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Abstract

of the largest mammals on earth.

Background: Whales have captivated the human imagination for millennia. These incredible cetaceans are the only
mammials that have adapted to life in the open oceans and have been a source of human food, fuel and tools
around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin
and ability to regulate their body temperature in cold water.

Results: We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of x13 ~x17
coverage and perform resequencing technology without a reference sequence. Our results indicated the time to
the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 — 3.9212)
million years ago. Further, we found that genes associated with epilation and tooth-development showed
signatures of positive selection, supporting the morphological uniqueness of whales.

Conclusions: This whole-genome sequencing offers a chance to better understand the evolutionary journey of one
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Background

Cetaceans (whales, dolphins and porpoises) are a group
of secondarily adapted marine mammals with a history
of transition from terrestrial to aquatic environments.
Although the exact origin and evolutionary history of
cetaceans remains unclear, a widely accepted view is that
their terrestrial ancestors returned to the seas around
50 Mya (million years ago) and finally diversified into
a group of fully aquatic mammals [1]. These include
nearly 85 species that can be subdivided into two subor-
ders, the Mysticeti (baleen whales such as right whale,
blue whale, humpback whale, and minke whale) and the
Odontoceti (toothed whales such as sperm whales and
dolphins), which arose from a common Eocene ancestor
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around 34 Mya. In spite of their variation in body size,
all modern cetaceans are relatively similar in shape.
Aquatic life poses numerous challenges for mammals
that were originally adapted for life on land [2]. There-
fore, many features that were common in land mammals
have changed in the evolutionary process that led to
cetaceans. Cetaceans, as a result, lack a hair coat, pre-
sumably an adaptation to reduce friction and improve
locomotion, and they regulate their body temperature in
energetically challenging environments for endotherms
using the mechanism such as the insulating layer of
adipose tissue [3,4]. Moreover, the mysticetes, compared
to odontocetes, lack an adult dentition but instead
acquired a novel filter feeding mechanism using baleen
plates to filter feed for bulky prey, and ultimately, this
key specialization, permitted the evolution of gigantic
body size, a hallmark of modern baleen whales [5-7].
Recently, Yim et al. [8] reported the whole genome
sequencing and de novo assembly of the minke whale
genome that support the hypotheses regarding adaptation
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to hypoxic resistance, metabolism under limited oxygen
conditions and the development of unique morphological
traits. They used a high-depth male minke whale sequence
(128x average depth of coverage) to assemble the draft
genome. In addition, a high-quality draft genome and
three re-sequenced genomes of baiji (Yangtze River dolphin)
were reported to reveal potential molecular adaptations
of cetaceans to secondary aquatic life such as a decrease
in olfactory and taste receptor genes and changes in
vision and hearing genes [9].

In this paper, we use novel methods to analyze rese-
quencing data from four common minke whales to
reveal important insights into their evolutionary history
without the need for a reference sequence. We identified
genes common to cetaceans with accelerated rates of
evolution when compared with other mammals, which
are likely to control cetacean specific traits.

