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Abstract

Background: In bacterial genomes, the compactly encoded genes and operons are well organized, with genes in
the same biological pathway or operons in the same regulon close to each other on the genome sequence. In
addition, the linearly close genes have a higher probability of co-expression and their protein products tend to form
protein—protein interactions. However, the organization features of bacterial genomes in a three-dimensional space
remain elusive. The DNA interaction data of Escherichia coli, measured by the genome conformation capture (GCC)
technique, have recently become available, which allowed us to investigate the spatial features of bacterial genome
organization.

Results: By renormalizing the GCC data, we compared the interaction frequency of operon pairs in the same
regulon with that of random operon pairs. The results showed that arrangements of operons in the £ coli genome
tend to minimize the spatial distance between operons in the same regulon. A similar global organization feature
exists for genes in biological pathways of E. coli. In addition, the genes close to each other spatially (even if they are
far from each other on the genome sequence) tend to be co-expressed and form protein—protein interactions.
These results provided new insights into the organization principles of bacterial genomes and support the notion

of transcription factory.

biological function.

interactions

Conclusions: This study revealed the organization features of Escherichia coli genomic functional units in the 3D
space and furthered our understanding of the link between the three-dimensional structure of chromosomes and
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Background

Thousands of genes are compactly encoded in bacterial
genomes and orchestrate life activities, such as DNA du-
plication, RNA transcription and protein translation.
The genes need to be well organized in the genome for
effective regulation of different biological processes. Bac-
terial genes are not randomly distributed on the genomic
sequence, but organized in sequential functional units
called operons [1]. The genes in an operon tend to be
co-expressed [1,2] and their protein products have higher
probability to interact with each other [3,4]. Operons
participating in the same biological pathway or regulon
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(a group of transcriptionally co-regulated operons) are
also close to each other on the genome sequence and
present in one or multiple clusters [5,6]. However, nu-
merous large regulons exist comprising multiple clus-
tered operons that are separated distantly on the genome
sequence. The organization of these long-range regulons
has been suggested to be related with the three-dimensional
packing of the chromosome, but this remains to be
examined [6].

In the past decade, the chromosome conformation
capture (3C) technique and its derivatives, such as 4C,
5C, Hi-C, and TCC [7], have been developed to detect
DNA-DNA interactions to infer the chromosome spatial
organization. The application of this technique in eukary-
otes resulted in the interpretation of contact patterns
between regulatory elements in the 3D space [8,9] and
provided substantial information about the principles
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of chromosomal organization [10,11]. However, the ap-
plication of 3C techniques in prokaryotes is still in its
infancy [12]. Recently, Cagliero and co-workers deter-
mined the chromosome conformation for Escherichia
coli growing at the exponential (L) and starvation (S)
phases using the genome conformation capture (GCC)
technique [13]. In this study, we attempted to use
these valuable datasets to investigate the spatial fea-
tures of bacterial genome organization.

Results and discussion
Renormalization and profile of the GCC data
We renormalized the GCC datasets using the following
steps. First, high-quality reads were mapped onto the
reference genome (E. coli K12 MG1655) using bowtie2
(version 2.1.0) [14]. The resulting contact counts were
further refined by setting the contact distance threshold
between the contact fragments to remove self-ligation, non-
ligation and random breaks (Additional file 1: Table S1).
The noise was removed by setting a minimum required con-
tact number through controlling the false discovery rate
(FDR; Additional file 1: Table S2, see Additional file 2). We
divided the genome into 10-kilobase (kb) bins to derive the
DNA interaction information [12]. At 10 kb resolution,
84.05% of the operons and 90.86% of the genes were inside
(not across) the bins. Considering that the uneven distribu-
tion of the restriction enzyme sites (RESs) can bias the
interaction frequencies, we normalized the interaction
frequencies by dividing the number of Hhal RESs for each
bin to remove this bias (Additional file 1: Figure S1) [12].
In the genomic interaction profile of the GCC dataset,
highly interacting DNA regions can be characterized by
the peaks (regions with markedly enriched read densities
[15]) in the genomic interaction profile of the GCC data-
set. Using the software MACS2 (version 2.0.10) [16], we
identified the peaks from the mapping results obtained
by Bowtie2 (Figure 1). Totally, there are 89 peaks for L
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and S phases, with 42 peaks shared, 15 specific for the L
phase and 32 specific for the S phase (Figure 2). The
gene functions in these peak regions were examined
using a cluster of orthologous groups (COG) functional
classification scheme (Figure 3, Additional file 3) and it
was found that the peak regions for the L phase were
enriched with genes of function ] (translation, ribosomal
structure and biogenesis), E (amino acid transport and
metabolism), and H (coenzyme transport and metabol-
ism), and the peak regions for the S phase were enriched
with the genes of function E (amino acid transport and
metabolism), P (inorganic ion transport and metabol-
ism), and C (energy production and conversion). As a
result, these specific gene functions could be interpreted
in terms of the physiological states of the two cellular
phases. That is, in the L phase, larger amounts of bio-
mass are required for cell growth and proliferation,
which require the coordination of the protein translation
and biogenesis genes. In the S phase, the transport path-
ways are highly coordinated as cells struggle to remain
alive.

