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Transcriptome and expression profiling analysis
link patterns of gene expression to antennal
responses in Spodoptera litura
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Abstract

Background: The study of olfaction is key to understanding the interaction of insects with their environment and
provides opportunities to develop novel tactics for control of pest species. Recent developments in transcriptomic
approaches enable the molecular basis of olfaction to be studied even in species with limited genomic information.
Here we use transcriptome and expression profiling analysis to characterize the antennal transcriptome of the
noctuid moth and polyphagous pest Spodoptera litura.

Results: We identify 74 candidate genes involved in odor detection and recognition, encoding 26 ORs, 21 OBPs,
18 CSPs and 9 IRs. We examine their expression levels in both sexes and seek evidence for their function by relating
their expression with levels of EAG response in male and female antennae to 58 host and non-host plant volatiles and
sex pheromone components. The majority of olfactory genes showed sex-biased expression, usually male-biased in
ORs. A link between OR gene expression and antennal responses to odors was evident, a third of the compounds
tested evoking a sex-biased response, in every case also male-biased. Two candidate pheromone receptors, OR14 and
OR23 were especially strongly expressed and male-biased and we suggest that these may respond to the two female
sex pheromone components of S. litura, Z9E11-14:OAc and Z9E12-14:OAc, which evoked strongly male-biased EAG
responses.

Conclusions: Our results provide the molecular basis for elucidating the olfactory profile of moths and the sexual
divergence of their behavior and could enable the targeting of particular genes, and behaviors for pest management.
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Background
Olfaction plays a key role in the interactions of insects
with their environment, mediating foraging, aggregation,
mating, and oviposition behaviors. Studies of insect ol-
faction have provided fundamental insights into chemo-
sensory biology and chemical ecology [1-4] and have
presented valuable opportunities for pest management
[5-8]. Lepidoptera are a focus of interest for studies of
olfaction as they have large and sensitive olfactory reper-
toires [8] yet molecular studies of olfaction in Lepidop-
tera lag behind those in standard insect models.
Recently, there has been exciting progress in identifying
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genes coding for lepidopteran olfactory receptors, not
only in the model Bombyx mori [8-10], for which there
is genomic data [11], but also in the pest species Man-
duca sexta [12], Heliothis virescens [13,14] and Spodop-
tera frugiperda [15] , however it’s a draft assembly to
present, which would be a better reference for S.litura in
the future. Progress in the absence of genomic data has
been made possible by genome-wide approaches for
transcriptome analysis, such as RNA-Sequencing (RNA-
Seq) [12]. Such high-throughput molecular techniques
and associated informatics technologies, are becoming
commonplace in chemical ecology [9,16,17].
A sufficient level of expression of genes is key to the

success of transcriptomic approaches to their identifica-
tion. In an elegant and comprehensive study on the
antennal transcriptome of M. sexta, Grosse-Wilde et al.
[12] identified the main olfactory genes and compared
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their expression in males and females. In an equally
thorough study of the antennal transcriptome of S. lit-
toralis, Jacquin-Joly et al. [18,19] examined the expres-
sion of 7 olfactory and 4 gustatory receptors in different
tissues and discussed their function. They suggested that
transcriptome expression may change following mating
and could reveal more olfactory genes involved in sex-
specific behavior. If expression levels of olfactory genes
could be linked with functional responses to volatiles,
expression profiling could lead to a better understanding
of the function and operation of olfactory genes and
could elucidate how individual variation of olfactory
gene expression might lead to speciation or resistance to
pheromonal pest management.
Olfactory neurons express many proteins involved in

