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Abstract

Background: Many protein regions and some entire proteins have no definite tertiary structure,
presenting instead as dynamic, disorder ensembles under different physiochemical circumstances.
These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IlUP have been
associated with a wide range of protein functions, along with roles in diseases characterized by

protein misfolding and aggregation.

Results: Identifying IUP is important task in structural and functional genomics. We exact useful
features from sequences and develop machine learning algorithms for the above task. We compare
our |UP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based
on neural networks) and Globplot (based on disorder propensity).

Conclusion: We find that augmenting features derived from physiochemical properties of amino
acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The
IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins.

Background

Proteins are composed of one or more chains of amino
acids, and exhibit several levels of structure. The primary
structure is defined by the sequence of amino acids com-
prising each chain, while the secondary structure is
defined by local, repetitive spatial arrangements, which
falls into three basic categories: helix, strand, and coil. The
tertiary structure is defined by how the chain folds into a
three-dimensional configuration, while the quaternary
structure is concerned with how different chains combine
into multisubunit or oligomeric, protein (protein com-
plexes). Most proteins function only when folded into a

particular configuration. Recently, a class of proteins has
been discovered that do not fold into any particular con-
figuration - instead of folding into specific 3-D structures,
they exist as dynamic ensembles in their native state.
These proteins have been variously called natively
unfolded, natively disordered or Intrinsically Unstruc-
tured regions and Proteins (IUP) [1-7]. Unlike regular
proteins, which unfold and lose their ability to function
when subjected to environmental challenges such as
detergents, urea, or heat, IUP may continue to function
under such conditions, as they do not have to be folded
into a particular configuration in order to carry out their
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function. An IUP protein usual does not involve with
catalysis process that functioning as an enzyme, because
catalysis requires tightest-binding to transition state,
which binding specificity most likely requires structured
active site, an IUP functions in signaling and have been
associated with a wide range of protein functions such
molecular recognition, molecular assembly and disassem-
bly as well as protein modification. IUP regions also play
a central role in diseases characterized by protein misfold-
ing and aggregation [1-5]. Furthermore, the identification
of such regions can aid both structure determination and
sequence alignment, and may also aid in drug design. The
identification of IUP regions from the primary structure of
a protein is thus an important but difficult problem [1-5].
IUP can be identified through protein tertiary structure.
Traditionally, the tertiary structure of proteins is deter-
mined using experimental methods such as X-ray crystal-
lography, Overhauser Effect Enhanced Nuclear Magnetic
Resonance spectroscopy (NMR), and Circular Dichroism
Spectroscopy (CDR). However, these experimental meth-
ods are usually time consuming and often have their own
limitations and problems. Since Dunker et. al. developed
the first IUP predictor - PONDR [3], consequential devel-
opment of IUP predicators includes disEMBL [6], and
Globplot [7]. We had developed a number of IUP and
membrane protein predictors [8-10] that use amino acid
sequences as inputs and that give IUP and structured pro-
tein assignments as outputs. This paper is a continuation
of the earlier IUP predictors we developed before [8-10].
Our predictors use protein primary structure information
only and contain three parts: feature generation, classifica-
tion and ensemble methods.

Methods

Feature generation from primary structure

The first step in constructing a classifier is to choose the
features that the classier uses. Performance of a given clas-
sifier depends on the set of features that are used. Our fea-
ture extraction is based on the physiochemical analysis of
protein sequences.

Features from compositions of peptide sequences

We studied the characteristic of amino acid residues in
sequences. We found that different properties of amino
acid in sequence tend to encode structural information. It
appears different protein folding classes can be identified
by the differences in their amino acid compositions.
Detailed analysis of patterns of sequences leads us some
important discoveries. Analyzing the peptide patterns in
sequences have convinced us that different protein fold-
ing classes can be identified by the differences in their
amino acid compositions. We conclude that distinguish-
ing peptide patterns in sequences provides useful infor-
mation to detect different protein classes and/or discover
new classes of proteins.

http://www.biomedcentral.com/1471-2164/9/S2/S8

The first set of 20 features is derived from first order statis-
tics, regarding amino acid compositions in primary
sequence. Let us define amino acid set as:

A = {A,C, D EFGHILKLMNPQRSTVW,
v},

These twenty letters in the set A represent the one-letter
symbols for 20 amino acids. We use a window with length
L centered at each amino acid residue to extract features.
Letx(j) € A, jis the jth position of the amino sequence of
protein. Hence, x(j) represents the amino acid at position
j of the protein sequence. Let M denote the length of pro-
tein sequence. Since the window size shrinks [6] at the N-
terminal and C-terminal of protein sequences, we utilized
ko, and k as parameters to make the window size adjustable

at the terminals. k, and k are defined as follows:
k=max {1,i-(L-1)/2} (1)
and

ko = min {M, i + (L-1)/2} (2)

Let P; (a) represents the probability of an amino acid resi-

due, which is denoted by "a"(a € A ), inside the window
centered at position j, then

1
Py(a) = k—koﬂjzfsx(na (3)

where kyand k are defined in Equation (1) and (2),a € A:

We then constructed more features by second order statis-
tics regarding the pattern of one amino acid followed by
another amino acid in the window. Let's define Wa,,a, rep-
resent the pattern of a pair of amino acids, that is, amino
acid a,, followed by amino acid a,. Both 4,, and a, belong

to amino acid set A . Second order statistic features are
calculated by the following equation:

j=k-1
1

P¥anan) =5 o 2y OO, (4)
j=ko

where k, and k are defined in (1), (2),a,,€ A, a,e A
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1 ifamino acid x(j)=a, andx(j+1)=a,

Ou(ia,Oxtjr)a, = {0 otherwise

Next we introduce a 9-gram encoding scheme based on
the physiochemical properties of amino acids. The 20
amino acid residues can be clustered into 9 groups as
shown in Table 1. Then, we defined the 2-tuple code set as
following:

Q= {gl, g2 g3, g4, 85 86,87, 88,89}, andg € Q

There are two advantages to this 9-gram encoding scheme.
First, for small window sizes, there may not be sufficient
data to accurately represent the first and second order sta-
tistics of 20 amino acids; this will be less of a problem
with the 9-gram encoding because there are fewer first and
second order statistics to estimate than when the 20
amino acid encoding is used. Second, the 9-gram scheme
can reduce computational complexity if it is used as an
alternative.

Modify equations (3) and (4) by the 9-gram encode
scheme, we then calculate on the first order statistics and
second order statistics of the 9-gram encoding scheme for
each amino acid residue in a sequence using the same
window accordingly.

We also generated features by using protein family pro-
files or position-specific scoring matrices from PSI-BLAST.
For a sequence of length N, an N*20 family profile is con-
structed based on the multiple alignment of homologues
found during the PSI-BLAST search. Feature Pj(a) is the
averaged log-odds of amino acid "a" in the neighbour-
hood of sequence position j as calculated below:

k

PO oyt 250 (5)

j=k,

Table I: Encode scheme based on physiochemical properties of
amino acids

Group Residues Description

gl C Highly conserved

g2 M Hydrophobic

g3 N, Q Amides, polar
Acids, positive,

g4 D, E polar

g5 ST Alcohols

g6 P,A G Aliphatic, small

g7 LV, L Aliphatic

g8 F,Y,W Aromatic

g9 H,K,R Bases, charged
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Sequence complexity

The complexity of the sequence is used as a features.
According to the past research [1-5], Most likely IUP have
low complexity patterns. K2-entropy is used to measure
the local complexity of the amino acid sequence. The
complex of each amino acid residue in the sequence is cal-
culated in the same window as previous defined, which is
given by:

20
- P(a,)log, Pi(a,) (6)
n=1
where a, € A, and P;is calculated by Equation (3).

Hydrophobicity

Since hydropathy is an important determinant of protein-
chain fold, calculation of hydropathy could be useful for
IUP prediction. We therefore use relative hydrophobicity
of each amino acid, called hydropathy in the feature
space. The feature for hydropathy H(i) at position i is the
average of hydropathy in the feature window for given
hydropathy scale is calculated as following:

H(i) = 2 Hydropathy(j) (7)

j=ko

There are several different hydropathy scales generated by
different methods. Equation (7) is used for generating fea-
tures based on four different hydropathy scales. However,
by comparing joint probability distributions of intrinsi-
cally unstructured and structured proteins for all different
hydropathy scales, we found that Kytes-Doolittle's scale
[11] is best in distinguishing IUP from structured pro-
teins. This best feature can be also selected from principle
component analysis as showing in the feature selection
session.

