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Abstract

Background: The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine
ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of
O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological
toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias
latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA
sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources
for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between
O. melastigma and O. latipes at the transcriptome level.

Results: More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of
which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were
identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated
genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of
generating transcriptome dataset of O. melastigma.

Conclusions: Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and
O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require
an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a
non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to
environmental stresses and those analyzing biological toxicity in the marine environment.
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Background
There is a trend of using small marine fish as models to
study the biological impact of environmental pollutants and
stresses on marine organisms, which is an important area of
ecotoxicological studies [1]. Freshwater fish models, such as
zebrafish (Danio rerio) and rainbow trout (Oncorhynchus
mykiss), have been widely used for ecotoxicological studies
in the freshwater environment. However, their responses to
environmental toxins can be completely different in marine
fish [2-4]. For example, it has been reported that freshwater
species were more sensitive to ammonia and metal
compounds whereas marine species were more sensitive
to pesticide and narcotic compounds [4]. Such differences
indicate that ecotoxicological results from freshwater
environments cannot be directly applied to the marine
environment [1]. The marine medaka Oryzias melastigma
(O. melastigma) is an emerging marine fish model used in
the investigation of the response of organisms to pollut-
ants, toxins and stresses in marine environments [5,6]. In
fact, O. melastigma is already used in a variety of estuarine
and marine ecotoxicological studies [7-10], demonstrating
their potential in studying the effect of organic chemicals,
inorganic chemicals, microorganism and environmental
stresses in relation to cardiac toxicity [11], hepatotoxicity
[9], neurotoxcity [12], immunotoxicity [10], and so forth.
In addition, O. melastigma has been adopted by the
International Life Sciences Institute (ILSI) Health and
Environmental Science Institute (HESI) for embryo tox-
icity testing. Unfortunately, the use of O. melastigma as a
model in the assessment of in vivo molecular responses to
environmental stresses and for analyzing biological tox-
icity in the marine environment is largely restricted by the
lack of molecular resources for O. melastigma [13].
O. melastigma was previously believed to be phylogenetic-

ally closely related to the Japanese freshwater ricefish medaka
Oryzias latipes (O. latipes) [1,14], of which a draft genome
has been reported [15]. However, even within inbred strains
within the O. latipes species group, the genome-wide
SNP rate between the Hd-rR and HNI strains is among
the highest (3.42%) of all vertebrate species [15]. Recently,
O. melastigma and O. latipes were shown to belong to
two distinct species groups of medaka [16], suggesting
they could be even more divergent. Therefore, there may
be a pressing need of a genetic database specifically de-
voted for the marine medaka O. melastigma.
Here, using Illumina high-throughput RNA sequencing

(RNA-Seq) followed by de novo assembly and comprehen-
sive annotation and comparison of the transcriptome data-
set, we provide transcriptomic resources, including the
brain, liver and gonadal tissues (ovary and testis) of female
and male O. melastigma. Our primary goal was to produce
a reference set of mRNA sequences for O. melastigma that
would facilitate the understanding of the local adaptation,
genome evolution and population genetics of medaka.
Additionally, the identification of a set of genes along
with their functional annotation in multiple organs of
O. melastigma would facilitate the use of marine medaka
for ecotoxicology studies. Furthermore, we compared the
gene sets of O. melastigma and O. latipes to determine
their possible divergence at the transcriptomic level.

Methods
Tissue specific transcriptome from of O. melastigma were
assembled from high-throughput strand-specific RNA-
Seq. The possible divergence between marine and fresh-
water medaka at the transcriptome level was assessed by
comparisons of sequences deposited in public databases
and the assemblies generated in this study. A single con-
sensus transcriptome was generated for gene annotation
and inter-organ comparative analysis and marine-to-
freshwater medaka transcriptome comparison. The over-
all workflow of the study is shown in Figure 1.

