decision tree. Developed by J. Ross Quinlan [8],
ID3 is based on the Concept Learning System (CLS) algo-
rithm [9]. J48 is an improved version of ID3 algorithm. It
contains several improvements, including: choosing an
appropriate attribute selection measure, handling training
data with missing attribute values, handling attributes
with differing costs, and handling continuous attributes
[8].

Artificial Neural Networks (ANN) is an interconnected
group of nodes that uses a computational model for infor-
mation processing. It changes its structure based on exter-
nal or internal information that flows through the
network. ANN can be used to model a complex relation-
ship between inputs and outputs and find patterns in data
[10-12]. Two common ANN algorithms are Multi-layer
perceptron (MLP) and Radial basis function (RBF) Net-
works (see methods) [13][14].

A bayesian network represents independencies over a set
of variables in a given joint probability distribution (JPD).
Nodes correspond to variables of interest, and arcs
between two nodes represent statistical dependence
between variables. Bayesian refers to Bayes' theorem on
conditional probability. Bayes' theorem is a result in
probability theory, which relates the conditional and mar-
ginal probability distributions of random variables. The
probability of an event A conditional on another event B
is in general different from the probability of B condi-
tional on A. However, there is an explicit relationship
between the two, and Bayes' theorem is the statement of
that relationship [15]. Naive Bayes is a rule generator
based on Bayes's rule of conditional probability. It uses all
attributes and allows them to make contributions to the

K x x x xi j i
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decision as if they were all equally important and inde-
pendent of one another, with the probability denoted by
the equation:

Where P(H) denotes the probability of event H, P(H|E)
denotes the probability of event H conditional on event E,
En is the n th attribute of the instance, H is the outcome
in question, and E is the combination of all the attribute
values [16].

Random forest is another classifier that consists of many
decision trees. It outputs the class that is the mode of the
classes output by individual trees [17][18]. Bagging (Boot-
strap Aggregating) can also be used as an ensemble
method [19] (see methods).

Unsupervised clustering
Cluster-analysis algorithms group objects on the basis of
some sort of similarity metric that is computed for fea-
tures. Genes can be grouped into classes on the basis of
the similarity in their expression profiles across tissues,
cases or conditions. Clustering methods divide the objects
into a predetermined number of groups in a manner that
maximizes a specific function. Cluster analysis always
produces clustering, but whether a pattern observed in the
sample data remains an open question and should be
answered by methods such as resampling-based methods.
The k-means algorithm, Farthest First Traversal Algorithm,
Density-based clustering, Expectation Maximization (EM)
Clustering are four common methods used in this study
[21-26].

Feature selection
Feature selection methods can be divided into the wrapper
model and the filter model [27]. The wrapper model uses
the predictive accuracy of a mining algorithm to deter-
mine the goodness of a selected subset. Wrapper methods
generally result in better performance than filter methods
because the latter suffers from the potential drawback that
the feature selection principle and the classification step
do not necessarily optimize the same objective function
[28]. In gene selection, the filter model is often adopted
due to its computational efficiency [29]. Filter methods
select predictive subset of the features using heuristics
based on characteristics of the data. Moreover, in wrapper
method, the repeated application of cross validation on
the same data set might result in finding a feature subset
that performs well on the validation data alone. Filter
methods are much faster than wrapper methods and
therefore are better suited to high dimensional data sets
[30].

SVM-RFE: SVM-RFE is a feature selection method to filter
out the optimum feature set by using SVM in a wrapper-
style. It selects or omits dimensions of the data, depend-
ing on a performance measurement of the SVM classifier.
One of the advantages of SVM-RFE is that it is much more
robust to data overfitting than other methods [1]. This is
an algorithm for selecting a subset of features for a partic-
ular learning task. The basic algorithm is the following: 1)
Initialize the data set to contain all features, 2) Train an
SVM on the data set, 3) Rank features according to ci =
(wi)2, 4) Eliminate the lower-ranked 50% of the features,
5) return to step 2. At each RFE step 4, a number of genes
are discarded from the active variables of an SVM classifi-
cation model. The features are eliminated according to a
criterion related to their support for the discrimination
function, and the SVM is re-trained at each step.

