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Abstract

Background: The analysis of differential splicing (DS) is crucial for understanding physiological processes in cells and
organs. In particular, aberrant transcripts are known to be involved in various diseases including cancer. A widely used
technique for studying DS are exon arrays. Over the last decade a variety of algorithms for the detection of DS events
from exon arrays has been developed. However, no comprehensive, comparative evaluation including sensitivity to
the most important data features has been conducted so far. To this end, we created multiple data sets based on
simulated data to assess strengths and weaknesses of seven publishedmethods as well as a newly developedmethod,
KLAS. Additionally, we evaluated all methods on two cancer data sets that comprised RT-PCR validated results.

Results: Our studies indicated ARH as the most robust methods when integrating the results over all scenarios and
data sets. Nevertheless, special cases or requirements favor other methods. While FIRMA was highly sensitive
according to experimental data, SplicingCompass, MIDAS and ANOSVA showed high specificity throughout the
scenarios. On experimental data ARH, FIRMA, MIDAS, and KLAS performed best.

Conclusions: Each method shows different characteristics regarding sensitivity, specificity, interference to certain
data settings and robustness over multiple data sets. While some methods can be considered as generally good
choices over all data sets and scenarios, other methods show heterogeneous prediction quality on the different data
sets. The adequate method has to be chosen carefully and with a defined study aim in mind.
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Background
Alternative Splicing is an important mechanism for pro-
viding the protein diversity essential for eukaryotes [1].
One of the central roles of different isoforms is the devel-
opment of tissue specific properties [2]. Due to its high
complexity, the alternative splicing machinery is strongly
susceptible to errors leading to aberrant isoforms with
a lack of, or sometimes even opposing, function to the
protein intended [3]. One possibility to capture such alter-
ations is provided by exon arrays. In comparison to their
more coarse-grained predecessors, the gene arrays, they
offer an exon-based resolution [4]. This possibility led
to wide-spread usage, reflected by over 15,000 samples
across many different tissues deposited into GEO [5].

*Correspondence: zimmer@informatik.hu-berlin.de
1Department of Computer Science,Knowledge Management in
Bioinformatics, Humboldt Universitaet zu Berlin, Rudower Chaussee 25, 12489
Berlin, Germany
Full list of author information is available at the end of the article

The detection of altered expression on the exon level is
more challenging than gene based analyses. On one hand,
changes in expression levels might be more subtle, which
makes it harder to distinguish signal from noise. On the
other hand, changes in the expression of the gene has to
be taken into account to avoid false positives as well as
false negatives. To accomplish this task, exon expression is
usually normalized to the corresponding gene expression.
Figure 1 visualizes a situation where a comparison only
on exon level would lead to the opposite of the desired
result, as the only exon differentially spliced would gain
the lowest evidence for DS.
Besides using exon arrays, the challenge of DS detection

also can be addressed with next generation sequencing
(NGS), i.e. RNA-seq [6]. However, the NGS approach
suffers from two main disadvantages. First, sequencing
is still pricey; sequencing a sample is about four times
more expensive than an exon array ($500 (Affymetrix)
vs. $2000 (paired end, several providers)). Second, there
are many more institutions having the know-how and the
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Figure 1 Differential exon expression. The second left exon in
tissue A is differentially spliced. A comparison on exon level only
would lead to the opposite of the desired result, as the only exon
differentially spliced would gain the lowest evidence for DS.

equipment, and, more importantly, the downstream anal-
ysis experience, to conduct exon array experiments than
ones who have the facilities for NGS.
Besides, the wealth of existing expression data from

exon arrays constitutes an important basis for many scien-
tific questions. This led to a variety of algorithms for dif-
ferential splicing detection developed over time. Different
approaches were taken to solve the task.Most of themeth-
ods, such as MIDAS [7], use a statistical approach. Other
methods combine statistics with the exploitation of the
preprocessing results (e.g. FIRMA [8]) or with a refined
probe selection procedure (e.g. MADS [9]). ANOSVA’s
[10] strong point is its independence from transcript
annotation which makes it applicable to poorly anno-
tated data. Moreover, it is designed to be very specific,
which is confirmed by our evaluations. SplicingCompass,
a graphical approach based on angles between exons,
inherently distinguishes between differences in gene and
exon expression. ARH [11] is specifically designed to be
robust with respect to the number of exons per gene.
These differences make it impossible to compare meth-
ods analytically, which calls for careful empirical studies
to identify the best tool for a given scenario.
Here, we report on, to our knowledge, the most com-