IUP propensities

Finally, we also use amino acid IUP propensities [7],
which is a scale to measure how likely an amino acid is to
be unfolded. Comparisons on two sets of propensities are
shown in Table 2. The average of IUP propensity associ-
ated with jt" residue in the sequence given in a window
with length Lis calculated as below:

R(j) = 2 1UPpropen (j) (8)

The k and k, are defined in (1), (2).

The selection on a better propensity feature is illustrated
in the feature selection session using a distance gauge.
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Table 2: Russell/Linding and Deleage/Roux: Disorder
Propensities

Residue Russell/Linding Deleage/Roux
P 0.55232 1.117
G 0.43323 0.6675
N 0.22989 0.479
D 0.22763 0.4645
S 0.14288 0.2965
T 0.00887 0.145
H -0.00121 0.135
C -0.00151 -0.1255
K -0.10001 -0.0495
R -0.17659 -0.179
Q -0.18768 -0.055
E -0.20469 -0.2745
Y -0.20751 0.0825
F -0.22557 -0.497
M -0.2259 -0.4765
w -0.24338 -0.257
A -0.26154 -0.275
L -0.33793 -0.4385
\ -0.38618 -0.7055
| -0.42224 -0.515

Feature selection for high-dimensional data

The above feature extraction step can generate 537 fea-
tures for each amino acid residue in a sequence as summa-
rized below:

¢ 20 from first order statistics of 20 amino acids;

® 400 from second order statistical of 20 amino acids;

¢ 9 from first order statistics of 2-tuple code;

¢ 81 from second order statistics of 2-tuple code;

¢ 20 Features based on PSI-BLAST Profiles;

¢ 1 from complexity;

e 4 from different hydropathy scales;

¢ 2 from different unstructured propensity scales.
High-dimensional data requires a feature selection step to
address the curse-of-dimensionality. In addition, a large
number of features often make the learning algorithm
scale poorly [1]. Generally, feature selection strategies are
either wrapper-based, or embedded, or filter-based.
Wrapper-based feature selection

Wrapper algorithms use the interactions between feature

selection and the learning algorithm by involving the
learning algorithm in the feature selection step. If they are

http://www.biomedcentral.com/1471-2164/9/S2/S8

not over-fitting and are not so expensive computationally,
wrappers would be the best feature selection algorithms,
since they also depend on the inductive principles of the
learning algorithms.

Embedded feature selection algorithms
Decision Trees and CART (classification and regression
trees) exemplify embedded feature selections; the process
of selecting a feature to split at each node of the tree is
implicitly a feature-selection step.

Filter-based feature selection

Filter-based feature selections select features before the
data is passed to a learning algorithm. They are used as
pre-processing steps to model selections and learning.
Since these algorithms are independent of any learning
algorithms and they are used in the preliminary steps in
learning, their computational complexities are usually not
high and are much faster than wrapper-based algorithms.

We studied several feature selection algorithms include
information gain, T-test, the Chi-square goodness-of-fit
test, the bi-normal separation (BNS), Fisher permutation
test, and distance measurement.

We are especially in favour of distance measures because
they can reduce computational complexity efficiently.
Let's consider a two-class problem. Given two features: X
and Y, D (X) and D (Y) measure the separation of two
classes subject to feature X and feature Y, respectively. The
distance measure D (X) for feature X is defined as follows:

mj—m3

2.2 )
o1 +C71

D(X) =

where m, and m, are the mean values of feature X for the

class 1 and class 2, o and o3 are variance of feature X

for the class 1 and class 2, respectively. The mean and var-
iance for a given feature are calculated as follows:

=l (10)

where x; is the value of feature X for i" instance in one
class, and N is the number of instances in that class. Mod-
ifying equations (10-11) gives us the calculation of D(Y)
corresponding to feature. Now we obtain both D(X) and
D(Y). If D(X) > D(Y), feature X is selected; otherwise fea-
ture Y is selected.
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Distance measure can be in pair each time for every fea-
ture. After sorting these distances, we can select most
important features for separating two classes. For exam-
ple, for the feature on IUP propensities as showing in
Tables 1, we choose Russell/Linding scale by the above
decision rule. This also justify why they can build a single-
feature simplest predictor.

