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Abstract

Background: Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic
improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited,
thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation
alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these
characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns.

Results: We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction
site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped
on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected
(1,806.94 cM). The length of RAD tags (85 bp) was extended to 400–500 bp with Miseq method, offering us an easiness
of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was
in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites
(99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2
in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595.

Conclusions: A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China.
The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were
identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the
genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases
of economic traits.
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Background
In Chinese aquaculture community, Saccharina japonica is
referred to as kelp [1,2] although other species, e.g., giant
kelp (Macrocystis pyrifera), have also been tentatively cul-
tured in recent years. Chinese kelp breeders and farmers
also call the cultured kelp either Japanese kelp or true kelp
as its scientific name S. japonica indicated; unfortunately
the cultured kelp of China may have been contaminated
genetically by S. longissima as two interspecific hybrids
[3,4] and a hybrid-derived variety [5] at least have been de-
veloped and commercially cultured recently. Kelp has con-
tributed significantly to Chinese mariculture. Its culturing
area reached 40,201 hectares and its yield (weight of air
dried frond) reached 979,006 tons in 2012 as was docu-
mented in Annual Report of Chinese Fisheries 2013. Kelp
can be used to extracting mannitol, alginate and medicine
or as human food and animal feed. Kelp promises also to
be the most favorable feedstock for bioethanol fermen-
tation as its three major components, mannitol, lami-
narian and alginate, can be fermented into bioethanol
concertedly [6-8]. Kelp may also serve as the carbon
fixers [9]. In addition, kelp has been integrated into
environmental remediation and healthy animal culture
systems in China.
China has cultured kelp intensively for almost a century.

As were widely practiced in terrestrial crops, kelp has also
been genetically improved with methods including con-
tinuous selection, hybridization and selection and de-
velopment of hybrids. Since 1950s, more than 20 elite
varieties and hybrids have been bred, which have con-
tributed significantly to the culture performance of kelp,
especially its yield. The representatives of these varieties
included Haiqin no.1 [10], 901 [5] and Dongfang no.2 [4].
The weakness of their stress tolerance and their inapplic-
ability for processing may not satisfy the tremendous and
diverse requirements of kelp as human food, animal feed
and industrial raw material; however the yield of these kelp
varieties, especially that of hybrids, has been significantly
elevated. Actually, the yield of hybrid kelps increases by
60-70% over normal varieties, almost a half of the theoret-
ical, i.e. 59 metric tons/ha/year [11]. Such a margin of yield
increase is more than that of hybrid rice over normal rice
varieties (≥20%) [12]. Kelp is the only macroalga that has
received systematic genetic improvement; unfortunately
the studies on its genes, genetics and genomics are far
behind those of rice.
Kelp performs an alternative life cycle during which

sporophyte generation alternates with gametophyte gener-
ation [13]. The sporophytes are large and multicellular
while the gametophytes are microscopic, containing a
single or a few cells. The asexual sporophytes (diploid)
produce motile zoospores (monoploid). These zoospores
develop into sexual male and female gametophytes which
produce spermatozoids and eggs, respectively. Through
fertilization, spermatozoids and eggs fuse to form zygotes
which subsequently develop into sporophytes. Kelp game-
tophytes can asexually propagate [14-16], forming gameto-
phyte clones applicable to either germplasm conservation
or gametophyte clone hybridization and hybrid kelp seed-
ling raising [3-5]. This avoids the dependence of mature
sporophytes met in traditional summer seedling-raising
from sporophytes [17]. Year round seedling-raising of kelp
is potent as the maturing time is different among habitats
[18] and physiologically modifiable [19]. The field cultur-
ing facility of kelp in China has evolved from floating raft
[13] to floating rope net [3]. The seedlings were placed in
between the skeins of the pendent ropes between floating
head-ropes fixed at two ends to sea bed. In addition, both
kelp sporophytes and gametophytes have survived the gen-
etic transformation with diverse methods [20]. The num-
ber of chromosomes in kelp nucleus is hard to determine
as they are resistant to staining with traditional chemical
dyes. Accordingly, the number of chromosomes in kelp
nucleus has been debated for a long time. With an im-
proved staining method, such a number was determined as
31 by Zhou et al. [21], which was further supported by 4,
6-diamino-2-phenyl indole (DAPI) staining [22-24].
Sex specific markers including inter-simple sequence
repeat (SSR) [24] and a sequence [22] have been iden-
tified. Measurable and observable traits of kelp included at
least spermatozoid life-span [25], temperature tolerance of
young sporophytes [26], and those frequently evaluated
during breeding, e.g. the morphological characteristics and
stress tolerance [3-5]. These achievements make the inten-
sive studies of kelp with molecular tools feasible and
appreciable.
A SNP is a DNA sequence variation that occurs when a