Correlation based (CFS): In CFS features can be classified
into three disjoint categories, namely, strongly relevant,
weakly relevant and irrelevant features [4][30]. Strong rel-
evance of a feature indicates that the feature is always nec-
essary for an optimal subset; it cannot be removed
without affecting the original conditional class distribu-
tion. Weak relevance suggests that the feature is not always
necessary but may become necessary for an optimal sub-
set at certain conditions. Irrelevance indicates that the fea-
ture is not necessary at all. There are two types of measures
for correlation between genes: linear and non-linear
[4][29]. Linear correlation may not be able to capture cor-
relations that are not linear. Therefore non-linear correla-
tion measures often adopted for measurement. It is based
on the information-theoretical concept of entropy, a meas-
ure of the uncertainty of a random variable [30,31].

Chi Squared: Another commonly used feature selection
method is Chi-square statistic (χ2) method [3]. This
method evaluates each gene individually by measuring
the Chi-square statistics with respect to the classes. The
gene expression numbers are first discretized into several
intervals using an entropy-based discretization method.
Then the Chi-square value of each gene is computed by

Where m denotes the number of intervals, k the counts of
classes, N the total number of patterns, Ri the number of
patterns in the ith interval, Cj the number of patterns in
the jth class, and Aij the number of patterns in the ith
interval, jth class. The genes with larger Chi-square statis-
tic values are then selected as marker genes for classifica-
tion.
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Results and discussion
Datasets
We applied classification, clustering, and feature selection
methods to eight datasets in this work (Table 1). Each
dataset is publicly available and data were downloaded
from microarray repositories from caGEDA website from
University of Pittsburgh [32]:

▪ Lymphoma [33], contains 25 samples of which came
from normal vs. malignant plasma cells including 7129
genes

▪ Breast Cancer [34], 84 samples of normal vs. tumor sub-
types including 1753 genes

▪ Colon Cancer [35], 45 samples of Epithelial normal cells
vs. tumor cells including 7464 genes

▪ Lung Cancer [36], contains 72 samples of which came
from normal vs. malignant cells including 917 genes

▪ Adenocarcinoma [37], contains 86 samples of which
came from survival in early-stage lung adenocarcinomas
including 5377 genes

▪ Lymphoma [38], 96 samples of DLBCL1 vs. DLBCL2
cells including 4027 genes

▪ Melanoma [39], 38 samples of normal vs. malignant
cells including 8067 genes

▪ Ovarian Cancer [40], 39 samples of normal vs. malig-
nant cells including 7129 genes

Pre-processing
We applied three steps pre-processing to the datasets. First
we applied baseline shift for the datasets by shifting all
measurements upwards by a number of means (or aver-
ages).

This process then followed by performing global mean
adjustment. First, the global mean of all intensities of all
datasets is calculated. Then, the difference between each

individual mean and the global mean is calculated. This
difference value is then added to (or subtracted from)
each individual expression intensity value on each data-
set. The result is that all datasets now have the same over-
all mean.

Finally a log transformation applied to the datasets. Log
transformation has the advantage of producing a continu-
ous spectrum of values.

Classification
We used Weka [25] and SVM Classifier [7] for applying
classification, clustering and feature selection methods to
our datasets. In house java program was used to convert
dataset from delimited file format, which is the default
import format for SVM Classifier, to ARFF (Attribute-Rela-
tion File Format) file, the import format for Weka [25].
For the SVM we applied the following procedures.

First we transformed data to the format of the SVM soft-
ware, ARFF for WEKA and Labeled them for SVM Classi-
fier. Then we conducted simple scaling on the data. We
applied linearly scaling each attribute to the range [-1, +1]
or [0, 1].

We considered the RBF kernel and used cross-validation
to find the best parameter C and γ. We used a “grid-
search” [31] on C and γ using cross-validation. Basically
pairs of (C, γ ) are tried and the one with the best cross-
validation accuracy is picked. Trying exponentially grow-
ing sequences of C and γ is a practical method to identify
good parameters [31], for example C = 2-5, 2-3, … , 215 and
γ = 2-15, 2-13, … , 23.