Medaka maintenance and RNA isolation
All animal research procedures were approved by the
Committee on the Use of Live Animals in Teaching and
Research (CULATR) at The University of Hong Kong.
The freshwater medaka fish O. latipes was gifted by
David Hinton's laboratory at Duke University. Marine
medaka (O. melastigma) were reared and maintained
under optimal growth and breeding conditions, as de-
scribed in Kong et al. (5.8 mg O2 L−1, 28 ± 2o C,
pH 7.2 in a 14-h light: 10-h dark cycle) [1]. The stock
of marine medaka used in our experiment was ob-
tained from Interocean Industries (Taiwan) and has
been reared in our laboratory for over 10 generations.
1:1 ratio of sexually mature 4-month old male and fe-
male medaka were placed in a same tank for external
fertilization to take place naturally and the fertilized
eggs were collected [17]. At 120 days post fertilization,
brain, liver, ovary and testis tissues were dissected from
randomly selected male (n = 10) and female (n = 10)
fish. To minimize the variation among individual fish,
tissue samples from 10 fish were pooled. Total RNA
from pooled tissue samples was extracted using the
mirVanaTM isolation kit (Applied Biosystems) and then
treated with DNase (Ambion) to remove contaminating
genomic DNA. The RNA quality was assessed using the
Agilent 2100 Bioanalyzer system, and samples with an
RNA Integrity Number (RIN) greater than 9 were used for
RNA library construction.

Strand-specific library preparation and transcriptome
sequencing
Sequencing was performed at the Centre for Genomic
Sciences, The University of Hong Kong. Total RNA was
treated with the RiboMinus Eukaryote Kit for RNA-Seq
(Invitrogen, Carlsbad, CA) to remove ribosomal RNA,
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Figure 1 Workflow of this study. A) Organ-specific transcriptome sequencing using the Illumina GAIIx platform. B) Overview of the procedure
to investigate the divergence between marine and freshwater medaka at the transcriptome level. C) Pipeline of de novo transcriptome assembly.
Refer to main text for details. D) Comparison of inter-organ transcription and marine-to-freshwater medaka.
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and the rRNA-depleted RNA was concentrated by ethanol
precipitation in the presence of a glycogen carrier (Ambion).
The dUTP strand-specific library construction protocol was
used to generate templates for Illumina DNA sequencing.
Briefly, strand specificity was maintained by the incorpor-
ation of deoxy-UTP during second-strand cDNA synthesis
and subsequent destruction of the uridine-containing strand
during the following step of library construction. The se-
quencing library was constructed using GAIIx with the
use of the Paired-End Cluster Generation Kit v5 and
Sequencing Kit v5 (Applied Biosystems) following the
manufacturer’s recommended protocol, which gener-
ated 76-bp-long paired-end sequence reads. The insert
size was approximately 200 bp.
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Transcriptome assembly
The sequence reads were dynamically trimmed according
to BWA’s –q algorithm with a parameter of 30. A running
sum algorithm was executed. Briefly, an cumulative area
plot is plotted from 3’-end to the 5’-end sequence reads,
where positions of base-calling Phred quality lower than
30 causes an increase of area and vice versa. Such plot was
built for each read individually. The read would be
trimmed from the 3’-end to the position where the area
was greatest [18]. Read pairs were then synchronized such
that all read pairs with sequences of at least 35 bp on both
sides after quality trimming were retained and any single-
ton read resulted from reads trimming were removed. The
quality-trimmed sequence reads were assembled using
Trinity (r2013-02-25) [19], which uses fixed k-mer to gen-
erate assembly and is efficient in recovering full-length
transcripts and spliced isoforms [19]. Trinity was used ra-
ther than multi k-mer tools because Trinity was shown to
reconstruct the most full-length transcripts for genes
expressed in different dynamic ranges when compared
with the various single k-mer assemblers, while multi
k-mer tools tended to assemble more artificially fused
transcripts [20]. De novo assembly by Trinity was indi-
vidually performed for each organ and gender. For brain
and liver, an additional gender-pooled de novo sequence
read assembly was performed. Such gender-pooled assem-
blies were used to facilitate comparison of tissue enriched
genes based on annotation of the assembled transcripts
(section Tissue-enriched genes in O. melastigma). Assem-
bled transcripts from individual samples were merged
and duplicates were then removed using CD-hit-est
[21] (v4.5.4) using the accurate mode (−g 1) with other
parameters left as default to yield the final assembly
(Contigs-clustered Assembly). CD-Hit uses an incre-
mental clustering algorithm to first sort all assembled
transcripts in order of decreasing length. The longest
transcript becomes the representative of the first clus-
ter. Then, each remaining transcript is compared to
the representatives of all existing clusters and would
be clustered to the most similar cluster if the similarity
is above threshold of global sequence identity of ≥ 90%.
Otherwise a new cluster is defined with that sequence
being the representative [22]. Such a merging process
broadens the coverage of assemblies produced by Trinity.
A de novometa-tissue assembly (Reads-combined Assembly)
[23] was also performed using a virtual library by merging
sequence reads from all organs (see also discussion below
and Figure 1).