single nucleotide in the genome differs between either the
members of a species or the paired chromosomes in a sin-
gle individual. SNPs have gained a wide range of applica-
tions in humans and model species. They are becoming
the marker of choice for additional species as well. The
SNP genotyping techniques include tetra primer amplifi-
cation refractory mutation system - polymerase chain re-
action (T-ARMS-PCR) [27], capillary electrophoresis [28],
high resolution melting [29], mass spectrometry [30,31],
optical amplification of cationic conjugated polymers and
the single base primer extension reaction [32], DNA micro-
array [33-36], pyrosequencing [37,38], multiplex PCR [39];
PCR and sequencing [40], competitive allele specific PCR
(KASPar) [41], GoldenGate [42-45], resequencing [46], and
among others [47]. This evolution has witnessed a dramatic
increase in genotyping throughput; however the high
cost, labor intensiveness and confirmation bias, alone or
in combination, have slowed their application to a wide
range of species and individuals within a given population.
SNP genotyping by traditional DNA sequencing originally
promised a high throughput, but its high cost limited its
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applicability to only model or extremely important species
[48]. With the coming of the next generation (massively
parallel) sequencing era, the cost of genotyping by sequen-
cing is being progressively reduced, making the diversity
determining, map constructing and trait mapping by se-
quencing feasible in organisms with or without reference
genome sequence [49]. Implementation of methodolo-
gies such as the reduction of genome complexity [50]
and restriction-site associated DNA (RAD) sequencing
[36,51-53] and a modification of this method, double
digest RAD (ddRAD) [54-56] has dramatically widened
the application of genotyping by sequencing in linkage map
construction [57,58] and association analysis [59]. In con-
trast, trait mapping on the SNP linkage maps constructed
by sequencing has been scarce [60]. In addition to map
construction and trait mapping, SNPs in chip format
have also been used to genomic breeding of rice [61]
and characterization of genomic diversity of wheat [62].
For kelp (S. japonica), diverse molecular markers have

been developed, which included amplified fragment length
polymorphism (AFLP) [63-65], SSR [66-69] and among
others. These markers have been used to quantitative trait
locus (QTL) mapping [70], locating gametophyte sex de-
termining locus [64], diversity determination [71,72] and
heterosis prediction [73]. However, kelp is far behind
model plants and crops in the number and type of mo-
lecular markers and the applying depth and width of these
markers although the breeding strategy and achievement
of kelp, especially hybrid breeding, are comparable with
those of rice and its potential of being a source feedstock
of bioethanol fermentation. It is clear that the genetic stud-
ies of kelp should shift onto a fast molecular marker track
as other plants do. In this study, a high density SNP linkage
map was constructed for kelp by sequencing Taq I
associated DNA, aiming to provide kelp studies an
important tool.

Methods
Construction of a gametophyte clone mapping panel
The parental female gametophyte clone was isolated from
Dongfang no. 3, a kelp hybrid [3], in 2004 while the paren-
tal male gametophyte clone was isolated from Benniu, a S.
japonica variety, bred by continuous selection in 2003.
The sporophytes were raised from these parental gameto-
phyte clones and cultured with the methods described
early [4]. In Jul. 2011, three well developed mature sporo-
phytes were selected with their heterozygosity judged by
genotyping at nine microsatellites (H1, H10, H123, D3,
D5, D9, Zspj22, Zspj28 and Zspj38) [66,68,69]. Tissue
blocks with sporangia were cut from sporophytes, two
each, which were scratched with cotton balls and rinsed
with sterilized seawater thoroughly, submerged in 1.5% KI
for 5-10 min, and air-dried for 2-3 h. The blocks were
submerged in sterilized seawater independently, allowing
zoospores to release. The zoospores were allowed to sink
and adhered onto the bottom surface of a glass dish and
germinate there in a few days. The young gametophytes
were picked up once their sex is distinguishable and
inoculated into seawater for further growth as we did
early [4]. Out of six tissue blocks, only one was selected for
constructing the gametophyte clone mapping panel. The
seawater used for sporophyte tissue rinsing, zoospore re-
leasing and germinating, young gametophyte culturing and
conserving and among others was filtrated through fabric
ester microhole filtering films (WX-0.22 μM, MOSU In-
struments CO., LTD, Shanghai, China) and autoclaved at
121°C for 30 min.