prehensive comparative assessment of algorithms for DS
detection on exon arrays. We compared and evaluated
nine different methods for the detection of differential
splicing from exon arrays. We discerned the performance
and challenges for each method over a range of different
parameters. Using a comprehensive artificial dataset we
compared the impact of different expression levels, num-
bers of exons per gene, different amounts of differentially
spliced samples per condition as well as the influence of
different group sizes. Additionally, we applied all methods

to two well studied and partly RT-PCR validated cancer
data sets [12,13].
We included, to our knowledge, all published methods

where an implementation was available: MADS, MIDAS,
SI [7], PAC [7,14], ANOSVA, ARH, SplicingCompass [15]
and FIRMA. We furthermore incorporated KLAS [16],
a novel method introduced in this work. Note that we
did not use FIRMA for evaluation on artificial data as
we used the model proposed by the authors of [8] (on
the basis of which FIRMA was developed) for the genera-
tion of our data. However, we applied FIRMA to the two
experimental data sets. We had to skip methods with no
implementation, like Remas [17].

Methods
In the following we give a brief description of each
method; for details we refer the reader to the original
publications.
The Splicing Index (SI) is similar to the fold change

(FC) often used on the gene level. As opposed to the FC,
exon expression is first normalized to the corresponding
gene expression before calculating the ratio between two
conditions. ARH, an information theoretical approach
based on Shannon’s entropy, computes the splicing devi-
ation between conditions for every exon and transforms
it into a probability for differential splicing. A gene-wise
entropy computed from the probabilities is used as final
quantification of DS. As with SI, MIDAS uses gene level
normalized exon values. Unlike SI, a statistical test deter-
mines whether a significant difference, i.e. DS, is observed.
MADS takes advantage of an elaborate gene signal esti-
mator for probe-wise SI computation and assesses its
significance with a t-test. The final p-value for an exon
aggregates the singular probe-level p-values. As the input
to all other methods compared is based on exon level, we
adopted MADS to work on this level as well for compa-
rability reasons. We will therefore refer to this modified
method as MADS’. The underlying assumption in PAC is
the proportionality of exon expression to its correspond-
ing gene expression. Deviation from exon to gene expres-
sion results in low correlation and therefore indicates DS.
ANOSVA detects DS by applying statistical tests to the
parameters of a fitted exon expression model. Splicing-
Compass, originally developed for NGS data, can easily
be adapted to exon array data. The idea is to access the
significance of difference between angles spanned by exon
tuples in one condition compared to the ones in the other
condition [15]. FIRMA deduces scores for DS by search-
ing for a high difference between estimated and observed
expression.
KLAS is a novel method and is therefore described in

more detail. It uses a similar approach as ARH, but relies
on the Kullback-Leibler divergence in the last step. The
Kullback-Leibler divergence is an indicator for the variety
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of two probability distributions. For each condition ci ∈
{c1 . . . cn} the deviation d of the expression of every exon
e from its gene g as in Equations 1 and 2 is computed.

de,c1 = xe,c1 − xc1 (1)

de,c2 = xe,c2 − xc2 (2)

pe,g = 2de,ci∑

e
2de,ci

(3)

Qc1 = quant0.75
(
de,c1

)

quant0.25
(
de,c1

) (4)

Qc2 = quant0.75
(
de,c2

)

quant0.25
(
de,c2

) (5)

kl(c1, c2) = (6)

Qc1
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e
pe,c1 log

pe,c1
pe,c2

+ Qc2
∑

e
pe,c2 log

pe,c2
pe,c1

(7)