Assembly validation and transcript annotation
We employed an internal validation approach for map-
ping quality-trimmed sequence reads back to the assem-
bly to identify poor-quality and potentially misassembled
transcripts. Through the process, transcripts with an
average base coverage of less than one were removed
from the assembly sets. The quality of the assembled
transcripts was then assessed using the metric that was
suggested for de novo transcriptome assembly [24], in-
cluding contig count, percentage of reads used in contig,
base-pairs in contig, average contig coverage, average
contig length and contig N50 length. The quality of the
assembly was further assessed by comparison with the 248
core eukaryotic genes (CEGs) [25] with the use of BLASTp,
an e-value cut-off of 1.0x10−6 [26,27] and a requirement of
more than 70% alignment length for the CEGs.
In the first step of transcript annotation, the assembled

transcripts were compared to (1) the NCBI non-redundant
nucleotide (nt) database with the use of Reciprocal
BLASTn; and (2) the UniProt Swiss-Prot protein data-
base with the use of Reciprocal BLASTx. Orthologs
were identified if they were the symmetrical best hits
in each reciprocal all-against-all (i.e., Reciprocal Best
Hit) in the BLASTn and BLASTx search [28]. Briefly,
orthologs to the sequences in the nt and Swiss-Prot
databases were identified first by BLASTing the assem-
bled transcript to the database. The highest-scoring hit
was obtained and then BLASTed against the database
of the assembled transcripts. The hit in the nt and
Swiss-Prot databases was considered an ortholog of
the assembled transcript if and only if the second
BLAST returned the assembled transcript that was the
highest scorer in the first BLAST.
As an alternative approach to annotate the assembled

transcripts, protein-coding regions within the transcripts
were first identified using the TransDecoder algorithm
[23]. Briefly, 500 of the longest Open Reading Frames
(ORFs) were extracted and used to build a Markov model
based on hexamers. These likely coding sequences were
randomized to provide a sequence composition corre-
sponding to a non-coding sequence. All of the longest
ORFs in each of the six possible reading frames were
scored according to the Markov Model (log likelihood ratio
based on coding/noncoding). If the proper coding frame of
the putative ORF scored positive and was the highest of the
other presumably wrong reading frames, then that ORF
was reported. If a high-scoring ORF was eclipsed by (fully
contained within the span of) a longer ORF in a different
reading frame, it was excluded. The likely protein-coding
regions were then subjected to (1) BLASTp searching
against UniProtKB/Swiss-Prot with an e-value cut-off
of 1.0x10−6 [26,27], (2) a protein domain search via
HMMScan, (3) transmembrane helicase prediction by
TMHMM and (4) signal peptide prediction by SignalP.

Discovery of tissue-enriched and O. melastigma-enriched
genes
An annotation-based approach was used to discover the
tissue-enriched genes of O. melastigma. Quality-filtered
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transcripts with Reciprocal Best Hits (nt database and
UniProt) were considered. For the brain and liver, of
which both male and female transcriptomes were se-
quenced, matches to annotations were merged, and a
union set was used. To compare the transcriptome between
O. melastigma and its freshwater counterpart O. latipes, we
obtained 2 independent sets of whole-fish, deep RNA-Seq
data from the NCBI Sequence Read Archive (SRA) under
Accession SRP004363 and SRP032993 and calculated
the transcript expression based on our Reads-combined
Assembly of the O. melastigma transcriptome. Briefly,
O. melastigma transcripts with ≥ 8 reads, but without
any read-count in both independent freshwater RNA-
Seq datasets were considered to be putative O. melastigma-
enriched transcripts. O. melastigma-enriched transcripts
across a dynamic range of expression were then subjected
to qPCR validation to determine the optimal read-count
threshold. Since the O. latipes RNA-Seq dataset we re-
trieved from NCBI SRA were yet to be published, we only
sought to discover O. melastigma-enriched genes with re-
spective to O. latipes.