Spatial features for E. coli genome organization

By considering the individual operons in each DNA bin,
the interaction frequencies between operons were de-
rived from the interaction information of DNA frag-
ments, and their connections to the operon organization
were investigated. The interaction frequencies between
operon pairs within a regulon were calculated and com-
pared with those of randomly sampled operon pairs with
similar sequence distances (with the same number of op-
erons in between), excluding O interaction counts. The
interaction frequency of an operon pair belonging to the
same regulon was significantly higher than that of a ran-
dom pair for both the L and S phases (Additional file 1:
Figure S2a). Furthermore, the remote operon pairs,
whose sequences were separated by at least 100 operons,
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Figure 1 The IGV display of reads mapping for exponential (L) phase and starvation (S) phases. The “distribution” tracks show the density
of mapped reads along the genome, visualized by Integrative Genome Viewer Integration (IGV). The “peaks” tracks show a high mapping
frequency of reads to a particular region (examples indicated by asterisks). Red and blue represent the L phase and S phase, respectively. As
shown to the right of this figure, the region of the selected PEAK (No. 45 in L, No. 49 in S) is shown as an example (3014-3017 kb). The middle
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Figure 2 The peak numbers identified by the program MACS.
15 peaks are specific for the L phase; 32 peaks are specific for the S
phase; 42 peaks are shared by both phases.

were also compared with random samples (Additional
file 1: Figure S2b). Notably, these remote operons still
showed higher interaction frequencies than the randomly
sampled operon pairs (with distance >100 operons) from
the entire E. coli genome. This finding indicated that the
DNA interaction-based genome architecture does contrib-
ute to the organization of operons into regulons. It also
explains the frequent occurrence of the large regulons
composed of multiple operons that are sequentially far
from each other, thus confirming the suggested functions
of 3D chromosome packing on the global organization of
operons [6]. We also found a similar phenomenon for
genes in biological pathways. The interaction frequency
between gene pairs in the same biological pathway was
significantly higher than that of gene pairs obtained ran-
domly from the genome for both phases (Additional file 1:
Figures S2c, d). This phenomenon was observed not only
in the overall gene pairs, but also in the remote gene pairs
with sequence separation of at least 100 genes. Taken to-
gether, the results suggested that not only operons in a
regulon but also genes in a biological pathway were likely
to co-localize in the 3D E. coli genome.

To examine the spatial features for E. coli genome
organization quantitatively, the C value was defined
based on the DNA interaction frequency to measure the
organizational compactness of the 3D genome at two
levels: the compactness of regulons in terms of the inter-
action between operon pairs, and the compactness of
biological pathways in terms of the interaction between
gene pairs. A lower C value indicated that the operons/
genes are more spread out and less compact in the 3D
space globally.