These deviations are turned into a probability distri-
bution per gene and condition, such that the contribu-
tion of every exon to the expression of the gene can be
denoted by Equation 3. This is a major difference to ARH,
which assesses one probability distribution for both con-
ditions based on the deviation from the median exon
ratio between conditions. To account for the deviation
within a gene, the interquartile range (see Equations 4
and 5 ) is computed, equivalently to ARH, yet here is
used to compare two conditions based on a modified
Kullback-Leibler divergence as formulated in Equation 7
instead of the Entropy corrected by its theoretical maxi-
mum as for ARH. Themain difference between KLAS and
ARH thus is the level at which the entropy, respectively
the Kullback-Leibler divergence, (i.e. relative Entropy), is
computed. While entropy is a feature of one probability
distribution, the Kullback-Leibler divergence is an indi-
cator for the variety of two probability distributions. The
comparable performance to ARH ascertains the informa-
tion theory as adequate tool for robust predictions.Where
ARH is constrained to case control studies the approach
to establish the probability distribution within the sam-
ples allows extension of the analyses to more than two
conditions.

Synthetic data
The performance of each method for differential splic-
ing detection is influenced by many factors. A detailed
analysis of the properties inherent to the different meth-
ods can only be achieved by using specifically designed
artificial test data. To this end, we generated a range
of synthetic data sets using the model from [8] apply-
ing multiple parameter allocations in many combinations
(Table 1) using default settings, i.e., cmean=7/10 is cho-
sen for low/high expression. We chose the model of [8]
because it is the most fine-grained model we are aware of.
Specifically, we studied the influence of the number of

exons per gene (enum ∈ {10, 30}), the expression intensity
(expr ∈ {high, low}), the number of samples (snum ∈ {15 :
15, 15 : 5}) per group as well as the percentage of differen-
tially spliced samples (pcnt ∈ {60, 100}). The combination
of these four parameters with two allocations each led to
a total of 16 scenarios yielding a detailed insight that is
important when choosing the adequatemethod for a given
dataset or for a certain purpose.
In each scenario we generated 200 simulated genes.

While 100 genes were specific to the parameter criteria
in addition to displaying differential splicing events (true
positives (TP)) the remaining 100 genes, designed as true
negatives (TN), show no altered exon expression. Thus,
probably the most challenging of the 16 data sets for a
DS detection method (see also Table 1) consisted of (1)
one condition containing 15 samples and a second con-
dition containing only 5, (2) low expression intensity, (3)
only 60% of the samples in a group exhibiting differential
splicing and (4) a high number of exons per gene.
It is undoubtedly more demanding to detect DS in a

small group where not all samples display the event than
in a large group under the same condition. Concerning the
scenarios with an imbalance in group size, we therefore
switched the DS event containing group for half of the TP
genes. Thus, in settings with one condition containing 15
samples, the other one 5 samples and DS was only simu-
lated in 60% of the samples, half of the TP genes show the
DS event in the small group and half of them in the large
group.

Table 1 Parameters: Values used for the different parameters tested

Parameters ANOVA result

Short Value 1 Value 2 ARH SI KLA MAD MID ANO PAC SCO

Samples per group snum 15 vs. 5 15 vs. 15 + + + - + + - -

Exons per gene enum 10 30 enum - - - - - + - +

Expression intensity expr high low expr + + + + + + - +

Percent DS samples per group pcnt 60% 100% pcnt + + + + + + - +

The combination of 4 parameters with two possible values leads to 16 scenarios. ANOVA Results: Analysis of variance reveals the influence of parameters on accuracy.
‘+’ indicates a significant influence of the parameter on accuracy, ‘-’ means no significant influence. For computational aspects see Additional file 1: Section
“Significance of parameter influence”.
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Experimental data
In addition to the synthetic data sets, we evaluated all
methods including FIRMA on two well studied cancer
data sets. We declare that we used no primary material
from human or animals. All exon array data used were
already published and are publicly available as stated in the
corresponding articles. The first is provided by Affymetrix
[12] and consists of 20 arrays, 10 colon cancer samples as
well as their paired control. DS results were partly vali-
dated by RT-PCR. As a positive control (TP) we used all 18
probe set IDs indicated in the section ‘differentially spliced
between tissue types’ and one additional probe set from
the section ‘previously reported splicing events in colon
cancer’ (see supplementary material [12]) that was posi-
tively validated. The negative control (TN) was formed by
the 10 probe set IDs in the section ‘alternatively spliced
but not differential between tissue types’ (see supplemen-
tary material [12]). Mapping to our data (we used only
core exons and the human genome version 19) led to 12
TP and 8 TN probe sets corresponding to 10 (TP) and 8
(TN) genes respectively. We also applied all methods on a
lung cancer data set [13] consisting of 36 paired samples,
18 normal and 18 NSCLC. The study provides validation
data for 3 TN and 19 TP examples of DS.
Preprocessing and normalization of the cancer data sets