qPCR validation in independent samples
Quantitative real-time PCR was used to detect the expres-
sion of select genes that are closely related to the func-
tions of corresponding tissues, and 18S ribosomal RNA
(18S) was used as reference gene for qPCR normalization.
The primer sequences are listed in Additional file 1:
Table S1. cDNA was synthesized from 1 μg of total
RNA extracted from an independent set of medaka
using the SuperScript® VILO™ cDNA Synthesis Kit
(Life Technologies). The reverse transcription reactions
were incubated in a C1000 Thermal Cycler (Bio-Rad) at
25°C for 10 min, 42°C for 60 min and 85°C for 5 min and
then held at 4°C. qRT-PCR was performed using the
StepOnePlus Real-Time PCR system (Applied Biosystems).
The 20-μl PCR reaction included 1 μl of RT product, 10 μl
of KAPA SYBR® FAST qPCR Master Mix (2X), 0.5 μl of
each primer (10 μM), and 8 μl of nuclease-free water. The
reactions were incubated in a 96-well optical plate at 95°C
for 10 min, followed by 40 cycles at 95°C for 15 sec and
60°C for 1 min. Reactions were run in triplicate and in-
cluded a no-template control for each gene. The relative
expression ratio of target/18S was calculated according to
the method described by Pfaffl [29]:

Expression ratio ¼ Etarget
CPtarget control–treatmentð Þ

= E18S
CP18S control–treatmentð Þ;

where E = 10(–1/slope) and CP is the crossing point at
which fluorescence rises above background. Statistical
significance was calculated using the Wilcoxon–Mann–
Whitney test.
Genome reference, genomic resources and tools used
The medaka HdrR reference genome v.72.1 was retrieved
from Ensembl [30], and the RNA-Seq data of freshwater
O. latipes were retrieved from NCBI SRA (SRP004363
and SRP032993). STAR aligner [31] was used to align the
transcriptome data to the genome, and reference mapping
of the O. latipes UniGENE and RNA-Seq datasets to
the assembled transcript re-mapping was performed
using BWA-MEM v.0.7.5a-r405 and Novoalign v3.00.05
(http://www.novocraft.com/). Gene Ontology enrichment
(Biological Process, Cellular Component, and Molecular
Function) was performed using BinGO [32], which is
implemented in Cytoscape (http://www.cytoscape.org/).

Results and discussion
Transcriptome sequencing of 4 organs (brain, liver, ovary
and testis) of male and female O. melastigma in 6 libraries
yielded 34.81 Gbp of mRNA sequences from approxi-
mately 505 million ~70-bp paired-end reads (average 84
million reads per tissue). The coverage for each library
was more than 100-fold based on the transcriptome size
of the freshwater counterpart O. latipes. A previous study
suggested that such sequencing depth, coupled with strin-
gent sequence reads quality filtering, is optimal for tissue
specific transcriptome assembly [33]. Four hundred and
twenty-two million quality-trimmed reads, corresponding
to 28.5 Gbp were subjected to downstream analysis. The
sequencing statistics and technical details are shown in
Additional file 2: Table S2.

Comparison between the transcriptome of freshwater and
marine medaka
In order to estimate the divergence of the O. melastigma
and O. latipes transcriptomes, we first assessed their
average nucleotide identities at the transcript level.
Based on the mRNA transcripts deposited in the NCBI
nucleotide database, orthologs in O. melastigma and O.
latipes were identified using Reciprocal BLAST. The re-
ciprocal best hit (RBH) was found for 58.6% (211/360) of
the O. melastigma transcripts. Among the RBHs, the
average identity was 91.5% (median: 91.8%), suggesting an
extensive diversity between the two species. (Figure 2A-B).
In line with our observation, phylogeographic studies of
medaka using allozymes and mitochondrial DNA se-
quences have revealed a genetic diversity in the Oryzias
family [34-36]. The studies showed that wild populations
of medaka were divided into four major regionally differ-
entiated groups and the Nei’s genetic distances among
these groups are very large (0.35-0.88).
Using our RNA-Seq data, we then assessed if the Hd-rR