To determine if the actual genome organization in the 3D
space is coordinated compared with random arrangements,
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the genome was randomly shuffled (totally 1,000,000 times)
in different degrees (percentage X =10, 20, 30... 100), fol-
lowing a procedure similar to that previously reported [5].
We compared the arrangement of operons and genes in the
real and randomly reshuffled E. coli genomes for both the
overall operon/gene pairs and remote ones with sequence
separation of at least 100 operons/genes of distance in L and
S phases (see Methods). The results showed that the current
genomic arrangement of overall operons in genomes had
higher C values (the vertical dashed lines) than the vast ma-
jority of the values in the reshuffled genomes (colored solid
lines), in both phases (Figure 4a, b). Moreover, the higher
the percentage of randomly reshuffled operons, the larger
the decrease in the C value of the resulting rearranged gen-
ome. The relatively high C value for the actual genome ar-
rangement indicated that the actual arrangement of the
operons in the regulons in the real genome was more com-
pact than that in the randomly reshuffled genomes. Fur-
thermore, if only the remote operon pairs (with sequence
separation of at least 100 operons in between) were con-
sidered, this relation persisted (Figure 4c, d). This result
indicated that the compactness of the real genome was
not just a consequence of the interaction between linearly
close operons, but reflects the compactness of E. coli gen-
ome organization in the 3D space. Meanwhile, the gene
arrangement in the biological pathways showed a similar
trend. The actual genomic arrangement of the biological
pathways had higher C values (vertical dashed lines) than
the vast majority of those with different extents of reshuf-
fling (colored solid lines), for both the overall and remote
gene pairs (Figure 4e, f, g, h).

Implications for E. coli biology

The qualitative and quantitative results both indicated
that the previously reported organization principle of
E. coli genome on the linear sequence [5,6] could be
extended to the 3D space. The non-random organization
of the linear genome has several effects. For example,
neighboring genes on the genome have higher probability
of co-expression and their protein products tend to form
protein—protein interactions (PPIs) [5,17-21]. Here, we in-
vestigated if these effects persist in the 3D space.

We compared the Pearson correlation coefficients (PCCs)
of expression levels between the highly interacting
gene pairs and randomly sampled gene pairs, using the
Wilcoxon rank sum tests. The remote (at least 100 kb
far from each other on the genomic sequence) gene
pairs with the highest interaction frequency showed a
significantly higher co-expression than the five datasets
of randomly sampled remote gene pairs, for L (P<2.le—
166) and S (P<2.3e-118) phases (Figure 5). The results
suggested the co-expression of genes separated by a long
distance on the genome sequence but close to each other
in the 3D space.
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Figure 3 The proportions of COG functional categories in the highly interacting DNA fragments. The proportions of COG functional
categories for the E. coli genes in the highly interacting DNA fragments, measured in the L (left) and S (right) phases. The codes for the COG
functions are presented below the pie charts. Percentages given in the pie chart were calculated including categories R and S, and only

values 25% are shown.

J

To investigate the effect of 3D genome organization on
PPI, we compared the PPI occurrence in gene pairs with
different levels of DNA interaction frequency. Figure 6
shows that the quartile-based division has higher numbers
of PPIs in the highly interacting gene pairs for both
phases, with 423.09/422.51 PPI per million DNA-interacting
gene pairs in the 1** quartile level and 933.31/937.82 PPI per
million DNA-interacting gene pairs in the 4™ quartile level,
in the L/S phases (the corresponding P-values for the com-
parisons between quartiles are shown in Additional file 1:
Table S3). The increasing trend of the column bar height

from left to right indicates a positive correlation between
the DNA interaction frequency and corresponding PPI fre-
quency of their protein products. This correlation denotes
that the proteins encoded by the gene pairs of high DNA
interaction in the 3D space have higher probability of form-
ing a PPL This finding illustrates the connection between
the 3D genome organization and bacterial PPI formation.
For bacteria, the processes of transcription, translation,
and PPI formation cannot be entirely separated because
they lack a nuclear membrane. Thus, the connections ob-
served in this study among the spatial DNA interactions,
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(See figure on previous page.)

Figure 4 Distributions of C (compactness) values calculated for the actual and reshuffled genomes. In each panel, the x-axis represents
the C values of the genome in different conditions (L and S phases); the y-axis is the density. Both the “overall” and “remote” operon/gene pairs
in the regulons/biological pathways are illustrated respectively, where “remote” means an operon/gene pair whose sequences are separated by at
least 100 operons/genes in between on the genome sequence. The black vertical dash line shows the C value for the actual arrangement (in the
3D genome) of the overall/remote operons in regulons for the L phase (a)/(c) and S phase (b)/(d) or the overall/remote genes in the biological
pathways for the L phase (e)/(g) and S phase (f)/(h). The 10 colored curves in each panel show the distributions of the corresponding C values
for the randomly reshuffled genomes at different percentages (X% where X =10, 20... 100, from right to left), respectively. Each colored curve
was calculated using 100,000 random permutations of the current arrangement of the considered unit (operon or gene) in the genome.

gene co-expression and protein interactions were partially
interpretable in terms of cellular structure. These connec-
tions reflect the global genome organization features and
the unity of transcription and its downstream processes for
E. coli in the 3D space, which supports the notion of tran-
scription factory which was modeled for all genomes [22].