From the above analysis, clearly, distance-measure based
feature selection method works in a pair-wise manner. We
are also in favour of another feature selection method
called principle component analysis (PCA) to reduce the
feature dimension.

Compare to previous approach, this particular feature
selection scheme can handle multiple features simultane-
ously. PCA is also called Karhunen-Loeve (K-L) transfor-
mation. K-L transformation is an orthonormal

transformation of a vector X to same dimensional vector

Y . In the transformation domain, the first principle com-
ponent is the normalized linear combination with maxi-
mum variance; the second component has the next largest
variance and so forth. Based on such ranking, only those
with largest variance are preserved and the others are
neglected. In fact the principle components are ranked by
their ability to distinguish among classes. The implement
[10] procedure is as follows. Assume there are N instances

in the training set and M features, let X represent a pop-
ulation of N-dimensional vectors, mean value of each fea-
ture m, has been calculated. The mean value of each

feature and KL transformation have been performed, the

resulting covariance matrix of Y has been analyzed.
According to the nature of those features, we divide them
into four categories [10]: characterize of local composi-
tions of amino acids, characterize patterns of local
regions, characterize propensities of IUP, characterize
physiochemical properties of local regions.

Evidently, there are four different hydropathy scales
which result in four features regarding amino acid hydro-
phobicity property. These features are correlated with each
other. The correlation factor p,, of two features X and Y
can be obtained by the following equation:

p. = E[XY]—E[X]E[Y]
T JEx2-ex) Y 2y

Among those four features, we choose the best one by
using decision rule based on PCA. It turns out the Kyte-
Doottle scale generate the best feature compared to the
other three scales on IUP prediction [10].

(11)

http://www.biomedcentral.com/1471-2164/9/S2/S8

After our feature selection procedure, we decide to use 59
selected features as input to our classifier. These features
describe the amino acid compositions, hydropathy, com-
plexity and IUP propensities from sequences. The experi-
mental results show that these 59 features turn out to
produce the best predicting accuracy for IUP classifier. The
selected features are also cross checked with AAIndex

http://www.genome.jp/aaindex/ so that they are biologi-

cally significant.

IUP predictor

We use the Recursive Maximum Contrast Tree Classifier
(RMCT) we developed before [8-10]. This classifier uti-
lizes K-Nearest Neighbour Classifier [12], where the near-
est neighbours are defined by the tree structure [8-10,12].
After constructing the RMCT using the training data, the
resulting tree can be used as a 2-class classifier. We define
IUP residues as class 1, and structured protein peptide res-
idues as class 0. K majority voting principle guides classi-
fication with RMCT on tree nodes. We calculate the
distances between a test instance and instances in the
training dataset by a distance measure D(n). We sort the
distances in ascending order and get the first K minimum
distances as our K decision-making instances in a tree
node. Then the class label of the test instance is assigned
according to the majority voting of class labels from these
K decision-making distances.

Detecting IUP is measured by the value P(L = 1) that is
given by K majority voting rules based on the training
instances and therefore is a real number between zero and
one. AS shown in Figure 1 shows the IUP predictor inter-
face, the y-axis on low-left window represents P(L = 1),
while the x-axis represents the residue location (starting
from number 1 to M - the length of sequence). P (L = 1)
actually reflects a "probability" that a test instance is clas-
sified as class 1. If P(L = 1) is great than 1/2 by the K
majority voting rule as described above, then this test
instance should be classified as class 1, and if it is less than
1/2, it should be classified as class 0 (Default threshold
value is set as 1/2). However such threshold can be adjust-
able in IUP classifier. The general rule for classification is
that if P(L = 1) is greater than the threshold value
(between 0 and 1), then the test instance is classified as
class 1, otherwise it is classified as class 0. If we decrease
the threshold value from 1/2, then more class 1 test
instances can be detected. The trade off is that statistically,
more class O instances are wrongly classified as class 1.
Increasing the threshold has the effect of increasing the
false negative rate and reducing the false positive rate. Var-
ying threshold values is an essential technique in obtain-
ing Receiver Operating Characteristic (ROC) curves. Once
we set up a threshold value as the boundary, a test
instance can be assigned a class label at each of the root,
child and grandchild node (when N = 3) in RMCT classi-
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fier [8-10]. Finally classification decision (for N > 1) is
made by the majority voting from the class labels of those
nodes after each node has already made its own decision
based on majority voting from the decision making
instances in each node. Therefore, adjustable parameters
in the IUP predictor are the window length L (used in gen-
erating features), the number of decision-making
instances K in each node on RMCT and number of tree
nodes participating in final classification decision (N).