Results and discussion

Genome assembly, gene prediction and variant detection
DNA from four common minke whales from the Northeast
Pacific were sequenced using the Illumina HiSeq 2000
whole genome shotgun sequencing protocol. The contig
information of each common minke whale sample was
generated from error corrected reads using the Allpath-
LG algorithm [10] and is described in Additional file 1:
Table S1. One sample (S30) showed better assembly
statistics in comparison to the other three samples.
Considering the contigs longer than 2,000 bp, the gen-
ome assembly of the S30 sample had 262,747 contigs
(maximum length: 105,339, N50 length: 10,321 bp, total
residue count: 2,010,222,571) with 15,243 N bases. This
covered approximately 67% of the estimated common
minke whale genome of 3 Gbp. The various repeat
elements of the genome (SINE, LINE, etc) identified by
RepeatMasker are shown in Additional file 1: Table S2.
Gene prediction results from masked genome sequences
of each sample are described in Additional file 1: Table S3.
Using the gene predictions based on Augustus [11] and
blastp [12] searches, we were able to classify contigs
from each sample into four categories (Additional file 1:
Table S4). After merging, extension and a bridging
process based on the S30 genome assembly and the
three other samples, we created a consenus genome as-
sembly of the common minke whale. The combined
genome assembly had the same maximum length as the
S30 genome assembly but the N50 length and average
length were slightly increased to 10,400 bp and 7,727 bp,
respectively. In addition, the genome coverage was in-
creased from 67.0% to 73.7% with 23,031 genes from
BlastP. Summary statistics of the combined common
minke whale genome assembly are shown in Additional
file 1: Table S5 and the repeat elements are described in
Additional file 1: Table S6.
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The results of short read mapping obtained using
Bowtie2 [13] are shown in Additional file 1: Table S7
and Additional file 1: Figure S1. Unified genotyper
detected 554,937 small InDel variants and 5,137,672
Single Nucleotide Variants (SNVs). After filtering the
variants, 389,542 InDels and 3,730,122 SNVs remained
(detailed filtering options described in Methods). The
number of variants in each sample is shown in Additional
file 1: Table S8.

Comparison to the previous genome assembly analysis
The assembly metrics showed the smaller number of
contigs (262,747 vs 278,792), shorter genome length (by
0.2 Gbp), more genes predicted (by 2,426), but similar
proportion of repeat elements and raw reads realign-
ment rate (approximately 91% on average) compared to
the previous version of genome assembly.

We then performed re-sequencing analysis using the 1)
reported draft of common minke whale genome [8] and 2)
our assembled scaffolds as reference to call SNP genotypes
of our 4 common minke whale samples to examine the
concordance between two studies (Additional file 1:
Table S9). The number of matched loci was 550,202 and
the genotype concordance was 97.95% on average. This
concordance rate may indicate that our assembly metrics
are comparable to the previous study of minke whale
genome with high-coverage data and various libraries.

Evolutionary phylogenetic relationships of baleen whales
Using four different methods (Bayesian coalescent
approaches, Bayesian inference, maximum likelihood,
and neighbor-joining methods), we reconstructed an
evolutionary phylogenomic tree from 22 mitochondrial
genome sequences consisting of 4 newly determined and
18 published sequences of the baleen whales (Figure 1 and
Additional file 1: Figure S2 and Table S10). Kogia breviceps
(Odontoceti, Kogiidae) was used as an outgroup. Common
minke whales (Balaenoptera acutorostrata) diverged from
a single maternal origin approximately 2.3574 (95% HPD,
1.1521 — 3.9212) Mya and were closely related to Antarctic
minke whale (Balaenoptera bonaerensis). The time to
the most recent common ancestor of the baleen whales
was estimated to be about 28.7671 (95% HPD, 28.0336 —
31.0237).

Genes showing accelerated evolution in the common
minke whale lineage

Taking into consideration the phylogenetic relationships
among baleen whales, we next searched for genes that
could possibly explain the specific characteristics of
common minke whale. We identified 5,539 orthologous
genes from 8 species (human; Homo sapiens, mouse;
Mus musculus, dog; Canis familiaris, horse; Equus caballus,
pig; Sus scrofa, cow; Bos taurus, dolphin; Tursiops
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Figure 1 Bayesian maximum clade credibility phylogenomic tree derived from mitochondrial genome sequences (16,435 base pairs) of
22 baleen whales. Kogia breviceps (Odontoceti; Kogiidae) was used as an outgroup. The data set was also phylogenetically analyzed with BI, ML,
and NJ methods and identical topology was produced. Node bars correspond to the 95% HPD for TMRCA of nodes and the numbers on the
nodes represent (left to right): posterior probabilities (=0.80) for Bayesian inference tree, bootstrap values (270%) for maximum likelihood tree,
and bootstrap values (270%) for neighbor joining tree. The scale bar represents time in million years before present (MYBP).