The classification methods were first applied to all data-
sets without performing any feature selection. Results of
10-fold cross validation have been shown in Figure 1 and
Table 2. In most datasets SVM and RBF neural nets per-
formed better than other classification methods. In breast
cancer data, SVM classification and RBF Neural Nets had
the best accuracy 97.6%, and overall they performed very
well on all datasets. The minimum accuracy for RBF we
calculated was 81.6% over melanoma dataset. In lung

Table 1: Eight Datasets used in Experiment

Dataset Comparison Variables (Genes) Samples

1. Lymphoma (Devos et.al, 2002) Tumor vs. Normal 7129 25
2. Breast Cancer (Perou et. al, 2000) Tumor subtype vs. Normal 1753 84
3. Colon Cancer (Alon et. al, 1999) Epithelial vs. Tumor 7464 45
4. Lung Cancer (Garber et. al, 2001) Tumor vs. Normal 917 72
5. Adenocarcinoma (Beer et.al, 2002) NP vs. NN 5377 86
6. Lymphoma (Alizadeh et al, 2000) DLBCL1 vs. DLBCL2 4027 96
7. Melanoma (Bittner et. al, 2000) Tumor vs. Normal 8067 38
8. Ovarian Cancer (Welsh et. al, 2001) Tumor vs. Normal 7129 39
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cancer dataset MLP Neural Nets did also perform well and
it was equal to SVM and RBF.

The lowest accuracies are detected from Decision Tree
algorithms (both J48 and ID3). As it is shown in Figure 1,
in most cases they performed poorly comparing to other
methods. Bayesian methods had also high accuracy in
most datasets. Although it didn't performed as good as
SVM and RBF, but the lowest accuracy was 85.4% on Lym-
phoma datasets. However overall we have to mention that
it seems that in some cases performance of the classifica-
tion methods depends on the dataset and a specific
method cannot be concluded as a best method. For exam-
ple Bayesian and J48 Decision Tree performed very well
on colon and lung cancer, with 93% and 95% for Baye-
sian respectively and 91% and 94 % for J48, while RBF
and MLP out performed on breast and lung cancer (97%

and 96% respectively for MLP and 97% for both datasets
for RBF).

We applied two class clustering methods to the datasets
that are illustrated in Figure 1 and Table 3. As it is shown
in Figures 2 we have a consistence performance of Farthest
First in almost all datasets. EM performed poorly in Ade-
nocarcinoma and Lymphoma datasets (54.7 and 54.2
respectively) while it was performing well in breast
melanoma (81%).

The effect of feature selection
Pairwise combinations of the feature selection and classi-
fication methods were examined for different samples as
it is shown in table 4 and 5 and Figure 1. The procedure is
illustrated as a pipeline in Figure 1.

Percentage accuracy of 10-fold cross validation of classification methods for all genesFigure 1
Percentage accuracy of 10-fold cross validation of classification methods for all genes. Results of 10-fold cross val-
idation of the classification methods applied to all datasets without performing any feature selection.
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First we tested SVM-RFE, Correlation based, and Chi
Squared methods on several gene numbers (500, 200,
100, and 50). Methods were mostly consistent when gene
lists of the top genes 50, 100, or 200 were compared. We
selected 50 genes because it performed well, consumed
less processing time, and required less memory configura-
tions comparing to others.

Almost in all cases, the accuracy performance classifiers
were improved after applying feature selections methods
to the datasets. In all cases SVM-RFE performed very well
when it applied with SVM classification methods.

In lymphoma dataset SVM-RFE performed 100% in com-
bination of SVM classification method. Bayesian classifi-

Percentage accuracy of 10-fold cross validation of clustering methods for all genesFigure 2
Percentage accuracy of 10-fold cross validation of clustering methods for all genes. Results of 10-fold cross valida-
tion of the two class clustering methods applied to all datasets,

Table 2: Percentage accuracy of 10-fold cross validation of classification methods for all genes