DNA extraction
The genomic DNA of the gametophyte clones of mapping
panel and 2 parental gametophyte clones was extracted
primarily with a modified cetyltriethylammnonium brom-
ide (CTAB) method [74]. About 1.0 g of gametophytes was
ground into powder in liquid nitrogen. To the powder,
3 mL of extraction buffer (100 mM Tris–HCl pH 7.5,
50 mM ethylene diamine tetraacetic acid (EDTA) pH 4.5,
1.5 M NaCl, 2% CTAB, 1% (w/v) polyvinylpyrrolidone)
was added. The mixture was shaken vigorously for 5 min
and incubated at 55°C for 2 h in the presence of 20 units
of proteinase K, and treated with 1/3 extraction buffer
volume of 5 M KAc (pH 5.0) on ice for 30 min. The cellu-
lar debris and polysaccharides were removed by centrifu-
ging at 12,000 rpm and 4°C for 15 min. The supernatant
was extracted with an equal volume of phenol: chloro-
form: isoamyl alcohol (25:24:1 in volume) and then with
an equal volume of chloroform: isoamyl alcohol (24:1)
with polysaccharides removed again by adding 0.3 volumes
of absolute ethanol and an equal volume of chloroform: iso-
amyl alcohol (24:1). The DNA was precipitated with 0.8
volume of cold isopropanol at −20°C for 1 h, washed twice
with 70% cold ethanol and dissolved in 1 × TE. The DNA
was further purified using Plant Genomic DNA Kit
(Product No. DP305, Tiangen Biotech Co., Ltd, Beijing,
China). The RNA was removed away with an appropriate
amount of RNase. In case of biomass-limited, e.g. some
male gametophyte clones; genomic DNA was extracted
directly with Plant Genomic DNA Kit. In order to verify
the segregation of the mapping panel, two parental gam-
etophyte clones and eight randomly selected clones were
subjected to microsatellite genotyping (Figure 1). The
polymorphic microsatellites included D5, H45 and H123
[68,69]. The quality genomic DNA of the gametophyte
clones of mapping panel was used for RAD sequencing.

RAD sequencing and SNP linkage map construction
RAD library constructing, indexing and pooling were
done with the strategy developed for natural populations
[52]. The restriction endonuclease Taq I was used to



Figure 1 Microsatellite segregation pattern of mapping panel. Eight randomly selected gametophyte clones from mapping panel were
genotyped with D5 (A); H45 (B) and H123 (C). The gametophyte clones of mapping panel segregate as expected.

Figure 2 The decreasing number of quality tags. These tags
were generated for parental female and male gametophyte clones
(bar 1 and 2, respectively) and 140 gametophyte clones of mapping
panel (bar 3 through 143).
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cutting gametophyte clone DNA. A total of 24 multiplex
sequencing libraries were constructed, in which each gam-
etophyte clone DNA was prefixed with a unique nucleo-
tide multiplex identifier as a barcode. Taq I end (101 bp in
length) sequencing was performed on Illumina HiSeq2500
platform. Illumina Miseq PE250 was used to extending
Taq I site associated DNA of two parental gametophyte
clones. Raw RAD reads were trimmed to 85 nucleotide
tags, which ensured > 97.5% of nucleotides have a quality
value >Q30 (<0.1% sequencing error). These tags were
aligned into Taq I site associated tag piles by their se-
quence similarity using Stacks [75]. Unique tags, i.e. the
non-redundant with a maximum of one base difference
from others, were screened out of a tag pile and used as
the candidate alleles occupying a corresponding physical
RAD locus. Physical RAD loci are sequence tagged while
genetic loci are linkage determined. All candidate alleles
were then collapsed into clusters using Stacks under default
parameters for SNP calling [76]. Genotype calling, a process
of determining the SNP genotype of physical RAD loci of
each gametophyte clone after SNP calling, followed the
philosophy of Hohenlohe et al. [76]. The customized perl
scripts were applied then to generate a “.loc” file as the in-
put of Joinmap 3.0 [77,78] with SNP linkage map calculated
at a log of odds (LOD) value of 6.0 and a maximum recom-
bination of 0.400 with regression algorithm. The linkage
distances between loci were exported into MapChart [79]
for map drawing.
The expected length of map (Ge) was the average of