truncatus, and common minke whale; Balaenoptera
acutorostrata) to measure the rate of evolution using
the ratio of nonsynonymous to synonymous substitution
rate (dN/dS) analysis. Using a branch model with F3X4
codon frequencies (model =2, NSsites =0), we found
249 common minke whale genes that were significantly
accelerated compared with the other mammal species
(Figure 2). To understand the functional significance of
these genes, we performed an enrichment test of Gene
Ontology (GO) terms for biological processes. The
genes were enriched in the function related to Wnt
receptor signaling pathways (GO:0016055, P = 0.0299, 6
genes) (Additional file 1: Figure S3). The WNT gene
family consists of structurally related genes that encode
secreted signaling proteins. These include WNT4, WNT5A,
WNT7A, WNT10b, and WNT1I11, and are important in
skin development and also maintaining the hair-inducing
activity of the dermal papilla [14,15]. In addition, SFN is a
cell cycle regulator involved in epithelial keratinization
and is expressed primarily in epithelial cells [16]. A muta-
tion in this gene was found to be responsible for the
repeated epilation phenotype [16,17]. These accelerated
genes may have played partial roles in the evolution of
skin, hair loss, and baleen plates in baleen whales. Another
interesting gene, neuropeptide Y (NPY), is a neurotrans-
mitter in the brain and ubiquitously distributed in both
the central and peripheral nervous systems [18]. NPY is

known to produce thermogenesis through brown adi-
pose [19] and thus influences thermoregulation [19-21].
This gene likely reflect the physiological activities re-
quired for adaptation to underwater environment, such
as cold temperature.

Genes under positive selection during speciation of
dolphins and common minke whales

We then investigated the genes under positive selection
between whales and dolphins using the McDonald and
Kreitman test (MKT), which is one of the most powerful
and extensively used tests for detecting signatures of
natural selection at the molecular level [22]. Among
11,698 orthologous genes in dolphins and common
minke whales, we found evidence for significant positive
selection in 13 genes (SNDI, ELMSANI, GDII, AGA,
EIF3F, GLUL, ENSTTRT00000001243, USP7, RBL2, PLK1,
HPN, EGRI, and ZNF423). These genes reflect a paucity
of nonsynonymous polymorphism relative to nonsynon-
ymous divergence and thus is indicative of positive
selection. Previously, EGRI was identified as one of genes
differentially expressed in bowhead whales, another baleen
whale species, compared to other mammals [23]. EGRI
encodes a zinc-finger transcription factor and regulates
cell growth and differentiation [24,25]. It is highly
expressed during tooth development by cells of the
enamel epithelium and the dental mesenchyme, and
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Figure 2 Phylogeny of the eight mammals used in the dN/dS analysis. The bar charts indicate the individual dN/dS (red) and dS (blue)
values for each of the eight mammals. The dN/dS and dS values represent the time period of each of the eight individual lineages.
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may be a key mediator of anabolic response in cemento-
blasts [26,27]. RBL2 is associated with developmental
delay of tooth germs and hair follicles [28]. Mutation in
AGA causes a heritable lysosome storage disorder and is
associated with changes in the facial skin, dental arches
and occlusion [29,30]. Mysticeti today have baleen and
lack teeth as adults, whereas Odontoceti is the clade of
living toothed whales [6]. Although the roles of these
genes remain incompletely understood, we speculate
that this series of genes may support the transition from
tooth-aided predation to filter feeding using baleen.

Conclusions
The draft common minke whale genome sequence sup-
ports further evolutionary and comparative genomics
studies of the baleen whales. The common minke whale
seems to benefit from positive selection on specific
genes functioning in the hairless body and thermoregu-
lation. The presence of this benefit is supported by the
detection of higher measure of adaptive evolution in
protein-coding sequences.

Comparative genomics is a promising tool for deter-
mining the genetic basis of biological functions. Sequen-
cing more mammalian genomes will facilitate our ability

to annotate the human genome more thoroughly. So far,
however, only a few mammals have had their complete
genomes sequenced, and clearly, more data are necessary
for carrying out detailed mammalian genomics. The pri-
mary limitations are due to the extreme cost and amount
of time needed to sequence and assemble very large
genomes that would be suitable for such analyses [31].
Despite relatively low sequencing depth, the assembled
contigs and scaffolds of the common minke whale gen-
ome were sufficiently long to allow us to perform our
gene prediction and comparative analyses. Our capability
to generate and assemble a draft sequence for an entire
mammalian genome indicates that such technology can be
used to generate many other mammalian genome draft
sequences in a time- and cost-effective manner.