Dataset SVM RBF 
Neural 
Nets

MLP 
Neural 
Nets

Bayesian J48 Decision Tree Random Forest Id3 Bagging

1. Lymphoma (Devos et.al, 2002) 96.0 84.0 68.0 88.0 64.0 76.0 48.0 52.0
2. Breast Cancer (Perou et. al, 2000) 97.6 97.6 96.4 92.9 92.9 96.4 94.0 96.4
3. Colon Cancer (Alon et. al, 1999) 95.6 91.1 91.1 93.3 91.1 80.0 88.9 93.3
4. Lung Cancer (Garber et. al, 2001) 97.2 97.2 97.2 95.8 94.4 95.8 97.2 97.2
5. Adenocarcinoma (Beer et.al, 2002) 96.5 94.2 75.6 75.6 74.4 79.1 66.3 79.1
6. Lymphoma (Alizadeh et al, 2000) 96.9 88.5 75.0 85.4 75.0 76.0 62.5 84.4
7. Melanoma (Bittner et. al, 2000) 94.7 81.6 84.2 76.3 81.6 81.6 52.6 81.6
8. Ovarian Cancer (Welsh et. al, 
2001)

94.9 84.6 89.7 87.2 87.2 89.7 74.4 89.7
Page 6 of 13
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Accuracy of 10-fold cross validation of feature selection and classification methods. Accuracy of 10-fold cross vali-
dation of the pairwise combinations of the feature selection and classification methods
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cation method performed well for SVM-RFE and Chi
Squared feature selection methods with 92% accuracy in
both cases.

CFS and Chi Squared also improved the accuracy of the
classification. In breast cancer dataset the least improve-
ment is observed from applying Chi Squared feature selec-
tion methods with no improvement over SVM, RBF and
J48 classification methods with 97%, 84%, and 95%
respectively.

In ovarian cancer dataset all feature selection methods
performed very close to each other. However the SVM-RFE
had a slightly better performance comparing to other
methods. We detected 100% accuracy with SVM-RFE fea-
ture selection with both SVM and RBF classification meth-
ods. We also observed high accuracies among MLP
classification and all feature selection methods with 94%,

92%, and 92% for SVM-RFE, CFS, and Chi Squared
respectively.

In lung cancer datasets we can observe high accuracy in
Decision Tree classification methods (both J48 and ID3)
with all feature selection methods.

Overall we have to repeat again that although it is obvious
that applying feature selection method improves the accu-
racy and also particularly it reduces the processing time
and memory usage, but finding the best combination of
feature selection and classification method might vary in
each case.

Conclusions
The bioinformatics techniques studied in this paper are
representative of general-purpose data-mining tech-
niques. We presented an empirical study in which we
compare some of the most commonly used classification,
clustering, and feature selection methods. We apply these
methods to eight publicly available datasets, and com-
pare, how these methods perform in class prediction of
test datasets. We report that the choice of feature selection
method, the number of genes in the gene list, the number
of cases (samples) and the noise in the dataset substan-
tially influence classification success. Based on features
chosen by these methods, error rates and accuracy of sev-
eral classification algorithms were obtained. Results reveal
the importance of feature selection in accurately classify-
ing new samples. The integrated feature selection and clas-
sification algorithm is capable of identifying significant
genes.

Methods
Multi-layer perceptron (MLP): Error backpropagation
neural network is a feedforward multilayer perceptron
(MLP) that is applied in many fields due to its powerful
and stable learning algorithm [13]. The neural network
learns the training examples by adjusting the synaptic
weight according to the error occurred on the output layer.
The back-propagation algorithm has two main advan-
tages: local for updating the synaptic weights and biases,
and efficient for computing all the partial derivatives of
the cost function with respect to these free parameters. A
perceptron is a simple pattern classifier.

The weight-update rule in backpropagation algorithm is
defined as follows:

 where w is the

weight update performed during the nth iteration through

the main loop of the algorithm, η is a positive constant

called the learning rate, δ is the error term associated with

Δ Δw n w n n y nji ji j i( ) = −( ) + ( )α ηδ1 ( )

Overview of the analysis pipelineFigure 4
Overview of the analysis pipeline. The pipeline illustrates 
the procedure of the pairwise combinations of the feature 
selection and classification methods
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j, and 0≤ α <1 is a constant called the momentum
[9][11,12].

Radial basis function (RBF) networks: RBF networks
have 2 steps of processing. First, input is mapped in the
hidden layer. The output layer is then a linear combina-
tion of hidden layer values representing mean predicted
output. This output layer value is the same as a regression
model in statistics [9]. The output layer, in classification
problems, is usually a sigmoid function of a linear combi-
nation of hidden layer values. Performance in both cases
is often improved by shrinkage techniques, also known as
ridge regression in classical statistics and therefore smooth
output functions in a Bayesian network.