was performed as proposed in [21].

Evaluation
For the evaluation we determined, for each scenario,
accuracy (ACC) or AUC in the cases where no binary
classification was applicable. Furthermore, we quantified
sensitivity and specificity for more fine-grained insights.
Note, that in the case of binary classification (DS event /
no DS event) accuracy corresponds to the area under the
curve (AUC).
Some of the methods produce p-values indicating the

certainty of a DS event taking place, while PAC, KLAS,
ARH and SI output a heuristic score. To achieve compara-
bility and avoid cutoff problems, we also derived a p-value
for all score-based methods using an exact Monte Carlo
permutation test [18]. Applied to the scores, a gene wise
p-value is computed with a significance level of α = 0.05.
Nevertheless, we quantify performance on the basis of
scores as well.
As stated, score based methods exhibit the difficulty

of choosing a cutoff at which a result is believed to
be relevant. There are best practices for some methods
(SI is mostly used with a cutoff of 1.5 [19] or 2 [20])
or recommendations for others (ARH = 0.03 [11]) yet
no appropriate value is known for PAC and KLAS. We
therefore add a second evaluation for the score-based
methods only based on AUC. No binary classification,
as in the p-value-based evaluation, is applied in this
case.

Results
Firstly, we report on the results for simulated data. The
examined parameters (section “Synthetic data”) were eval-
uated by p-value for all methods as well as by score for
the score based methods only (for results see Additional
file 1). Analysis of variance was applied to determine the
significance of parameter influence (see also Additional
file 1: Section “Significance of parameter influence” and
Table 1).
Subsequently, the results on the colon and lung can-

cer data sets were reported with a focus on the RT-
PCR validated results. As in the case of simulated data,
accuracy, sensitivity and specificity was used to evaluate
performance.

P-value based evaluation
An overview on the accuracy over all scenarios was visu-
alized in Figure 2 using hierarchical clustering (euclidean
distance, complete linkage) of methods as well as sce-
narios. The method performing best for one scenario
was indicated by an asterisk (multiple maxima per col-
umn are possible). The most striking observation was the
clear superiority of MADS’, which performed equally well
independent of data-imposed challenges.
While most of the methods achieved good results in

the ‘easy’ cases of equal group size and consistent splic-
ing events, accuracy dropped quickly when sample sizes in
groups diverged, less samples per condition were spliced,
or expression intensity decreased. MADS’ is closely fol-
lowed by ARH, SI, SplicingCompass and KLAS, which
showed similar behaviour (Figure 2).
The third-best method cluster consists of ANOSVA and

MIDAS. The two performed well in the easy scenarios
of sufficient sample numbers and 100% AS events in one
group. As circumstances got more challenging, a rapid
decay in accuracy could be observed.
MADS’. This algorithm showed a unique performance

not only concerning efficiency but also in the sensitiv-
ity to parameter influences (see Additional file 2: Figure
S2). The most obvious interference was incurred by the
expression level. While in the high expression range
almost no FP were observed, FP rate increased signif-
icantly in the scenarios with low expression. A second
observation correlating with the expression level was
the dependence on the number of exons contained in
a gene. In low expression ranges MADS’ performed
consistently better in scenarios with a high number
of exons per gene, while in high-expression scenarios
it performed better with a low number of exons per
gene.
ARH, SI, SplicingCompass and KLAS. The four methods

behaved similarly in terms of classifying the genes actu-
ally spliced differentially (Additional file 2: Figure S2). All
showed a clear performance advantage in the case of high