Ensemble methods

The performance of IUP predictor can be improved using
ensemble methods; a diverse class of methods that seek to
combine the decisions of several classifiers in order to
improve classification accrues [12-15]. We exploited the
implementation of combing boosting with bagging to
improve prediction accuracy.

Combing Boosting with Bagging

We developed the Boosting with Bagging algorithm.
Boosting is an algorithm that can be used to improve the
performance of a classifier. While the original Boosting
algorithm is due to Schapire [13], later Freund and Scha-
pire introduced an improved algorithm called Adaboost,
which was designed to handle 2-class classifiers. There
were several extensions to the multi-class case, including
Adaboost.M1 [14]. As we are interested in incorporating
useful confidence information into IUP classifier, we
combine bagging with a generalization of Adaboost.M1
called the CBoost algorithm [15] that allows confidence
information to be incorporated. Our combined CBoost
with bagging algorithm emphasizes on weaker learner for
each boosting run.

Assuming we have N training instances, then we construct
classify f (x;). Class label y; is either 0 or 1. The square
error of classify f (X;) is given by each boosting round,

The training set is denoted as T = {(x; y,), i = 1,... N} where

http://www.biomedcentral.com/1471-2164/9/S2/S8

x; is a feature vectors and y; corresponds to a class label.
The boosting approach constructs a sequence of functions
(also known as classifiers or hypotheses) h( x ), indexed
by the parameter t; given by an instance (x; y). The kt

component of h( X ) reflects the confidence of the classi-
fier that label k corresponds to the true class label y. The
components of h( X ) are normalized, so that h( X ) speci-

fies a distribution over labels. Associated to each

instance(x; y;) is a weight w;, which, when normalized,

yields a probability distribution { P/ , i =1,... N} over the
training data. This distribution is supplied to the "subrou-
tine" that actually constructs the classifier associated with
boosting round t. The "subroutine" then uses these
weights to construct the classifier h( X ). The error of the

classifier constructed on round t are identified, and h( X )
relative to the distribution supplied on round t, and { P }

are calculated. The coefficient of the classifier h( x ) in the
combined hypothesis can then be calculated. The weights
are then updated using the update rules. Those weights
corresponding to instances x for which h(x) assigns a
large probability mass (near 1) to the correct class are
decreased substantially more than those for which h( x)
assigns a small probability mass. It follows that the distri-

bution P/ becomes more concentrated on those

instances that have a high rate of misclassification. We
then classify an attribute vector x by computing the linear

combinations of h( X ). This procedure is combined with
bagging.

Bagging with CBoost can reduce variance error but not
affect bias error [10]; this algorithm averages the predic-
tions of several classifiers and then assigns the class label
that is closest to the average.

Conclusion

We applied our IUP predictor to the problem of identify-
ing both IUP and structured regions in proteins. We have
developed a new ensemble method called bagging with
CBoost; that have improved the overall performance of
our IUP predictor. We find that both feature selection and
ensemble methods improve the performance. Also we
find that extracting features based on physiochemical pro-
prieties proved beneficial. Augmenting features derived
from physiochemical proprieties of amino acids (such as
hydrophobicity, complexity, etc.) followed by and feature
selection step, and developing bagging with CBoost algo-
rithm significantly improve the predicting accuracies on
both IUP and structured proteins. Those are the key inno-
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vations of this version of IUP predictor. Because perform-
ance of IUP is on par with PONDR, IUP is a viable
alternative predictor that can be useful in structural
genomics.

Results

Data

Both IUP and structured protein training data are selected
from the Protein Data Bank (PDB) based on X-ray crystal-
lography or other reliable experimental results. IUP resi-
dues are verified in PDB as missing coordinates in X-ray
crystallography data. The selected structured protein
sequences consist of 290 non-redundant sequences and
are completely folded proteins with stable 3D structures,
and resolutions better than 2A. Their pair-wise sequence
identities are less than 25% (PDB SELECT25).