(O. latipes) reference genome was suitable for marine
counterparts, such as O. melastigma. For the two inde-
pendent O. latipes RNA-Seq experiments, the majority of
sequence reads (84.6-99.3%) could be aligned onto the

http://www.novocraft.com/
http://www.cytoscape.org/
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Hd-rR reference genome (mismatch rate: 0.43-0.48%; unique
aligned: 70.2-81.4%). However, when the O. melastigma
quality-trimmed reads were aligned to the Hd-rR genome,
the mapping rate ranged from only 38.4 to 52.3% (mismatch
rate: 4.6-5.7%). Similarly, only a minority (22.8-65.0%) of
reads could be aligned onto the O. latipes UniGENE dataset,
meaning that our O. melastigma RNA-Seq data comprises a
significant portion of transcribed sequences that could not
be unaligned and thus might be absent in the existing fresh-
water medaka genome and transcriptome sequences. Thus,
the current O. latipes sequences might not be suitable for
genome-wide expression studies of O. melastigma (Figure 2C
and Additional file 3: Table S3).
Our observations were not surprising and were in fact

in line with previous finding suggesting that within the
O. latipes species, the genome-wide SNP rate between



Table 1 Number of genes identified in different organs of
O. melastigma

Organ Gender Number of identified genes

Brain Female 14,240

Male 13,796

Liver Female 9,200

Male 10,763

Ovary Female 13,240

Testis Male 13,618

Total number / 14,628
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the Hd-rR and HNI strains is highest (3.42%) among
vertebrate species [15]. Such high divergence among dif-
ferent medaka species re-iterates that a marine transcrip-
tome reference dataset, such as the emerging marine
model O. melastigma, is imperative for studies that assess
the responses of marine species to pollutants, toxins and
stresses at the molecular level.

Transcriptome assembly and generation of a consensus
transcriptome
De novo assemblies of each library using Trinity resulted
in an average of 85098 (51533–132296) contigs per
sample. Brain tissue had the highest contig count, to-
taling approximately 15.6 Mbp. The lowest contig count
was observed in liver tissue, with approximately 4.6 Mbp.
The average contig length was 1106 bp and the contig
N50 was 2162 bp. Nearly all transcripts (99.93%) had a
coverage greater than 1 and were subjected to down-
stream annotation (Additional file 4: Table S4).
Using the transcriptome assemblies, we sought to rule

out the possibility that the previously observed low-
mapping rate of the O. melastigma RNA-Seq data onto
the O. latipes UniGENE dataset was due to aligner bias.
We assessed the recovery of the O. latipes UniGENE
dataset based on our assembly result using BLASTn.
With an e-value threshold of 1.0x10−6 [26,27], we
found that, at most, 72.3% of the O. latipes UniGENE
dataset (45.6% if ≥70% of the UniGENE dataset must
be covered in terms of transcript length) could be
matched to our assemblies, with an average identity, in
bases, between transcripts of the two species of 89.6%
(Figure 2D and Additional file 5: Table S5). In other
words, the mismatch rate was again approximately
10%, suggesting that O. melastigma might be divergent
from O. latipes.
The core eukaryotic genes (CEGs) [25] are highly con-

served, present in all eukaryotic species and found in
low numbers of in-paralogs in different species. A ma-
jority of the CEGs are expected to be present in a quality
transcriptome assembly. Among the 248 CEGs, 99.6%
were recovered in the “Reads-combined Assembly” (see
below), and the average e-value was highly significant
(2.05E-14) and average percentage identity of the matched
transcripts were 95.9% (details in Additional file 6:
Table S6).
When comparing the assembled transcripts with known

O. melastigma mRNA sequences using BLASTn and
known O. melastigma protein sequences using BLASTx,
we found that 92.4% (327/354) of known transcripts were
recovered in the Reads-combined Assembly, while 86.4%
(323/374) of the known O. melastigma protein sequences
were recovered, suggesting our assembly should be largely
complete. However, some tissue-enriched genes in organs
other than the brain, liver, ovary and testis may have been
missed (details in Additional file 7: Table S7, Additional
file 8: Table S8, Additional file 9: Table S9).
To aid in the comparison of gene expression among dif-

ferent O. melastigma tissues, we explored two approaches to
generate a single consensus transcriptome assembly; (1)
Reads-combined Assembly: sequence reads for all tissues
were combined prior to being subjected to de novo assembly
[23] and (2) Contigs-clustered Assembly: assembly was per-
formed individually for each library. Redundant transcripts
were identified, and representative transcripts were chosen
by clustering [21,37]. When comparing the two approaches,
the Reads-combined Assembly recovered more CEGs than
the Contigs-clustered Assembly. More importantly, the
Reads-combined Assembly had significantly more RBHs
than the Contigs-clustered Assembly (14,628 vs 12,145).
Moreover, the average contig length (1302 bp vs 1086 bp)
and N50 (2908 bp vs 2450 bp) was longer for the Reads-
combined Assembly. Taken together, we believe the Reads-
combined Assembly represents a more complete consensus
transcriptome assembly for inter-organ comparison.