the capture of volatiles from the environment and signal
transduction. These include olfactory receptors (ORs)
[14,19-21], odorant-binding proteins (OBPs) [22,23],
chemosensory proteins (CSPs) [23,24] and ionotropic
receptors (IRs) [25]. ORs specifically bind odorant mole-
cules and initiate signal transduction in the membrane
of the olfactory neuron. Insect ORs generally exhibit low
levels of homology and are selectively expressed in olfac-
tory neurons at low levels [26]. Members of the OR83b
receptor subfamily, commonly known as olfactory recep-
tor coreceptors (ORCOs), are more conserved and
expressed in most olfactory neurons at various stages of
development [27]. In Lepidoptera, OBPs are classified
into pheromone-binding proteins (PBPs) [28], general
odorant-binding proteins (GOBPs) [29,30] and antennal-
binding proteins (ABPs) [31]. ABPs are expressed specif-
ically in the antenna with characteristics typical of OBPs
[29,32,33] but they have low homology with PBPs and
GOBPs and their function remains unknown. The CSPs
constitute a conserved family of binding proteins that
are unrelated to OBPs and whose function is again
unclear [34,35]. IRs, recently described novel family of
olfactory receptors [36], are localized on the dendrite of
chemosensory neurons and are ligand-gated ion chan-
nels that mediate chemical communication between
neurons [37]. IRs were further classified into two sub-
families: conserved “antennal IRs” involved in olfaction
and species-specific “divergent IRs” that might be associ-
ated with gustation [37,38].
The tobacco cutworm moth, Spodoptera litura, is an

important agriculture pest widely distributed throughout
tropical and temperate Asia, Australia and the Pacific
Islands (Additional file 1: Figure S1), noctuid moth and
a polyphagous pest with more than 290 host plants be-
longing to 99 families [39]. The S. litura attacks numer-
ous economically important crops and trees, it also
defoliated these crops or trees, finally leads to serious
economic yield loss [40]. Its two-component sex phero-
mone has been identified [41], together with a plant-
derived synergist [42], and the pheromone is used at a
large scale for mass trapping for pest management [42].
However, little is known about S. litura’s ORs, CSPs and
OBPs [43-46]. Previous behavioral bioassays have dem-
onstrated that male and female moths respond differ-
ently to odorants, including pheromones [41]. The
complete genome of S. litura is not yet available.
Here we study the molecular mechanisms underlying

sex-specific response to odors, including sex phero-
mones, in S. litura, and discuss the link between OR
gene expression and chemosensory responses as mea-
sured by electroantennography. Using de novo tran-
scriptome and expression profile analysis we achieved a
high level of coverage of olfactory genes and measured
gene expression using both single-end RNA-Seq and
RT-qPCR to give confidence in comparisons between
sexes at lower expression levels. We discuss the implica-
tions of our study for understanding the functioning of
olfactory genes.

Results
Olfactory responses of male and female moths
The antennae of both sexes showed varying electroan-
tennogram (EAG) responses to the 58 chemicals that
were presented, representing flower volatiles, host or
non-host plant volatiles, and S. litura sex pheromone
components and their isomers (Figure 1 and Additional
file 1: Figure S2). For 11 floral odors, two plant volatiles,
and six sex pheromone components or isomers EAG re-
sponses differed significantly between sexes, and in each
case males responded more strongly (Figure 1). In male
antennae there was a positively dose-dependent response
to S. litura sex pheromone gland components, both by
those that elicit behavioural responses, (9Z,11E)-tetrade-
cadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetrade-
cadienyl acetate (Z9E12-14:OAc), and also by the minor
components 9Z-tetradecenyl acetate (Z9-14:OAc) and
9E-tetradecenyl acetate (E9-14:OAc) (Figure 1A and B).
The sex pheromone isomers 11E-tetradecenyl acetate
(E11-14:OAc) and 11Z-tetradecenyl acetate (Z11-14:
OAc) elicited significant EAG responses that differed be-
tween sexes at the 10−2 dosage (v/v) although they are
not found in female moths.

De novo transcriptome assembly
A total of 55,288,304 reads of the pooled RNA extract
were generated through Illumina sequencing and as-
sembled into 105,971 contigs and then 69,301 unigenes,
with a mean length of 603 bp (Additional file 1: Figure S3).
More than 39% of all unigenes aligned to sequences in pro-
tein databases. The gene ontology (GO) annotation pro-
vides information of the gene products, the molecular
function, biological process involved and the cellular loca-
tion. GO annotation makes the transcriptome data more



Figure 1 Electroantennogram responses recorded from male and female S. litura antennae elicited by: A and B sex pheromones and
their isomers; C and D floral scents and plant volatiles. A and C stimulating dosage 10−4 v/v, B and D stimulating dosage 10−2 v/v, see
Methods and materials for details. Error bars signify SEM. Significance of difference between male and female responses indicated by *P < 0.05,
**P < 0.01, ***P < 0.001, Students t test.
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accessible and was used to assess the transcriptome
(Additional file 1: Figure S4).