Zimmermann et al. BMC Genomics  (2015) 16:136 Page 5 of 10

Figure 2 P-value based accuracy, i.e. binary AUC for all scenarios. Asterisks indicate highest values per scenario, multiple maxima are possible.
Column names encode scenarios in the order expression.exons.percent.samples, thus H.10.100.5 describes the scenario with high expression, 10
exons per gene, 100 percent spliced samples in the respective group and 5 versus 15 samples per group.

expression also sharing the outliers: in the scenarios with
60% DS events and low sample size, genes containing the
DS event in the small sample group were not classified
correctly (see red squares in upper left area, Additional
file 2: Figure S2). All other methods performed homoge-
neously bad or well irrespective of the fact that the DS
event was not contained in the majority class. While ARH
displayed a rather homogeneous response for the con-
trol genes, SI was strongly impacted by the number of
samples per group. SplicingCompass displayed the lowest
number of FPs in this group, as the consideration of all
pairwise angles requires relatively high effect sizes. Sys-
tematic influences observable by Additional file 2: Figure
S2 were exon number and percentage of samples display-
ing differential splicing.
ANOSVA, MIDAS and PAC. These methods formed

the third method-cluster showing results very similar to
each other throughout all scenarios. While ANOSVA and
MIDAS were highly specific, ANOSVA educed not a sin-
gle FP at the cost of a slightly lower sensitivity compared
to MIDAS (Figure 2, Additional file 2: Figure S4). The
most obvious difference between the two was the diffi-
culty of ANOSVA to deal with a high number of exons.
MIDAS, on the other hand, performed independently of
this parameter. As expected from a statistical method,
the parameter impacting the performance most was the
percentage of samples displaying the DS event in one

group. Both methods failed to detect the DS event in most
of the TP cases.
Thus, if avoiding false positives is of high importance,

MIDAS and even more, ANOSVA, are a suitable choice.
PAC failed to detect most of the positive events and
also led to some FPs independently of the underlying
scenarios.
For more details on the significance of parameter influ-

ence see Additional file 1: Section “Significance of param-
eter influence”.

Sensitivity and specificity
Depending on the aim of a potential study it can be
important to choose a method explicitly focusing on high
sensitivity or high specificity. While the earlier assures the
correct detection of a sample having a certain property,
the later describes the ability to not detect samples not
having this property, i.e. a certain disease. High sensitiv-
ity is required in all areas of diagnostics; when it comes to
biomarker detection, a high specificity might be of higher
interest. As biomarkers are usually used for screening of
large populations for preventive reasons, a high number
of false positives could lead to an increased workload of
testing or unnecessary treatment [22].
Average sensitivity and specificity over all scenarios is

displayed in Figure 3 and Additional file 2: Figure S4.
High specificity values for ANOSVA, PAC and MIDAS
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Figure 3 Sensitivity and specificity averaged over all scenarios.

came at the cost of sensitivity. While SI and KLAS pre-
sented very similar values - with KLAS showing a slightly
better result - ARH was more focused on specificity.
In between performed SplicingCompass with very high
specificity yet lower sensitivity. Additional file 2: Figure S4
gives a scenario-wide overview on specificity and sensitiv-
ity. Sensitivity was clearly dominated by MADS’, followed
by KLAS, exposing its strength in this category in compar-
ison to its cluster mates.

Experimental data
We applied all 9 methods - including FIRMA - to two
partly RT-PCR validated data sets, one from colon cancer
and one from lung cancer. First we investigated the overall
predictions of every method to assess the number of prog-
nosticated differential DS events. Second, we compared

the predictions based on TPs and TNs confirmed by
RT-PCR. The p-value cutoff is set to 0.05.