The common minke whale genome provides unique
insight into the origin and evolution of the baleen whale
lineage, especially with continued refinements in the
assembly and extensive functional analysis.

Methods

Common Minke whale genome sequencing and assembly
Four individual common minke whale samples (S30, S34,
S35, and S37) were collected from the Whale Research
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Institute at the National Fisheries Research & Develop-
ment Institute (NFRDI), Korea. The samples were
caught incidentally by fishing net in Hupo, Ganggu,
Pohang, and off the east coast of Korea, and were do-
nated to NFRDI for research purposes. The process was
guided and investigated by the coast guard, Cetacean
Research Institute and Fisheries Cooperation Associ-
ation. DNA was extracted from the muscle tissue of
each common minke whale, and paired-end libraries
were constructed with insert sizes of about 270 bp and
480 bp. Then 101 cycle paired-end sequencing was con-
ducted using the I[llumina HiSeq 2000 sequencer. The
data are listed in Additional file 1: Table S11.

FastQC [32] was used to check the quality of the raw
read data, and sequencing errors were discarded using
the error-correction module of Allpaths-LG [10]. Fq2fa
was used to merge error-corrected paired-end reads of
each sample into one shuffled-form fasta file, with a filter
option for filtering N bases in the reads. We assembled
error-corrected paired-end reads using IDBA_UD [33]
with the option of pre-correction and kmin = 40. Gaps (N
bases) in assembled sequences were filled using Gapcloser
[34] with parameter k value =31. We carried out a gen-
ome assembly for the S30 sample using CLC Assembly
with minimum contig lengths = 2000, similarity = 0.85,
length fraction = 0.5, insert cost = 3, deletion cost = 3, and
mismatch cost = 2.

Before gene prediction of the assembled sequence,
sequence patterns including repeats were screened using
RepeatMasker [35] with mammal species and the no-low,
and no-is options. Augustus [11] was run across the repeat
masked sequence for gene prediction, and the results were
used as the input for a BLASTP [12] search. The results of
the BLASTP search were filtered by length (peptides of
more than 100 amino acids) and gene coverage (over 70%
without gap).

The overall processes of genome assembly and gene
prediction are shown in Additional file 1: Figure S4A.
To maximize the gene contents of the genome assembly
and construct the representative genome assembly of
the four common minke whale genomes, we combined
the assembly results from each sample. The process is
described in further detail in Additional file 1: Figure
S4B. All predicted gene sequences (>100 amino acid
sequences) were merged and used as the BLASTP DB.
Next, we queried the gene sequences of each sample
against the DB and filtered BLASTP results (identity > 95%,
70% < q.cov and s.cov < 130%). Every contig from each
sample was classified into four groups (contigs without
genes, contigs with sample-specific genes, contigs with
only one gene, and contigs with multiple genes). Based
on the genome assembly of the S30 sample, which
showed the best result from among the four samples
(N50 length, N contents, coverage, maximum contig

Page 5 of 8

length), we added the contigs to the sample-specific
genes from the other samples. We conducted multiple
sequence alignments for clustered contigs from each
group (contig with only one gene and contig with multiple
genes) using ClustalW [36]. Contig extension and bridging
were conducted based on the S30 contigs, or consensus
sequence (if there was no S30 contig) in the cluster. The
contig extension and bridging process is described in
Additional file 1: Figure S5. The combined genome
sequence was masked, and genes were predicted using
the same process as in Additional file 1: Figure S4A.