Ge1 and Ge2, where Ge1 was the sum of the lengths of all
linkage groups, each revised by adding 2 s (s is the average
space between loci, 2 s accounts for the two chromosome
ends) to the observed [80], and Ge2 was the sum of the
lengths of linkage groups, each revised by multiplying the
observed with (m + 1)/(m - 1), where m is the number of
genetic loci [81]. The genome coverage was calculated by
dividing the observed map length with that of the expected
as we did early [82].
Results
Gametophyte clone genotyping
Trimming the raw HiSeq2500 reads yielded the quality
tags for gametophyte clones each, which ranged from
341,797 to 4,028,160 with an average of 1,905,908. For
parental female and male gametophyte clones, 5,886,795
and 5,634,477 quality tags were generated, respectively
(Figure 2). The quality tags of a gametophyte clone were
aligned into RAD-tag piles with those covering only one
tag discarded in order to ensure sequencing reliability.
The remaining RAD-tag piles were considered as physical
RAD loci from which unique candidate alleles were picked
up. All candidate alleles identified among gametophyte
clones of mapping panel were clustered for SNP and SNP
genotype calling. Of 153 gametophyte clones, 14 were de-
leted in linkage map calculation as they were either geno-
type heterozygous or genotype absent at a large portion of
physical RAD loci. The remaining 139 gametophyte clones
were used for map calculation.

Construction and characterization of SNP linkage map
In total, 4,994 physical RAD loci survived testing against
1:1 segregation expectation, grouping and map calcula-
tion, which were assigned onto 31 linkage groups finally



Zhang et al. BMC Genomics  (2015) 16:189 Page 5 of 11
(Figure 3, Additional files 1 and 2). These physical RAD
loci occupied 4,921 genetic RAD loci as some of physical
RAD loci co-segregated among gametophyte clones. The
number of markers was large; however their distribution
was not even (Figure 3). The maximum interval between
genetic RAD loci was 14.97 cM while the minimum was
0.001 cM with an average of 0.36 cM (Table 1). Big inter-
vals were often found in linkage groups each, indicating
that some regions of kelp genome were extremely recom-
bination less. The length of map was 1,782.75 cM in length,
which accounted for 98.66% of the expected (1,806.94 cM).

Characterization of SNP at mapped physical RAD loci
Gametophyte clones contained different numbers of qual-
ity physical RAD loci. About 21.6% of quality physical
RAD loci were absent in average among these clones. As
illustrated in Figure 3, the number of mapped physical
RAD loci varied among clones. As showed in Figure 4,
only seven clones were genotyped at <3,000 physical RAD
loci, and 63 clones were genotyped at >5,000 physical
RAD loci. The remaining clones were genotyped at phys-
ical RAD loci varying between 3,000 and 5,000. All types
of SNP were identified at mapped physical loci. Along 85
nucleotide tags, SNP distributed almost evenly (Figure 5).

Extension of Taq I associated DNA and microsatellites
development
At 4,992 of 4,994 physical RAD loci, Taq I associated
DNA was extended with Illumina Miseq PE250. The num-
ber of trimmed extending reads at these loci ranged from
552 to 4,677 with an average of 897 (Additional file 3).
These extended DNA will expand the application of these
SNPs to e.g. the development of oligonucleotide chips.
The extended tags have allowed us to develop a set of

microsatellites for determining genetic diversity, evaluating
genetic resources and among others. Microsatellites search-
ing against extended Taq I associated DNA at 4,992 phys-
ical RAD loci yielded 99 microsatellites (Additional file 4).
The simple sequence of these microsatellites was 2–6 bases
in length and repeated ≥10 (2n), ≥7 (3n), ≥5 (4n), ≥4 (5n)
and ≥3 (6n) times, respectively. These microsatellites were
bounded at least 50 nucleotides upstream and downstream,
respectively, so that primers can be designed conveni-
ently. Unfortunately, the amplification and polymorphism
between two parental gametophyte clones and among
conserved kelp gametophyte clones have not been tested.
The positions of the Taq I associated DNA from them
the microsatellites were identified have added locating
the microsatellites at the SNP linkage map constructed
in this study (Additional files 2 and 4 in red color).