Colon cancer data MADS’ predicted the highest num-
ber of DS events (> 13000) (Additional file 2: Figure S5).
ARH, KLAS and ANOSVA produced approximately the
same gene number (about 2000) while slightly differing
in the gene set. SI and FIRMA proposed about 1000 DS
genes while PAC, MIDAS and Splicing Compass showed
the most conservative result (less than 500 genes). Thus,
MADS’ was an outlier in the number of predicted DS
events, claiming the sought event in over 70% of the genes.
When considering only the validated results ARH

and FIRMA appeared as the most accurate methods
(see Figure 4) closely followed by MIDAS. KLAS and
ANOSVA displayed relatively good results whereas the
remaining three methods showed either a high specificity
at the cost of sensitivity (MADS’) or a high sensitivity
with a sacrifice of specificity (SplicingCompass, PAC), see
Additional file 2: Figure S6.

Lung cancer data. Again, MADS’ predicted the highest
number of DS events (> 10000) (Additional file 1: Figure
S5). ARH, KLAS, FIRMA, and ANOSVA predicted about
3000 DS events with considerable overlap in the gene set
as shown in Additional file 2: Figure S8. SI nominated
about 2000, MIDAS and Splicing Compass 1000 and PAC
showed the most conservative result with less than 200
genes.
As the data set provided such a high verification rate,

number of TN examples was very low (we used non-
verified events as TN). Under such circumstances accu-
racy is not a good measure for performance, and we thus
focused on sensitivity and specificity instead (Additional
file 2: Figure S7). SplicingCompass, ANOSVA, KLAS,
FIRMA, and ARH were the methods performing best.
According to accuracy, FIRMA, KLAS and ARH achieved
the highest values when ignoring MADS’ due to its high
prediction rate. Similarly, sensitivity was also dominated
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Figure 4 Accuracy computed on the RT-PCR validated results for the colon cancer data set (left) and the lung cancer data set (right).
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by FIRMA, KLAS and ARH while considering only meth-
ods with non-zero specificity values. When focusing on
specificity, SplicingCompass was the clear winner fol-
lowed by ANOSVA, KLAS, ARH and SI, all ranging on the
second place.

Discussion
Though a variety of methods for the detection of DS based
on exon array data has been developed over time, no broad
evaluation concerning their advantages and drawbacks in
regard to (combined) influences of properties such as the
number of samples, expression intensity or exon num-
ber has been performed yet. In this work we evaluated
the impact of an extensive set of parameter combina-
tions on the performance of eight methods. Additionally,
we assessed all methods and a ninth one with respect to
validated experimental data. In contrast to related work
which focused on the comparison based on experimental
data [11] and thus on fixed scenarios, we also exploited
simulated data sets to study the (combined) influence of
various properties of differentially spliced genes and their
measurements in exon arrays.

Summary of results
A rank comparison of accuracy-based results is shown in
Table 2, putting results on synthetic and on real data sets
side-by-side together with the ranking reported in [11].
Here, we present the outcome of synthetic, colon can-

cer and lung data. Concerning the accuracy based results,
some methods ranked consistently low (ANOSVA, SI,
SplicingCompass and PAC), others consistently high
(ARH, FIRMA, KLAS and MADS’) while MIDAS
included a positive outlier. Nevertheless, results on exper-
imental data should be handled with care due to the
unbalanced nature and small size of the evaluation data in

Table 2 Result summary and comparison

Accuracy AUC

Synthetic Colon Lung Median Rasche

ANOSVA 7 5 5 5 4

ARH 2 1 4 2 1

FIRMA n.a. 1 2 2 5

KLAS 3 3 4 3 n.a.

MADS’ 1 4 1 1 6

MIDAS 6 2 7 6 7

Splicing Index 4 8 8 8 2

SplicingCompass 5 7 6 6 n.a.

PAC 8 6 9 8 3

Per dataset D and method M we show the rank that M achivies on D, when all
methods are sorted by accurracy, i.e., the number of truely recognized splicing
events. For comparison, we also add ranks from Rasche et al. [11], which used a
different data set and ranked by AUC.

these data sets. Recall that accuracy is highly susceptible
to a diverging number of positive and negative examples.
Especially in the case of MADS’, which predicted a high
number of DS genes, combined with an disproportionate
high number of positive examples in the lung cancer data
set this is an issue.