Moody and Darken [14] have proposed a multi-phase
approach to RBFNs. This multi-phase approach is straight-
forward and is often reported to be much faster than, e.g.,
the backpropagation training of MLP. A possible problem
of the approach is that the RBF uses clustering method
(e.g., k-means) to define a number of centers in input
space and the clustering method is completely unsuper-
vised and does not take the given output information into
account. Clustering methods usually try to minimize the
mean distance between the centers they distribute and the
given data which is only the input part of the training
data. Therefore, the resulting distribution of RBF centers
may be poor for the classification or regression problem.

Support Vector Machines (SVM): Given a training set of

instance-label pairs ( ), i = 1,…, l where  and

, the support vector machines require the solu-

tion of the following optimization problem:

SVM finds a linear separating hyperplane with the maxi-
mal margin in this higher dimensional space. C > 0 is the
penalty parameter of the error term.

 is called the kernel function [6].

Here there are four basic kernels: linear, polynomial,
radial basic function (RBF), and sigmoid:

Linear: 

Polynomial: 

RBF: 

Sigmoid: 

The k-means: The k-means algorithm takes a dataset and
partitions it into k clusters, a user-defined value. Compu-
tationally, one may think of this method as a reverse
method of analysis of variance (ANOVA). The algorithm
starts with k random clusters, and then move objects
between those clusters with the goal to 1) minimize vari-
ability within clusters and 2) maximize variability
between clusters [21]. In other words, the similarity rules
will apply maximally to the members of one cluster and
minimally to members belonging to the rest of the clus-
ters. The significance test in ANOVA evaluates the between
group variability against the within-group variability
when computing the significance test for the hypothesis
that the means in the groups are different from each other.
Usually, as the result of a k-means clustering analysis, the
means for each cluster on each dimension would be
examined to assess how distinct k clusters are. Obtaining
very different means for most is perfect [22].

Farthest First: Farthest First Traversal Algorithm works as
a fast simple approximate clustering model after Simple
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Table 3: Percentage accuracy of 10-fold cross validation of clustering methods for all genes

Dataset K-means Expectation Maximization Farthest First Density Based Clustering

1. Lymphoma (Devos et.al, 2002) 64.0 52.0 64.0 64.0
2. Breast Cancer (Perou et. al, 2000) 67.9 71.4 85.7 67.9
3. Colon Cancer (Alon et. al, 1999) 53.3 71.1 68.9 53.3
4. Lung Cancer (Garber et. al, 2001) 79.2 37.5 75.0 80.6
5. Adenocarcinoma (Beer et.al, 2002) 42.0 54.7 74.4 51.2
6. Lymphoma (Alizadeh et al, 2000) 52.1 54.2 78.1 54.2
7. Melanoma (Bittner et. al, 2000) 73.7 81.6 73.7 73.7
8. Ovarian Cancer (Welsh et. al, 2001) 61.5 61.5 89.7 66.7
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K-Means. To find k cluster centers, it randomly chooses
one point as a first center, and then selects point with
maximal min-distance to current centers as a next center
[23].

Density Based Clustering (DBC): Density-based cluster-
ing has turned out to be one of the most successful tradi-
tional approaches to clustering. It can be extended to
detect subspace clusters in high dimensional spaces. A
cluster is defined as a maximal set of density-connected
points. Correlation clusters are sets of points that fit to a
common hyperplane of arbitrary dimensionality. Den-
sity-based clustering starts by estimating the density of
each point to identify core, border and noise points. A
core point is referred to as a point whose density is greater
than a user-defined threshold. A noise point is referred to

as a point whose density is less than a user-defined thresh-
old. Noise points are usually discarded in the clustering
process. A non-core, non-noise point is considered as a
border point [24].

Expectation Maximization (EM) clustering: An expecta-
tion-maximization (EM) algorithm finds maximum like-
lihood estimates of parameters in probabilistic models.
EM performs repeatedly between an expectation (E) step,
an expectation of the likelihood of the observed variables,
and maximization (M) step, which computes the maxi-
mum expected likelihood found on the E step. EM assigns
a probability distribution to each instance which indicates
the probability of it belonging to each of the clusters [25].
By cross validation, EM can decide how many clusters to
create.