Mapping of a gametophyte sex determining locus
After calculating SNP linkage map, we mixed the sex
trait of kelp gametophyte clones with SNP genotypes of
physical RAD loci, grouped these loci and sex trait again
and calculated the linkage of gametophyte sex trait and
physical RAD loci. It was found that a sex determining
locus was mapped on linkage group 2, which was 2.66 cM
up to marker_40567 and 6.42 cM down to marker_23595
(Additional files 5 and 6 in red color). Linkage group 2
was the longest, expanding a genetic distance of 92.6 cM.
Recalculated linkage group containing sex determining
locus was 93.0 cM in length. The sex determining locus
located within a window of about 9.0 cM in length.
Discussion
SNP linkage map and its application
Kelp has been intensively cultured in China for almost a
century. Its genetic improvement is comparable with that
of rice in terms of breeding strategy. For example, utilizing
heterosis by developing kelp hybrids has increased the unit
area yield by 60-70% on the basis of elite varieties [3-5]. In
addition, a set of traits, both the biological (e.g. gameto-
phyte gender) and the economic (e.g. yield and stress toler-
ance) have been measured frequently during breeding. It is
clear that the genetic bases of these traits should be deci-
phered with molecular tools so that molecular marker
assisted breeding could be implemented. Unfortunately, the
development of molecular tools for kelp is extremely lim-
ited. A few marker systems have been used in kelp [63-69];
however they were either low throughput or not transfer-
able among populations or number limited. Linkage maps
of kelp have been tentatively constructed (e.g., [64]);
unfortunately the markers on these maps are mainly
AFLPs which are not transferable among populations.
In this study, we constructed a high density SNP linkage

map by sequencing Taq I site associated DNA. In total,
4,994 SNPs were assigned to 31 linkage groups. The map
expanded a total genetic distance of 1782.75 cM, covering
98.66% of the expected (1806.94 cM). To our knowledge,
this is the highest density molecular marker linkage map
of kelp constructed to date. The length of RAD tags were
85 bp in length, These tags themselves may serve as inter-
rogators of their homologs; however they cannot serve as
the templates of SNP detecting tools, for example, PCR
based methods. In order to overcome this shortage, we
extended the tag to 400–500 bp with Miseq method. The
extended will retain the advantage of tags in homologs
searching and offer us easiness in developing SNP de-
tecting tools, and further deciphering the genetic bases
of economic traits and cloning their controlling genes.
The number of linkage groups we obtained was in accord-
ance with that determined with an improved staining
method [21] and DAPI staining [22-24]. Sex specific
markers including inter-SSRs [24] and a sequence [22]
have been identified. The mapping of kelp gametophyte
sex locus and these early findings in combination may



Figure 3 A brief illustration of the linkage map. The linkage map constructed was briefly shown. The illustrated include 31 linkage groups
which are equal to the chromosomes reported early, and the unevenness of marker distribution on these groups. The horizontal bars represent
linkage groups while the vertical (red) lines represent SNP markers.

Zhang et al. BMC Genomics  (2015) 16:189 Page 6 of 11



Table 1 The characteristics of the linkage map constructed in this study

LG No. of Space (cM) Length (cM)