Algorithmic performance explained
Clearly, the performance of different algorithms was influ-
enced differently by the various parameters and the dif-
ferent data properties, such as effect size and variance. To
shedmore light into the cause of these differences, we here
sought to explain differences in the method’s performance
in terms of their underlying mathematical formulation of
the problem.

Exon number and DS exons per gene
Two methods - ANOSVA and SplicingCompass - were
significantly affected by the number of exons per gene,
i.e. they display a better performance in the low exon
number scenario. This is remarkable, as a major concern
of most other algorithms is a rising number of FPs with
increasing exon number due to parallel tests. In the case
of ANOSVA, the reason is that, the higher the number
of exons, the more improbable it becomes to obtain sig-
nificant predictions for TPs as the number of DS exons
remains constant. This is underpinned by the observa-
tion, that predictions were better in the second half (genes
50 to 100) of TPs, where two instead of one exon is
modeled as DS. The same reason applies to SplicingCom-
pass, a statistics-based method, which accesses the dif-
ference between exon angles within and between groups.
The higher the number of exons - while the number of
DS events is constant - the lower is the ratio of angles
representing a DS event. This impedes the detection of
differences between groups.
Interestingly, MIDAS, also a statistical method, was

not affected by these parameters. Unlike SplicingCom-
pass and ANOSVA, MIDAS directly takes into account
the gene expression normalized exon expression, i.e. effect
size, and applies a separate test for every exon. The num-
ber of exons per gene is thus not as important. In contrast,
SplicingCompass and ANOSVA operate on a gene based
level.

Sample number and variance
For any method based on statistical tests, one expects
that a higher number of samples improves performance
as it increases test power. As expected, this behaviour
was observed for ANOSVA and MIDAS, both inherently
statistical methods. However, the same (positive) effect
also could be observed for SI, ARH and KLAS, which
do not perform tests. The explanation is that all these
three methods use permutation tests, which becomemore
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stable with increasing numbers of samples. The effect
was the strongest for SI with those genes which were not
differentially spliced (see Additional file 2: Figure S2).

Expression level and effect size
All methods were significantly affected by the expression
level: The lower, the worse were the results. This is to be
expected, as low expressions means a less clear separa-
tion between signal and noise. As expression decreases,
also the variance decreases, which in turn makes it more
probable to confuse spurious ‘effects’ as splicing events.
MADS’ for example showed this behaviour for the non

DS genes, by producing a high number of FPs in the
low expression scenarios which is not visible for similar
methods, like for instance MIDAS. While MIDAS com-
putes an exon level SI and subsequently applies statistical
testing, MADS’ produces a gene wise aggregate as final p-
value. The approach of MADS’ is thus more sensitive and
yields performance improvements but can, on the other
hand, also be too sensitive for other scenarios (e.g., see
Additional file 2: Figure S2).
The rather simple splicing index performed well in most

of the scenarios, although this method does not consider
variance and does not perform any kind of deviation cor-
rection. However, this is due to the structure of the gen-
erated data, while various influences alter the challenges
imposed by the data, the one affecting SI most - a small
number of rather drastic outliers - was not contained
in the scenarios. Thus the focus on effect size led to
remarkable results.

Percent of spliced samples
The greatest impact due to this parameter is observed for
statistical methods, i.e. ANOSVA, MIDAS and Splicing-
Compass. As they are by design susceptible to variance,
fluctuations like in the case of decreased sample ratio with
DS events per group (i.e. a lower percentage of DS sam-
ples) lowers performance as increased variance prevents
effects from being significant.

Effect size, variance and gene level correction
As already mentioned in the previous paragraph, statis-
tical methods in general are rather conservative in pre-
dicting DS events. One root of this behaviour is their
test-basis, but other effects come on top. MIDAS uses
gene-normalized expression values instead of exon
expression values and thus requires a fairly great effect as
the normalization is rather drastic. ANOSVA applies an
ANOVA on a so-called interaction term derived from a
fitted linear model which further smoothes away differ-
ences. Other methods are less strict in these regards. For
instance, ARH uses themedian exon ratio between groups
for correcting for the underlying gene expression. Com-
pared to MIDAS, which directly uses exon to gene ratio,

the approach of ARH often results in a less pronounced
correction which better preserves effect strength. Splic-
ing Compass accesses the difference between exon angles
within and between groups. It does not perform any
explicit gene level correction, but implicitly all pairwise
angels are considered, resulting in an indirect and rather
weak form of normalization. Again, this helps this method
to increase its sensitivity.