Protein-coding genes expression in the brain, liver, ovary
and testis of O. melastigma
Protein-coding ORF prediction followed by Reciprocal
Best Hit BLAST resulted in 14,628 annotated genes that
were found across the brain, liver and gonadal tissues of
O. melastigma (Table 1). The highest numbers of anno-
tated genes were expressed in brain tissue. In females,
14240, 9200 and 13240 annotated genes were identified
in brain, liver and ovary, respectively. In males, 13,796,
10,763, and 13,618 annotated genes were identified in
the brain, liver and testis, respectively. For brain tissue,
the female- and male- combined assembly improved the
assembly slightly and yielded 14,267 annotated genes.
For liver tissue, the female- and male- combined assem-
bly significantly improved the discovery and resulted in
11,438 annotated genes.

Tissue-enriched genes in O. melastigma
Global comparison of annotated genes showed that 7157
(34.5%) genes that were annotated in only a single tissue.
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We found 2692 brain-enriched genes, while 2848 genes
were liver-enriched, and 2007 genes were gonad-enriched.
Furthermore, 6821 annotated genes were common to all
tissues in both males and females (Figure 3). The gonad-
enriched genes were enriched in the following GO terms:
sexual reproduction and gamete generation. The brain-
enriched genes were enriched in functions related to
channel activity, synaptic transmission and cell-cell adhe-
sion. The liver-enriched genes were enriched in functions
related to metabolic processes, transferase and mannosi-
dase activity (Table 2, Additional file 10: Table S10).
We identified the tissue-enriched genes using a more

conservative read-count approach. The expression of
tissue-enriched genes was validated using qPCR analysis.
Some of the genes were closely related to the functions
of corresponding tissues. Our results demonstrated
that gap junction beta-1 protein (CXB1) and potassium
voltage-gated channel subfamily A member 2 (KCNA2)
were highly expressed in both male and female marine
medaka brain tissue (Figure 4A). Gap junction protein
is the major component of gap junction channels that
controls the exchange of ions and small molecules be-
tween cells. In the human brain, CXB1 is highly expressed
in neurons and oligodendrocytes and appears to be critical
for the functions of Schwann cells, which are responsible
for the myelination of nerves in the peripheral nervous
system [38,39]. KCNA2 is present in most voltage-gated
ion channels and plays important biological functions in
the brain, including neurotransmitter release and neuronal
excitability. Knockdown of KCNA2 reduces the total
voltage-gated potassium current, resulting in increased
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Figure 3 Global comparison of annotated genes in the brain,
liver, ovary and testis of marine medaka. Of the identified genes,
2692 were brain-enriched. 2848 genes were liver-enriched, and 2007
genes were gonad-enriched. 6821 annotated genes were common
to all tissues in both males and females.
excitability in neurons and neuropathic pain symptoms in
rats [40]. The identification of genes related to brain func-
tions could largely facilitate the use of marine medaka as
an in vivo model for neuro-toxicological studies.
Our qPCR analysis also indicated high expression of