Experimental results

Structural information on IUP and structured proteins for
training are cross verified using PDB to ensure the reliabil-
ity of training data. The test dataset are out of sample data.

It appears that the performance of the IUP predictor
depends on several parameters, including the window
length L for feature generation, the number of decision
making instances K inside a RMCT tree node and the
number of tree nodes N that are used for decisions. Exper-
imental results indicate that N is least sensitive and L is
most sensitive, therefore, we focused on a series of exper-
iments using a variety of different window L lengths L and
decision-making instances K.

We performed the experiments to test how the number of
decision-making instances affects the performances of
IUP prediction. As shown in Table 3, The classifier
achieved the best performance in detecting IUP regions
when the number of decision-making instances K equals
to 9. However, the performance of identifying structured
residues increases as K increases (monotonic increase
function). To balance the predicting accuracies between
IUP and structured residue simultaneously, we set K= 21
as default value in our predictor, as this value appears to
offer best overall classification accuracy.

Window length L significantly affects the performance as
showing in Figure 2. The performances on IUP prediction
is marked in blue, while pink line is the performance on
predicting structured residues. Yellow line represents the
overall accuracy. In Figure 2, we set our default window
length L = 10, as this value appears to give a best overall
result. Default value for N is set at N = 3.

We made several observations, namely:

http://www.biomedcentral.com/1471-2164/9/S2/S8

Table 3: The effect of decision-making instances (K) on the
performance of IUP

K TP (IUP) TN (Order) Average accuracy
3 0.8031 0.7183 0.7607
5 0.8014 0.7336 0.7675
7 0.804 0.7349 0.7694
9 0.8106 0.7414 0.776
Il 0.8036 0.7453 0.7744
13 0.8015 0.749 0.7752
15 0.8023 0.7514 0.7768
17 0.8025 0.7536 0.778
19 0.8024 0.7575 0.7799
21 0.8005 0.7597 0.7801
23 0.7964 0.7624 0.7794

= When the window length for extracting feature is less
than 4, the predictor almost cannot identify any IUP
region. This implicitly suggests existence of local force on
each residue, and this force determines the fold of protein.
It also indicates that a structural or functional motif con-
tains several or more amino acid residues; window length
L should not be too short. It should not be too long as a
long sequence may contain several different structural or
functional domains or motifs.

* When window length L is approximately 10, the true
positive rate reaches a maximum; beyond that, the true
positive rate decreases as the window length increases.

= The average accuracy reaches a maximum when window
length is approximately 12; beyond that, the average accu-
racy keeps decreasing.

= The true negative rate increases when window length L
increases; after L is approximately increased to 28, the rate
drops.

09 {—%

——TPR
s—TNR
Accuracy

06 —
05
0.4
0.3
0.2

Performance

—1_ |

—

0 5 10 15 20 25 30 E3)
Window Length

Figure 2
The effect of window length for feature extraction on the
performance of IUP.
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= True positive ® True negative

Experimental results (%)

IUP DisEMBL GlobPlot PONDR VLXT
Figure 3

Comparison of our predictor (IUP) to DisEMBI, GlobPlot
and PONDR VLXT.

= The three rate curves (true positive, true negative, over-
all) are crossed approximately at window length 14 (See
Figure 2).

We compared IUP performance against other predictors
such as PONDR, GlobPlot and DisEMBL. Both GlobPlot
and DisEMBL are developed by European Molecular Biol-
ogy Laboratory (EMBL). While DisEMBL is based on the
neural networks, GlobPlot is a single-feature (IUP propen-
sity) classifier for IUP prediction. PONDR is predictor
mainly based on neural network algorithm. In order to
reliably test the performance of our IUP predictor, the test
data was completely out-of-sample "blind" data and con-
sist of 255 both IUP and ordered proteins. The prediction
and comparison results are illustrated in Figure 3. The test
result indicated the IUP predictor reached the same per-
formance level of the most popular predictor PONDR and
outperformed disEMB, and Globplot. For many test
sequences, we found the ITUP predictor performed best,
while for many others, PONDR performed best. This sug-
gested that our IUP predictor is a viable alternative to the
most popular predictor - PONDR.
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