Conclusions

In summary, starting from the GCC data for E. coli [13],
the present analysis revealed certain spatial features of
the E. coli genome organization: i) the operons/genes are
not randomly distributed in the 3D space, but are con-
strained by regulons/bio-pathways to maximize spatial
compactness; ii) the genes close to each other in the 3D
space (even if far from each other on the genome se-
quence) exhibit trends of co-expression and formation
of PPIs. These findings are helpful in elucidating the
fundamental biology of bacteria, and support the con-
cept of transcription factory.

Methods

Renormalization of the GCC data

The GCC sequencing data for E. coli MG1655 at L (expo-
nential sample, WT) and S (serine hydroxamate-treated
sample, SHX) growth phases were obtained from the

NCBI SRA database. Only the first 70 bp of the whole
reads with high quality were mapped onto the E. coli
reference genome (Accession: NC_000913) using bow-
tie2 with the default parameters [14]. Unique matches
with score > 30 were used for further analysis. The gen-
ome was then divided into 32,802 Hhal restriction
fragments. The matched RESs in their 500-bp-long
flanking sequences were removed as random breaks
[23]. The read pairs were further refined by setting a
contact distance threshold (>800 bp) between the con-
tact fragment pairs to remove self-ligation and non-
ligation [24]. The basic interaction information on the
remaining DNA fragments is presented in Additional
file 1: Table S1. To differentiate the real contact from
background noise, the FDR was controlled [25]. By
controlling the FDR at < 0.1, the fragment pairs with at
least two contacts are non-random and thus were used
for the analysis [26] (see Additional file 2).

Considering the size of the operons and genes, the
genome was divided into 10-kb bins, and the interaction
frequencies for restriction fragments were assigned to
the corresponding bins [12]. f; is the interaction fre-
quency between bin i and bin j. For each bin, the inter-
action score is defined as the sum of the interaction
frequencies in that bin to reflect the interaction potential.
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-+ random data2
-+ random data3
random data4
random data5

;, (P<2.1E-166)

S-phase

= real data
---+ random datal
random data2
-+ random data3
random data4
-+ random data5

& (P< 2.3E-118)

T T T T T

and “random” data.

Co-expression between gene pairs

Figure 5 Co-expression of the remote interacting gene pairs in the L phase (a) and S phase (b). The top 10% highest interacting remote
gene pairs (black solid line), which are located at a distance of at least 100 kb from each other, are compared with the five datasets of
randomly sampled remote gene pairs (colored dotted line). P-values were calculated using the Wilcoxon rank sum test to compare “rea
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We observed a significant, positive correlation between
the interaction score and number of Hhal RESs for the
GCC dataset (Additional file 1: Figure S1). Therefore,
we normalized the interaction frequencies by dividing
the number of Hhal RESs for each bin to remove this
bias, following the method of a previous report [12].
The interaction matrix after normalization is presented
in Additional file 4.

The peaks in the genomic interaction profile were
identified using a previously published algorithm [16]. In
the algorithm, read distribution along the genome could
be modeled by a Poisson distribution [27] in which the
parameter A could capture both the mean and variance
of the distribution. Across the genome, we searched for
candidate peaks with a significant tag enrichment (Pois-
son distribution P-value based on \, P =102 in this work).

Derivation and handling of pathway and regulon data
The genome sequence and 4,639 annotated genes for E.
coli were obtained from the NCBI RefSeq. The 319 bio-
logical pathways of E. coli that involved gene number > 2
were obtained from the EcoCyc database [28]. A total of
2,647 operons and 193 regulons were obtained from the
RegulonDB database [29], and the 146 regulons with op-
eron number > 2 were used in our analysis.

For each regulon, the interaction frequencies between
operon pairs within it were calculated (excluding O inter-
action counts). The background noise was estimated by
randomly sampling operon pairs from the genome, keep-
ing the number of operons between the same as the real
interacting operon pairs. Using the Wilcoxon rank sum
test, the significance of the real interaction that deviated
from the random background was estimated and is
shown in Additional file 1: Figure S2. Similarly, the re-
mote operon pairs with a sequence separation of at least

100 operons were also compared with the random
background.