The ambivalence of MADS’
Combining the results of simulated and experimental data
completes the picture of MADS’. While leading perfor-
mance for simulated data, MADS’ seemed to overrate
DS events in the experimental settings. The excellent
performance in the artificial scenario reflects the strong
sensitivity of the method: relatively ’hard’ scenarios are
still positively identified, settings in which other methods
clearly voted against an DS event. According to our exper-
iments MADS’ can not be recommended for the pure
prediction of DS events, but we consider it highly suitable
for ranking DS candidates because genes with a very low
MADS’ p value very likely show differential splicing.

Comparison to related work
A comparison of MIDAS, FIRMA, SPLICE [23], ARH,
PAC, SI, ANOSVA, MADS’, and correlation [24] has been
performed previously [11]. However, the evaluation of
Rasche et al. used only a single scenario by benchmark-
ing on different tissue data, while our main interest lies in
the susceptibility of the methods to different data prop-
erties. Furthermore, [11] focused on ranking performance
and evaluated based on AUC instead of accuracy, sensi-
tivity and specificity. Using AUC avoids the problem of
choosing a cutoff, but precisely the proper selection of
a cutoff decides on the usefulness of a method in real-
ity. Due to such differences, a comparison of our results
with those from [11] should be interpreted carefully as
the two measures quantify a different matter. Rank prod-
uct of the methods led to the order as indicated in the
last column of Table 2. The most striking difference is
the good performance of PAC. PAC strongly depends
on the gene estimate and the exon estimate used. Fur-
thermore, we compute p-values from PAC scores, which
were much more susceptible to noise than for example
the SI and therefore had difficulties leading to significant
results.
Further comparative work was done by Laajala et al.

[25]. Though focusing on preprocessing, they implicitly
compared FIRMA, SI andMIDAS, indicating thatMIDAS
develops its strength with growing number of DS exons.

Which method for which data?
Depending on the research question and the experimen-
tal data, different methods pose an appropriate choice. As
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practically all methods showed a significant dependency
on the expression level and the amount of DS samples
per class the two parameters are of no help for method
selection. If sample number is low and / or imbalanced,
SplicingCompass is the most reasonable choice according
to our evaluation. Independence on the number of exons
is best achieved by ARH, while KLAS, SI and MIDAS
pose similarly good choices. High specificity through-
out the data sets was provided by ARH, SplicingCom-
pass and MIDAS. When it comes to the most sensitive
methods FIRMA, ARH and KLAS fulfill the task best.
As validation of results is expensive and time-intensive
most studies are interested in high sensitivity and speci-
ficity as well as in robustness of the method. Accord-
ing to our evaluation, ARH meets these requirements
best.

Conclusion
Over time a variety of methods for the detection of DS
has been published, each of them with different charac-
teristics regarding sensitivity, specificity, interference to
certain data settings and robustness over multiple data
sets. While some methods, such as ARH, can be con-
sidered as generally good choices over all data sets and
scenarios, other methods show heterogeneous prediction
quality on the different data sets. The adequate method
has to be chosen carefully and with a defined study aim in
mind.
To avoid an unmanageable flood of data scenarios we

restricted our simulations to cases, where one and two
exons are differentially spliced per gene. Naturally, this
does not represent the spectrum of actually occurring
DS events. Thus, based on our study, an important ques-
tion to address in future work would be the suscepti-
bility of the methods to the number of DS exons per
gene. Further improvement could be provided by vary-
ing the noise level in data generation to assess method
robustness.
An important topic when discussing exon arrays is its

replaceability with RNA-seq. Next generation sequencing
is the younger technology and therefore under constant
development. While claimed to be the more accurate
technology, it still displays difficulties in certain areas such
as high FP and FN values in low expression ranges [26].
Therefore, we should probably see this technologies as
complementary rather than preferable.
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