Table 4: 10-fold cross validation evaluation result of feature selection methods applied to the classification methods. X:Y pattern 
indicates X as the error rate in cancer samples and Y as the error rate in normal samples

1. Lymphoma (De vos et.al, 2002) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 2:3 1:1 1:2 1:1 4:5 3:6
CFS 50 1:0 2:1 3:3 2:1 4:4 2:2 3:6 3:6
ChiSquared 50 1:0 2:2 4:3 1:1 3:4 2:3 2:3 4:1
All features 7129 1:0 2:2 4:4 2:1 4:5 2:4 7:6 9:3
2. Breast (Perou et. al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 1:0 1:1 3:1 4:1 1:1 2:1 1:0
CFS 50 1:0 1:0 2:1 3:2 3:1 1:1 1:1 1:0
ChiSquared 50 1:1 1:1 1:1 2:2 3:1 1:0 1:1 1:0
All features 1753 1:1 1:1 2:1 4:2 4:2 2:1 4:1 2:1
3. Colon (Alon et. al, 1999) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 1:0 1:0 2:0 3:1 1:1 1:1
CFS 50 1:1 2:1 1:1 2:0 1:1 2:2 1:1 1:0
ChiSquared 50 1:0 2:2 2:0 1:0 1:0 1:1 2:1 1:0
All features 7464 2:0 2:2 2:2 3:0 2:2 6:3 3:2 2:1
4. Lung (Garber et. al, 2001) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 1:0 1:1 1:1 1:0 1:0 1:0
CFS 50 1:1 1:1 1:0 1:0 1:1 1:1 1:1 1:1
ChiSquared 50 1:0 1:0 1:0 1:1 2:1 2:0 1:1 1:1
All features 917 2:0 2:0 1:1 2:1 2:2 2:1 1:1 1:1
5. Adenocarc. (Beer et.al, 2002) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 2:1 2:3 4:5 4:5 3:6 4:5 3:6
CFS 50 1:0 1:1 3:3 3:6 3:6 3:6 3:6 3:6
ChiSquared 50 1:0 2:2 4:3 5:5 3:5 5:5 2:3 5:5
All features 5377 2:1 3:2 15:6 15:6 15:7 14:4 17:13 12:6
6. Lymphoma (Alizadeh et al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 2:3 4:5 4:5 3:6 4:5 3:6
CFS 50 1:1 2:3 3:3 3:6 3:6 3:6 3:6 3:6
ChiSquared 50 1:1 2:2 4:3 5:5 3:5 5:5 2:3 5:5
All features 4027 2:1 9:2 15:7 12:2 14:10 16:7 21:15 12:3
7. Melanoma (Bittner et. al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 2:1 2:1 3:1 3:1 4:5 3:1
CFS 50 1:0 2:3 2:2 2:2 2:1 2:1 3:6 3:2
ChiSquared 50 1:0 2:2 3:2 2:3 2:2 2:2 2:3 3:2
All features 8067 2:0 4:3 4:2 6:3 4:3 4:3 15:3 5:2
8. Ovarian (Welsh et. al, 2001) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 0:0 0:1 1:1 1:1 1:1 1:1 2:1 3:1
CFS 50 1:0 3:2 1:2 1:1 1:1 1:1 2:2 2:1
ChiSquared 50 1:0 2:2 2:1 1:1 1:1 1:1 2:3 1:1
All features 7129 2:0 4:2 2:2 3:2 3:2 2:2 7:3 3:1
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The goal of EM clustering is to estimate the means and
standard deviations for each cluster so as to maximize the
likelihood of the observed data. The results of EM cluster-
ing are different from those computed by k-means cluster-
ing [26]. K-means assigns observations to clusters to
maximize the distances between clusters. The EM algo-
rithm computes classification probabilities, not actual
assignments of observations to clusters.