The short reads were mapped to the combined assem-
bled genome using Bowtie2 [13] with the default option.
Alignment of the SAM file and removal of duplicated
reads were conducted using Picard (http://picard.source-
forge.net) and SAMtools [31]. Local realignment was
conducted using the Genome Analysis Toolkit (GATK)
[37] and SNPs were extracted from the reads alignment
file using UnifiedGenotyper, based on multi sample call-
ing. Detected variants (QUAL <30, QD <5, FS> 200,
MQO >4, MQO/DP >0.1) and missing variants (which
were found in one sample) were discarded from further
analysis. The overall variant-calling process using GATK
is shown in Additional file 1: Figure S4B.

Resequencing analysis based on the previously re-
ported draft genome was performed to compare SNP
genotypes of each sample that were called upon using
reported draft genome and our assembled scaffolds as
reference. Using LAST [38], we redefined the coordinate
of our assembled scaffolds according to the reported draft
genome. The following parameter options were adopted:
-c —m1111110 and ‘-q3 —e35.” We then isolated the loci
that were exactly matched and calculated SNP genotype
concordance for each sample.

Phylogenomic analyses

The data matrix for the phylogenomic analyses consisted
of four newly determined and 18 published mitochondrial
genome sequences of baleen whales: 2 eschrichtiids, 14
balaenopterids, 2 neobalaenids, and 4 balaenids. Here,
Kogia breviceps (Odontoceti, Kogiidae) was used as an
outgroup. The mitochondrial genome sequences were
initially aligned using MAFFT v6 [39] and then corrected
by visual inspection. The final alignment included 16,435
nucleotides.

The phylogenomic analysis was carried out using the
BI, ML, and NJ methods. We chose the best-fit model of
nucleotide substitution with the standard ModelTest
PAUP block in PAUP 4.0b10 [40] and Akaike’s infor-
mation criterion (AIC) in ModelTest 3.7[41]; GTR +
I + G was selected as the best evolutionary model. The
uniformed BI analysis was implemented using MrBayes
3.2.1[42] with the GTR +I+ G model. For the parti-
tioned model approach of BI analysis, mitochondrial
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genomes were divided into 18 partitions and the
following models were applied: GTR + I + G for the 12§
rRNA, 16S rRNA, COX1, and 22 tRNAs regions; SYM + I
for the 2 STS region; TVM+1+G for the NADH],
COX3, NADH4, and Control regions; HKY + G for the
NADH?2, ATPase8, and NADHA4L regions; TVM + G for
the COX2 region; HKY +I1+ G for the ATPase6 and
NADH6 regions; TVM +1 for the NADH3 region;
K8luf+ I+ G for the NADHS5 region; TrN + G for the
Cytb region (Additional file 1: Table S12). Each analysis
consisted of 20,000,000 generations with a burn-in of
20,000 and a sample frequency of 500. Bayesian poster-
ior probability (BPP) values are shown on internal
nodes to indicate the robustness of the phylogenomic
analysis.

ML analysis was performed using PHYML 3.0[43] with
a BIONJ starting tree under the GTR model and non-
parametric bootstrap analysis was conducted with 500
pseudoreplicates. The proportion of invariable sites and
gamma shape parameter were estimated from the data-
set and the number of substitution rate categories was
set to 6. The tree topology optimization was chosen.

NJ analysis [44] was conducted using the PHYLIP
package 3.69 [45], based on Kimura’s [46] two-parameter
distance. Ts/Tv ratios (10.10) were estimated from the
data set using PUZZLE 4.0.2 [47] and then were used as
inputs for the SEQBOOT, DNADIST, NEIGHBOUR,
and CONSENS programs of the PHYLIP package. A
bootstrap test (with 1,000 pseudoreplicates) [48] was
performed to determine the statistical support for each
node of the NJ tree.