Analysis of olfactory genes
Twenty six putative OR genes, 21 OBPs, 18 CSPs and 9
IRs were identified for S. litura and the mean length of
OR, OBP, CSP and IR was 335 aa, 147 aa, 132 aa and
644 aa separately. Phylogenetic comparison revealed that
24 (except for OR44 and OR45) of S. litura ORs clustered
with verified ORs of Lepidoptera (bootstrap value ≥50)
(Additional file 1: Figure S5). Spodoptera litura ORCO
clustered with the ORCO subfamily, SlituOR18 clustered
with other lepidopteran OR18 and 5 ORs (OR1, OR11,
OR13, OR14, OR23) fell into the pheromone receptors
subfamily. Except for the ORCO, ORs of different orders
(Lepidoptera, Diptera, Hymenoptera and Hemiptera) were
diverged. The twenty-one OBP genes encode 11 OBPs, 4
ABPs, 2 GOBPs, 3 PBPs, and one ABPX. Except for
SlituOBP6, all S. litura OBP genes were clustered with
those of Lepidoptera (bootstrap value ≥50) (Additional
file 1: Figure S6). OBPs of different order (Lepidoptera,
Diptera, Hymenoptera and Hemiptera) were also di-
verged. Of the 18 CSP genes of S. litura (CSP1-18), 16
(except for CSP2 and CSP3) clustered exclusively (boot-
strap value ≥70) with CSPs of Lepidoptera (Additional
file 1: Figure S7). One conserved S. litura CSP (Sli-
tuCSP1) occupied clade with CSPs of A. mellifera, A.
pisum and other Lepidoptera. Nine IRs of S. litura were
clustered with those of Lepidoptera (bootstrap value ≥70)
(Additional file 1: Figure S8). Meanwhile, IR8a and iGLUR6
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and their lepidopteran analogues were clusterd with
those of D. melanogaster with high bootstrap values
(≥90).

Assessment of gene expression in antennae by single-end
RNA-Seq
About 6 million clean reads from the single-end RNA-
Seq library of each of male and female antennal RNA ex-
tracts were generated through Illumina sequencing and,
of these, 69.3% and 73.3%, respectively, were uniquely
matched with the de novo library (Additional file 1:
Table S2). For many olfactory genes where RNA-seq
reported low gene expression levels, as measured by
RPKM values, and where P-values and false discovery
rates (FDR) were > 0.05 and/or 0.01 separately, estimates
of sex differences in relative expression from RT-qPCR
and RNA-Seq differed by a factor of two or more. In
these circumstances RT-qPCR gives a more reliable
measure and was used in preference. The RT-qPCR is
generally considered an efficient, fast, reproducible, reli-
able and specific for quantifying levels of transcripts
Figure 2 Expression levels of olfactory genes in male and female S. litura
single-end RNA-Seq, expression was calculated with log scale of RPKM value. Th
of Audic and Claverie (1997) and indicated by symbol “*” (FDR < 0.01 and P < 0
with male as control, GAPDH and UCCR as reference genes. Female gene expres
as 1. Error bars signify SD. Significance of difference between male and female r
between GAPDH and UCCR (P < 0.05), Students t test.
[47]. Two reference genes (GAPDH and UCCR) [48]
were chose to perform RT-qPCR according to the MIQE
guideline [49] and were used to normalize the data in
our study.