Markers Loci Max. Min. Avr. Cal. Rev.1 Rev.2

1 308 304 5.123 0.001 0.195 58.913 59.638 59.303

2 279 262 9.846 0.001 0.356 92.619 93.344 93.331

3 278 276 6.530 0.001 0.226 62.056 62.781 62.509

4 268 268 8.258 0.001 0.254 67.532 68.257 68.040

5 252 249 13.957 0.001 0.351 86.804 87.529 87.507

6 227 225 5.008 0.001 0.250 55.674 56.399 56.173

7 220 216 6.874 0.001 0.244 52.262 52.987 52.750

8 217 211 8.349 0.001 0.289 60.329 61.054 60.906

9 197 197 4.893 0.001 0.353 68.765 69.490 69.470

10 192 192 6.211 0.001 0.463 87.906 88.631 88.831

11 190 188 14.969 0.001 0.340 63.319 64.044 64.000

12 183 178 14.209 0.001 0.311 54.736 55.461 55.358

13 168 169 4.506 0.001 0.335 56.004 56.729 56.675

14 167 165 6.576 0.001 0.326 53.105 53.830 53.757

15 166 166 7.178 0.003 0.369 60.478 61.203 61.216

16 137 138 7.021 0.001 0.376 51.134 51.859 51.886

17 136 137 5.583 0.002 0.478 64.559 65.284 65.515

18 137 134 8.914 0.001 0.411 54.272 54.997 55.094

19 130 130 6.799 0.001 0.485 62.051 62.776 63.021

20 128 128 10.776 0.001 0.422 53.204 53.929 54.049

21 125 126 10.013 0.001 0.551 68.287 69.012 69.388

22 124 124 7.900 0.001 0.380 46.314 47.039 47.073

23 124 123 7.471 0.001 0.436 52.733 53.458 53.605

24 121 122 13.093 0.001 0.387 46.385 47.110 47.158

25 104 104 14.271 0.001 0.556 56.689 57.414 57.801

26 96 96 3.828 0.004 0.240 22.565 23.290 23.045

27 85 86 8.327 0.002 0.685 57.517 58.242 58.886

28 84 85 7.183 0.002 0.601 49.865 50.590 51.067

29 82 83 9.39 0.002 0.759 61.439 62.164 62.956

30 40 41 14.250 0.025 1.174 45.786 46.511 48.134

31 29 29 2.886 0.003 0.350 9.445 10.170 10.145

Total 4994 4922 14.969 0.001 0.362 1782.747 1805.222 1808.649

LG, linkage group; Loci refer to genetic ones, not sequence tagged physical RAD loci; Max, maximum; Min, minimum; Avr., Average; Cal., calculated length of a
linkage group; Rev. 1, the length of a linkage group revised with the method of Fishman et al. [80]; Rev. 2, the length of a linkage group revised with the method
of Chakravarti et al. [81].
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aid to approaching the mechanism underlining the sex
determination of kelp gametophytes.
SNP genotyping is less efficient with traditional methods,

e.g. tetra-primer ARMS PCR [27], capillary electrophoresis
[28], high resolution melting [29], mass spectrometry
[30,31], optical amplification of cationic conjugated
polymers and the single base primer extension reaction
[32], and PCR and sequencing [40]. Such efficiency may
be improved with relatively high throughput methods,
e.g. multiplex PCR [39], KASPar [41] and GoldenGate
[42-45]; however these methods need specifically devel-
oped facilities and detergents. Pyrosequencing [37,38],
resequencing [46] and even the reduction of genome com-
plexity [50] and RAD sequencing [36,51-53] and ddRAD
[54-56,83] are still expensive at this moment. To our
knowledge, DNA microarray [33-36] is the most appropri-
ate tool for SNP genotyping as was tried in genomic
breeding of rice [61] and characterization of genomic



Figure 4 The number of gametophyte clones with different
numbers of mapped RAD loci.
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diversity of wheat [62]. We mapped 4,994 RAD physical
loci and extended these tags to 400–500 bp in length. This
will allow us easiness of developing SNP chips, thus shift-
ing SNP genotyping to a fast, cheap and high throughput
track.
Although a long time effort has been made, the kelp

microsatellites isolated and mapped were extremely scarce
[23,66,67,69]. In this study, we identified a set of microsa-
tellites, 99 in total, from the mapped and extended RAD
tags following relatively strict standards, which distributed
on all SNP linkage groups (Additional files 2 and 4 in red
color). These microsatellites will certainly fill in the gap
between traditional molecular markers and high through-
put SNP array or SNP chip, thus facilitating a set of works,
for example, the evaluation of genetic resources and de-
cipherment of the genetic bases of important traits. The
most prominent advantage of this set of microsatellites
was the certainty of their position on the linkage map.