Co-estimation of evolutionary rates, TMRCA

To co-estimate the evolutionary rates and times to the
most recent common ancestor (TMRCA), Bayesian
coalescent approaches were implemented in BEAST
1.6.2 [49]. Crown Cetacea was calibrated based on the
oldest mysticete fossil Llanocetus [50,51] (34 Mya, 35
mean, 1.0 SD. The age of the basal of the crown Mysticeti
was calibrated based on an unnamed balaenid from New
Zealand [52] (28 Mya, 29.0 mean, 1.0 SD). Kogia breviceps
(Odontoceti; Kogiidae) was used as an outgroup. The
analysis was conducted under the GTR + I+ G model,
nst = 6, and rates = gamma derived from AIC in ModelTest
3.7 [41]. We employed relaxed uncorrelated lognormal for
molecular clock model and Yule process for tree topology
prior. The data sets were each run for 20,000,000 genera-
tions to ensure convergence of all parameters (ESSs > 200)
with discarded burn-in of 10%. The resulting convergence
was analyzed using Tracer 1.5 (http://beast.bio.ed.ac.uk/
Tracer) and the statistical uncertainties were summarized
in the 95% highest probability density (HPD) intervals.
Trees were summarized as maximum clade credibility
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trees using the TreeAnnotator program, which forms
part of the BEAST package, and were visualized using
FigTree 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

dN/dS ratio of orthologous genes

We used protein and reference cDNA sequences of human,
mouse, dog, pig, cow, horse, and dolphin from Ensembl
[52] and the common minke whale from our results. We
used Hcluster_sg [53] to generate clusters based on BLAST
2.2.27 + [54] results. Then we generated multiple align-
ments for input into Mestortho [55] using PRANK31 [56].
Mestortho was used to identify the 1:1 orthologs of all eight
species. As a result, 5,539 1:1 orthologs were identified and
used to estimate the synonynous and nonsynonymous sub-
stitution rates. We obtained phylogenetic tree information
from Timetree (www.timetree.org). Orthologous gene sets
were aligned using PRANK31 [56], and poorly aligned sites
were eliminated using Gblocks [57]. We used the ML
method from codeml of PAML 4 [58] to estimate the dN
(the rate of non-synonymous substitution), dS (the rate of
synonymous substitution), and « (the ratio of non-
synonymous substitutions to the rate of synonymous sub-
stitutions) with F3X4 codon frequencies under the branch
(model =2, NSsites=0) and basic models (model =0,
NSsites = 0). Results from the branch model were filtered
with dS >3 or dN/dS > 5. A log likelihood ratio test (LRT)
was performed to compare these models; FDR adjustments
for multiple testing corrections were applied [59], and a sig-
nificance level of P < 0.05 was used.

McDonald-Kreitman test

We used the protein and reference cDNA sequences of
common minke whales and dolphins. We used the RBH
method from BLAST 2.2.27 + [54]. As a result, 11,698
1:1 orthologs for the two species were identified. We
generated multiple alignments using PRANK31 [56] and
eliminated poorly aligned sites using Gblocks [57] before
performing a standard McDonald-Kreitman test [22].

Additional file

Additional file 1: Figure S1. Summary of read mapping to three
assembled genomes using Bowtie2. Figure S2. Bl tree using the partitioned
model approach. Here the complete mitochondrial genome sequences were
divided into 18 partitions. Figure S3. Biological Process of Gene Ontology of
common minke whale showing 249 accelerated genes among 8 mammals.
Figure S4. Overview of the assembly, gene prediction and variant calling
process. Figure S5. Process of contig extention and bridging. Table S1.
Summary statistics of common minke whale genome assembly by sample.
Table S2. Summary of RepeatMasker results by sample. Table S3. Summary
of gene prediction results using Augustus and Blastp. Table S4. Contig
classification of the four samples. Table S5. Summary statistics of the
combined common minke whale genome assembly. Table S6. Summary of
repeat masking results using RepeatMask. Table S7. Summary of read
mapping using Bowtie2. Table S8. Summary of variant calling results using
GATK. Table S9. The result of SNP genotype concordance between using
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the reference of 1) reported draft genome and 2) assembled scaffolds of our
study. Table S10. Species name of the sequences used in the present study
with the GenBank accession numbers. New sequences obtained in this
study are marked with an asterisk (¥). Table S11. Sequencing results of the
four common minke whale samples. Table $12. Best fitted model of each
MT genomic region of the whales.
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