Expression of all olfactory genes in male and female
antennae
Expression levels of putative OR genes were low. The
RPKM values for all ORs were less than 70, except for
ORCO which had values of 179 and 262 for female and
male antennae, respectively (Figure 2A). Four of the sex
differences of ORs in expression shown by RNA-Seq
were confirmed by RT-qPCR (Figure 2). Most of sex dif-
ferences of ORs in expression shown by RNA-Seq were
confirmed by RT-qPCR (Figure 2). Of 21 recognized
general ORs, RT-qPCR showed 2 to be significantly
more expressed in female antennae, relative to the
standard GAPDH and UCCR gene, and 170 were signifi-
cantly more expressed in male antennae (Figure 2B).
Like other ORs, expression levels of candidate phero-
mone receptors measured in the RNA-Seq analysis were
antennae measured in single-end RNA-Seq (A) and RT-qPCR (B). In
e significant difference between female and male was justified by method
.05). In RT-qPCR, gene expression was calculated by the 2-ΔΔCq algorithm
sion is presented normalized to male antennal expression arbitrarily defined
esponses indicated by *P < 0.05, “#”means the significant difference
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low (≤80 RPKM) (Figure 3A). However, expression of
OR23 and OR14 in males was markedly higher than for
the other 3 candidate pheromone receptors (Figure 3A)
and expression of OR14 was amongst the most male-
biased. RT-qPCR confirmed the markedly higher relative
expression of all candidate pheromone receptors in male
antennae (Figure 3B). Usually the difference of general
ORs between the sexes was less than four fold. However,
OR6 was predominantly expressed in the male compared
to the female antennae (Figure 4).
By contrast with candidate pheromone receptors, the

expression levels of candidate pheromone-binding pro-
tein (PBP) genes in antennae were very high, the male
expression of PBP1 being the highest expression of all
olfactory genes at 94161 RPKM (Figure 3A). The sex-
bias expression varied greatly between the three PBPs,
being strongly male-biased for PBP1 and female biased
for PBP3 (Figure 3A). The levels of expression of other
odorant binding proteins in the antennae were extremely
variable, with RPKM values ranging from less than 50 to
over 20,000 (Figure 5A). Five OBPs were shown to be
more highly expressed in female antennae and 3 OBPs
to be more highly expressed in male antennae in single-
Figure 3 Expression levels of pheromone recognition genes in male a
and RT-qPCR (B). In single-end RNA-Seq, expression was calculated with l
male was justified by method of Audic and Claverie (1997) and indicated b
was calculated by the 2-ΔΔCq algorithm with male as control, GAPDH and UCC
to male antennal expression arbitrarily defined as 1. Error bars signify SD, Sign
*P < 0.05, “#” means the significant difference between GAPDH and UCCR (P <
end RNA-Seq and RT-qPCR (Figure 5). However, the
total number of male-biased OBPs were the same as that
of female (Figure 4). The range of expression levels of
CSP genes in the antennae was as extreme as for OBPs,
RPKM values ranging from less than 10 to almost
20,000 (Figure 6A). Twelve CSP genes showed sex differ-
ences in their levels of antennal expression, 5 being
more expressed in females and 7 more expressed in
males and sometimes these differences were marked
(Figure 6). The expression levels of IR genes were as low
as those of ORs and the largest RPKM value was about
1000 (Figure 7A). Of which, IGluR1 was female biased
and IR8a was male biased (Figure 7). Only the expres-
sion levels of 3 ORs, PBP2 and CSP5 showed significant
difference by using GAPDH and UCCR as reference
genes.

Discussion
Spodotera litura is a polyphagous and widely distributed
agricultural pest that shows antennal responses to a
broad range of chemicals. Until now the genes encoding
its olfaction-related proteins have been little known. In
this paper we have characterized the olfactory genes of
nd female S. litura antennae measured in single-end RNA-Seq (A)
og scale of RPKM value. The significant difference between female and
y symbol “*” (FDR < 0.01 and P < 0.05). In RT-qPCR, gene expression
R as reference genes. Female gene expression is presented normalized
ificance of difference between male and female responses indicated by
0.05), Students t test.



Figure 5 Expression levels of candidate OBPs in male and female S. litura
single-end RNA-Seq, expression was calculated with log scale of RPKM value. The
Audic and Claverie (1997) and indicated by symbol “*” (FDR < 0.01 and P < 0.05)
male as control, GAPDH and UCCR as reference genes. Female gene expression is
Error bars signify SD, significance of difference between male and female respons