Cross validation: In order to perform to measure classifi-
cation error, it is necessary to have test data samples inde-
pendent of the learning dataset that was used to build a
classifier. However, obtaining independent test data is dif-
ficult or expensive, and it is undesirable to hold back data
from the learning dataset to use for a separate test because
that weakens the learning dataset. V-fold cross validation

technique performs independent tests without requiring
separate test datasets and without reducing the data used
to build the tree. The learning dataset is partitioned into
some number of groups called “folds” [31]. The number
of groups that the rows are partitioned into is the ‘V’ in V-
fold cross classification. 10 is the recommended and default
number for “V”. It is also possible to apply the v-fold cross-
validation method to a range of numbers of clusters in k-
means or EM clustering, and observe the resulting average
distance of the observations from their cluster centers.

Leave-one-out cross-validation involves using a single
observation from the original sample as the validation
data, and the remaining observations as the training data.
This is repeated such that each observation in the sample
is used once as the validation data [31].

Table 5: Percentage accuracy of 10-fold cross validation of feature selection methods applied to the classification methods.

1. Lymphoma (De vos et.al, 2002) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 96.00 80.00 92.00 88.00 92.00 64.00 64.00
CFS 50 96.00 88.00 76.00 88.00 68.00 84.00 64.00 64.00
ChiSquared 50 96.00 84.00 72.00 92.00 72.00 80.00 80.00 80.00
All features 7129 96.00 84.00 68.00 88.00 64.00 76.00 48.00 52.00
2. Breast (Perou et. al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 98.81 97.62 95.24 94.05 97.62 96.43 98.81
CFS 50 98.81 98.81 96.43 94.05 95.24 97.62 97.62 98.81
ChiSquared 50 97.62 97.62 97.62 95.24 95.24 98.81 97.62 98.81
All features 1753 97.62 97.62 96.43 92.86 92.86 96.43 94.05 96.43
3. Colon (Alon et. al, 1999) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 97.78 97.78 97.78 95.56 91.11 95.56 95.56
CFS 50 95.56 93.33 95.56 95.56 95.56 95.56 95.56 97.78
ChiSquared 50 97.78 91.11 95.56 97.78 97.78 95.56 93.33 97.78
All features 7464 95.56 91.11 91.11 93.33 91.11 80.00 88.89 93.33
4. Lung (Garber et. al, 2001) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 98.61 98.61 97.22 97.22 98.61 98.61 98.61
CFS 50 97.22 97.22 98.61 98.61 97.22 97.22 97.22 97.22
ChiSquared 50 98.61 98.61 98.61 97.22 95.83 97.22 97.22 97.22
All features 917 97.22 97.22 97.22 95.83 94.44 95.83 97.22 97.22
5. Adenocarc. (Beer et.al, 2002) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 96.51 94.19 89.53 89.53 89.53 89.53 89.53
CFS 50 98.84 97.67 93.02 89.53 89.53 89.53 89.53 89.53
ChiSquared 50 98.84 95.35 91.86 88.37 90.70 88.37 94.19 88.37
All features 5377 96.51 94.19 75.58 75.58 74.42 79.07 66.28 79.07
6. Lymphoma (Alizadeh et al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 100.00 94.79 90.63 90.63 90.63 90.63 90.63
CFS 50 97.92 94.79 93.75 90.63 90.63 90.63 90.63 90.63
ChiSquared 50 97.92 95.83 92.71 89.58 91.67 89.58 94.79 89.58
All features 4027 96.88 88.54 77.08 85.42 75.00 76.04 62.50 84.38
7. Melanoma (Bittner et. al, 2000) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 97.37 92.11 92.11 89.47 89.47 76.32 89.47
CFS 50 97.37 86.84 89.47 89.47 92.11 92.11 76.32 86.84
ChiSquared 50 97.37 89.47 86.84 86.84 89.47 89.47 86.84 86.84
All features 8067 94.74 81.58 84.21 76.32 81.58 81.58 52.63 81.58
8. Ovarian (Welsh et. al, 2001) # Genes SVM RBF MLP Bayesian J48 ID3 R. Forest Bagging
SVM-RFE 50 100.00 100.00 94.87 94.87 94.87 94.87 92.31 89.74
CFS 50 97.44 87.18 92.31 94.87 94.87 94.87 89.74 92.31
ChiSquared 50 97.44 89.74 92.31 94.87 94.87 94.87 87.18 94.87
All features 7129 94.87 84.62 89.74 87.18 87.18 89.74 74.36 89.74
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