ammonium transporter Rh type B (RhBG) and bone
morphogenetic protein 10 (BMP10) in the marine me-
daka liver (Figure 4B). Studies in mice have demon-
strated that RhBG is highly expressed in the perivenous
hepatocytes of the liver, which is an important tissue
for ammonium metabolism and mediates ammonium
uptake [10,12]. BMP10 is a member of the transform-
ing growth factor β (TGF β) superfamily, whose mem-
bers interact with membrane-bound receptors to exert
their biological functions [41]. Analysis of BMP10-deficient
mice demonstrated that BMP10 has an exclusive function
in early cardiac development [42]. However, its function in
the liver is still elusive. We also found an elevated level of
methyltransferase-like 21C (MTL21C) and forkhead box
protein N5 (FOXN5) in the ovaries of marine medaka
(Figure 4C). MTL21C is a newly identified lysine methyl-
transferase that regulates the activities of various molecu-
lar chaperones, as well as the lysine residues in heat shock
protein 70 [43]. Studies in pigs have demonstrated that
heat shock chaperones play an important role in thermal
stress adaptation [44]. FOXN5 is Forkhead-box (FOX)
gene which is implicated in embryogenesis through tran-
scriptional regulation. Study in mouse demonstrated that
germ-line mutation of FOXN5 gene in the mouse lineage
might lead to divergent scenario of early embryogenesis
through the deregulation of FOXN5 target genes in mouse
early embryos [45,46]. Last, our result demonstrated that
succinate receptor 1 (SUCR1) and the Ig-like V-type
domain-containing protein FAM187A (FAM187A) were
highly expressed in marine medaka testicular tissues
(Figure 4D). In humans, SUCR1 is expressed in a var-
iety of tissues, including adipose, liver, and kidney tissue
[47]. This protein is a G protein-coupled receptor that
senses cellular stresses such as hypoxia, toxicity, and
hyperglycemia. Taken together, our results identified a
number of tissue-enriched genes in the brain, liver, testis
and ovary of marine medaka and may largely facilitate the
use of O. melastigma for marine ecotoxicological studies
at the organ level.

Marine-to-freshwater orthologous transcripts and
marine-enriched transcripts
To compared the conservativeness between marine me-
daka (O. melastigma) and freshwater medaka (O. latipes),
Reciprocal Best Hit BLASTn was used. We estimated
O. melastigma and O. latipes had 5880 orthologous
protein-coding transcripts, requiring more than 70%
length recovery of O. latipes transcripts (Additional file 11:
Table S11).



Table 2 Functional enrichment of Gene Ontology terms in organ-enriched genes

Gene Ontology ID Category Benjamini & Hochberg
corrected p-value

Gonad-enriched genes common to
male and female marine medaka

sexual reproduction GO:0019953 Biological Process 4.42E-04

gamete generation GO:0007276 Biological Process 4.42E-04

Brain-enriched genes gated channel activity GO:0022836 Molecular Function 8.81E-10

signaling GO:0023052 Biological Process 2.98E-06

transmission of nerve impulse GO:0019226 Biological Process 8.35E-06

potassium channel activity GO:0005267 Molecular Function 8.80E-06

cell-cell adhesion GO:0098609 Biological Process 4.92E-05

nervous system development GO:0007399 Biological Process 4.20E-05

synapse GO:0045202 Cellular Component 2.25E-04

Liver-enriched genes cellular macromolecule metabolic process GO:0044260 Biological Process 1.57E-12