Sex determination of kelp gametophyte
Different sets of genes governing the biosyntheses of ethyl-
ene, jasmonic acid, brassinosteroids or gibberellins or occa-
sionally proteins have been identified as the controller of
Figure 5 The number of SNPs found at different nucleotide positions
the gender of monoecious plant flowers while a sex deter-
mining region (locus) usually evolves to control the gender
of dioecious plants [84]. The complexity of sex determining
regions varied among a wide range of species between the
simplest in yeast where only a gene and its expression regu-
lation elements exist [85] and the most complex, the sex
chromosomes in papaya [86-88]. Between the extremes of
complexities are sex-determining loci governing the gender
of Chlamydomonas [89,90], Volvox [91,92] and asparagus
[93]. The characteristics shared by these loci include the
chromosomal rearrangement and avoidance of genetic
recombination and the difference in gene content and
expression between genders [92]. The life cycles of liver-
wort and moss are monoploidy gametophytes dominant. In
these haploidy systems, sex chromosomes have evolved
[94,95]. Pheromone involve in the recognition and fusion of
algal gametes, but not the gamete development and sex
determination [96]. Fungi belonged to the unikonts, a
supergroup of eukaryotes including animals and humans
ourselves while green algae belonged to the plantae; and
brown algae belonged to chromalveolates [97,98]. The
complexity of sex determining loci varies among and
within these eukaryotic supergroups.
Eukaryotic analyses have showed that the sex determining

locus containing chromosomes (sex chromosomes) of kelp
are morphologically identical [21-24]. In this study, a sex de-
termining locus was mapped on linkage group 2 in a win-
dow about 9.0 cM in width (2.66 cM up to marker_40567
and 6.42 cM down to marker_23595). Mapping of the sex
determining locus of kelp gametophytes stepped one pace at
least toward the structure of this locus and its comparison
with those of other species. Recently, the structure of the
sex determination locus of model brown alga Ectocarpus
has been described [99]. Fine mapping this locus and de-
scribing its structure thus understanding the sex determin-
ation of kelp gametophytes will be the focus of our future
studies. Although a long way ahead, we will model our
future works on what have achieved in Ectocarpus.
of RAD tags.
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Conclusions
A high density SNP linkage map was constructed for kelp,
an intensively cultured brown alga in China. On 31 linkage
groups, 4,994 SNP-containing tag defined RAD loci were
mapped. The map expanded a total distance of 1,782.75 cM,
covering 98.66% of the expected. The number of linkage
groups was in accordance with that of real chromosomes.
The length of RAD tags was extended to about 400–500 bp
so that SNP based tools, e.g. SNP chips, can be developed.
In addition, 99 microsatellites were identified among ex-
tended RAD tags. A sex determining locus was mapped on
linkage group 2. This map will facilitate the studies on kelp
genes, genetics and genomics, and may provide a reference
for those studies in Volvox, mosses and ferns.

Availability of supporting data
The RAD reads of 139 gametophytes as a mapping panel
and 2 parental gametophytes of kelp (Saccharina japonica)
have been submitted to NCBI under a bioproject accession
number PRJNA274218 (http://www.ncbi.nlm.nih.gov/bio-
project/274218) which links to 141 Sequence Read Archive
(SRA) accessions corresponding to 141 gametophytes, re-
spectively. The mapped RAD tags with SNP marked have
also been listed in Additional file 1. The extensions of
mapped RAD tags have been listed in Additional file 3.

Additional files

Additional file 1: Tabulated SNP linkage map constructed in this
study. The name of markers, the sequence of RAD tags, and the
recombination value between markers are listed.

Additional file 2: Graphical SNP linkage map constructed in this
study with the loci containing microsatellites marked red. The
mapped SNP markers, their position on linkage groups and genetic
distance in cM are illustrated.

Additional file 3: Tag sequences extended with Miseq. In order to
amplify the applicability of the map constructed to, for example, the
development of SNP genotyping tools other than sequencing, the
mapped RAD tags are extended. The listed include the extended tag
sequences and their corresponding marker names.

Additional file 4: Microsatellites identified in extended tag
sequences and their characteristics. In total, 99 microsatellites were
identified among the extended tag sequences. These microsatellites are
applicable to diverse studies as their location on the map is known.

Additional file 5: Tabulated position of the sex determining locus
of kelp gametophytes. In this table, the sex determining locus and its
position on linkage group 2 are listed.

Additional file 6: Graphical position of the sex determining locus
of kelp gametophytes. The illustrated include the sex determining locus
(in red color) and its relationship to the adjacent markers on linkage group 2.
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