To characterize the 3D genome organization quanti-
tatively, we defined an indicator to measure the com-
pactness of the genome in the 3D space, based on the
DNA interaction frequency, similar to that in a previ-
ous publication [5]:

N
c:ZCi (1)

M;
G = Zf i )
j=1

where f;; is the interaction frequency between a gene/op-
eron pair (i, j) and is used as a proxy for the 3D distance
(the larger the f;; value, the smaller the distance in the 3D
space), M; is the number of genes/operons in a pathway/reg-
ulon, ¢; measures the compactness of genome organization
in a pathway/regulon, and C (the sum of ¢;) measures the
compactness of the whole genome organization in the
3D space.

The genome was then randomly shuffled (totally
1,000,000 times) at different degrees (percentage X = 10,
20, 30, ..., 100) following a similar procedure to that previ-
ously reported [4] to determine whether the actual gen-
ome organization (in terms of interactions between
operons/genes in regulons/pathways) in the 3D space
is coordinated compared with random arrangements
(Figure 4). The comparisons were performed for both
the overall operon/gene pairs and the remote ones
with sequence separation of at least 100 operons/genes
in between.



Xie et al. BMC Genomics (2015) 16:37

Derivation and handling of gene co-expression data

The gene expression data for E. coli (E_coli_v4_Build_6;
466 experiments for 4,297 genes) were obtained from
the M3D database [30] and the Pearson correlation coeffi-
cients (PCCs) were used to measure gene co-expression
[31]. The interacting gene pairs that were separated on the
genome sequence by at least 100 kb and had the top
10% highest interaction frequencies were used in the
co-expression analysis. Two genes were regarded as
co-expressed if the PCCs between their expression
data were above 0.5 [32,33]. The Wilcoxon rank sum
tests were used to compare the distribution of correlation
coefficients (of co-expressed genes) between highly inter-
acting gene pairs and the random sampled gene pairs that
were at least 100 kb from each other on the genome se-
quence (Figure 5).

Derivation and handling of protein—protein interaction data
The protein interaction data for E. coli were downloaded
from the DIP database (Release 2013.10.31) [34]. For the
12,726 interacting protein pairs obtained from DIP,
8,691 have protein information from the UniProt data-
base (Release 2013_11) [35]. After removing duplicates,
7,345 interacting protein pairs were obtained. The inter-
actions of the proteins whose genes are located on the
genome sequence with a distance less than 100 kb were
removed. Finally, 6,714 protein interactions were used in
the analysis. According to the DNA-interaction frequency,
the interacting gene pairs were sorted in ascending order
and then classified into four groups (corresponding to four
quartiles). With another “non-contact” (interaction fre-
quency =0) group, five groups of gene pairs were thus
used in the comparison of PPI frequency between their
protein products. For the 6,714 analyzed protein interac-
tions in E. coli, the fractions of these PPI in the five groups
of DNA-interacting gene pairs were calculated and plotted
in Figure 6 (magnified 1 million times). The differences
between the proportions of PPIs in the five groups were
compared using Wilcoxon rank sum tests (Additional
file 1: Table S3).

Additional files

Additional file 1: Figure S1. The correlation between DNA interaction
counts and the restriction enzyme Hhal site numbers in E. coli. The left
and right panels correspond to the L-phase and the S-phase. The red line
in each panel is the linear fitting. Figure S2. Box plot for the comparison
of interaction frequencies between real data and random background.
The y axis represents the interaction frequency; the four boxes in each
sup-graph represent the real interaction in L-phase/S-phase, the random
background in L-phase/S-phase respectively. Statistical significance of the
difference was calculated by Wilcoxon rank sum test. The “Overall” (a)
and sequentially “"Remote” (genome sequence separation of at least 100
operons in between) (b) operon pairs in the same regulon; the “Overall”
(c) and sequentially “Remote” (genome sequence separation of at least
100 genes in between) (d) gene pairs in the same biological pathway.
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Table S1. The basic information about the DNA fragments and contacts.
Table S2. False Discovery Rate (FDR) calculations for the genome
conformation capture dataset used in this study. Table S3. The P-value ¢ of
Wilcoxon rank sum test for Figure 6.

Additional file 2: Supplementary method for the false discovery
rate (FDR) calculation.

Additional file 3: Genes in the peak regions of the DNA-interaction
profiles for the L and S phases.

Additional file 4: Genome-wide DNA-interaction matrices for L and
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