RNA metabolic process GO:0016070 Biological Process 3.34E-07

nitrogen compound metabolic process GO:0006807 Biological Process 4.62E-07

transferase activity GO:0016740 Molecular Function 1.09E-05

protein modification process GO:0036211 Biological Process 2.77E-03

kinase activity GO:0016301 Molecular Function 2.87E-03

mannosidase activity GO:0015923 Molecular Function 1.10E-02
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The capability of animal cells to maintain a constant cell
volume is prerequisite for cellular life. When eukaryotic
cells are exposed to extracellular osmotic stress, they
undergo rapid regulatory processes to maintain their
cellular homeostatic status. The mechanism is particu-
larly important in gill epithelia in fishes. Here, we
showed the RNA-seq data from two medaka fishes that
live in different osmotic environments. O. melastigma
inhabits in brackish-water or fresh water around Begal
Bay and Malay Peninsula; while O. latipes are found in
fresh water of Japan, Korea and China. They encounter
different osmotic environments and have been shown
to have different osmotic tolerances in fresh water to
seawater transfer experiments [48]. In a molecular
point of view, the two fishes should have different
osmoregulatory mechanisms. In fish biology, we know
that the gill is the first osmoregulatory tissue to sense
and response the osmotic challenges [49]. In addition,
kidney and intestine play osmoregulatory roles in fish
[50,51]. Although our transcriptome data of O. melastigma
do not include the osmoregulartory tissues/organs, our data
have identified several critical seawater acclimating ion
transporters, such as cystic fibrosis transmembrane conduct-
ance regulator, sodium/potassium/chloride co-transporter,
and sodium pump α and β. These ion transporters have
been shown to be highly expressed in gills of SW acclimated
fishes, such as eel, and tilapia [52-54]. The identification of
these ion transporters in the O. melastigma suggested the
possible use of our RNA-seq data for future osmoregulatory
studies.
Furthermore, by using read-count approach and qPCR
validation, we estimated that a lower boundary of 255
genes being only expressed in O. melastigma compared
to those in the O. latipes database (Additional file 12:
Table S12). The highly expressed genes in O. melastigma
and some selected genes that might be functionally re-
lated to seawater adaptation were further validated by
RT-PCR. Indeed, our results showed that a number of genes
were highly expressed in O. melastigma but undetected in
O. latipes (Figure 5). One of the O. melastigma-enriched
genes, solute carrier and organic anion transporter (SO3A1),
is commonly found in human brain tissue and epidermal
keratinocytes. SO3A1 may play a role in the exchange of an-
ions between cells, thus facilitating seawater adaptation [55].
In addition, it mediates the transport of thyroxine and vaso-
pressin [56] that is important in osmoregulation [57,58].
Similarly, another solute carrier, solute carrier family 12
member 5 (S12A5), is commonly found in brain. It is a
potassium-chloride co-transporter, which is highly expressed
in neurons [59]. In addition, the sodium-calcium-potassium
exchanger 2 (NCKX2) is a polytopic membrane protein that
drives Ca2+ extrusion across the plasma membrane
[60]. All these three transporters mentioned above are
highly expressed in the brain region. However, they all
cannot be aligned in the recent existing freshwater me-
daka. Additionally, cardiac channels such as potassium
voltage-gated channel subfamily D member 2 (KCND2)
and plakophilin-2 (PKP2) also only be found in the
marine medaka. KCND2 is critical in repolarizing the
cardiac action potential [61], while PKP2 is essential
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Figure 4 qPCR validation of tissue-enriched genes in marine medaka. A) Specific expression of gap junction beta-1 protein (CXB1) and potassium
voltage-gated channel, shaker-related subfamily, member 2 (KCNA2) in the female and male brain. B) Dominant expression of Rh Family, B Glycoprotein
(RHBG) and bone morphogenetic protein 10 (BMP10) in the liver compared to other tissues. C) Specific expression of methyltransferase-like 21C (MTL21C)
and dominant expression of forkhead box protein N5 (FOXN5) in the ovary. D) Dominant and specific expression of family with Sequence similarity 187,
member A (FAM187A) and succinate receptor 1 (SUCR1) in the testis.
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protein for building up of desmosome. PKP2 has been
reported to be functionally related to sodium channel,
and decreased in PKP2 expression leaded to downreg-
ulation of sodium current in cardiomyocytes of human
[62,63]. The data presented here, hence provides oppor-
tunities for researchers to understand the ion transporters
mechanism between two species by using our database as
nucleotide references for different molecular probes.
Nevertheless, instead of using the existing model organ-
ism genome database, our findings suggest that researchers
generate their own model transcriptome database for a
more confident result. Even in the two close species we ex-
amined here, there are genes that cannot be aligned in the
seawater medaka. It should be noted that some seawater-
unique genes we mentioned above are common in differ-
ent species; the reason that we cannot identify them in the
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freshwater medaka may due to their low similarities be-
tween the two species. In fact, the ambient conditions, age,
and the physiological state when tissue samples were col-
lected influences the transcription rate of a gene, and
whether or not a gene is expressed at all. We also note that
allelic variation might explain the observed large diver-
gence between the orthologous transcripts between marine
and freshwater medaka. Nevertheless, this further supports
the necessity of generating species-specific database for
ecotoxicological studies.

Conclusion
This study provides a specific marine medaka transcrip-
tome resource to the community that could facilitate fu-
ture works on the marine medaka. We annotated more
than 14,000 transcripts across four tissues in marine
medaka and found 5880 orthologous transcripts be-
tween O. melastigma and O. latipes. Moreover, numer-
ous tissue/organ-enriched genes were identified. Most
importantly, we further investigated the possible diver-
gence between O. melastigma and O. latipes, which sug-
gests the importance of generating the model's own
transcriptome database. This sequencing effort generated
a valuable resource of coding DNA for a non-model spe-
cies that will aid future studies assessing in vivo molecular
responses to environmental stresses and biological toxicity
in the marine environment.
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