Figure 4 Summary of differences between male and female S.
litura in the levels of antennal expression of candidate olfactory
genes based on RT-qPCR. Genes in the overlapping intersect
between sexes show no significant difference between male and
female. Genes outside the intersect between sexes show significant
difference between sexes. Those in the dash-outlined area show more
than tenfold greater expression in male or female antenna and can be
considered sex-specific. OR53 and OBP9 were not included because of
contradictory results of two reference genes or RT-qPCR failed.
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S. litura and their antennal expression using transcrip-
tome analysis, single-end RNA-Seq, and RT-qPCR. We
found 74 olfactory genes in the antennae, including 26
ORs, 21 OBPs, 18 CSPs and 9 IRs. Antenal transcrip-
tome was reported in the moths M. sexta (48 ORs, 18
OBPs, 21 CSPs and 4 IRs) [12] and B. mori (71 ORs, 20
OBPs, 16 CSPs and 31 IRs) [11,25]. In the congeneric
species, S. littoralis, 46 ORs, 35 OBPs, 21 CSPs and 5
IRs have recently been found in antennae transcriptome
[18,50,51]. The surprisingly large difference in the num-
ber of olfactory genes obtained for the two Spodoptera
species may not be due to the database size but the
methodological differences of olfactory genes analysis in
the two studies. The S. littoralis study obtained 77,643
contigs with a median size of 653 bp [18,51]. In our
study, it was 105,971 contigs with a median size of 645
bp, which assembled into 69,301 unigenes with a median
size of 974 bp. We adopted a more strict criteria to se-
lect candidate olfactory genes, a 50% average ORF length
(1200 bp) cutoff as a putative gene. The mean length of
OR, OBP, CSP and IR genes was 335 aa, 147 aa, 132 aa
and 644 aa respectivelyin our study, which was close to
the full length of each category.
antennae measured in single-end RNA-Seq (A) and RT-qPCR (B). In
significant difference between female and male was justified by method of
. In RT-qPCR, gene expression was calculated by the 2-ΔΔCq algorithm with
presented normalized to male antennal expression arbitrarily defined as 1.
es indicated by *P < 0.05.



Figure 6 Expression levels of candidate CSPs in male and female S. litura antennae measured in single-end RNA-Seq (A) and RT-qPCR
(B). In single-end RNA-seq, expression was calculated with log scale of RPKM value. The significant difference between female and male was
justified by method of Audic and Claverie (1997) and indicated by symbol “*” (FDR < 0.01 and P < 0.05). In RT-qPCR, gene expression was calculated
by the 2-ΔΔCq algorithm with male as control, GAPDH and UCCR as reference genes. Female gene expression is presented normalized to male antennal
expression arbitrarily defined as 1. Error bars signify SD. Significance of difference between male and female responses indicated by * P < 0.05, “#”
means the significant difference between GAPDH and UCCR (P < 0.05), Students t test.
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Phylogenetic analysis showed that some S. litura olfac-
tory genes clustered not only with those of other Lepidop-
tera but also with those of A. mellifera, D. melanogaster
and A. pisum indicating a certain degree of conservation
typical of olfactory gene families. The extent of gene con-
servation is likely to reflect function. For example, the role
of OBPs is to assist hydrophobic odorant molecules to
cross the aqueous barrier at the pore of the sensillum to
reach and bind to ORs on the dendrite of the olfactory
neuron [13]. OBPs are relatively generalist, binding more
than one molecule [52], and so they are likely to be con-
served across larger taxonomic groupings. A recent study
by McKenzie et al. showed that both OBPs and CSPs
expressed specifically in antennae of the Cerapachys biroi
possibly serve the olfactory functions [53]. By contrast,
ORs often specifically respond to one particular odorant
and those that play a key roles in the autecology of a spe-
cies are likely to be less conserved across taxa, particularly
if they contribute to the reproductive isolation of species
as do sex pheromone receptors [54]. ORs that respond to
odors common across habitats such as certain green leaf
volatiles may be more conserved.
The phylogenetic distribution of S. litura ORs was con-

sistent with other Lepidoptera and the relatively conserved
nature of much of the OR gene family. Five S. litura ORs
clustered together with a conserved OR subfamily of moth
sex pheromone receptors [55] on an exclusively lepidop-
teran branch of the phylogenetic tree. S. litura ORCO clus-
tered with the conserved ORCOs, co-receptors for odor-
and pheromone-specific ORs [56]. The noctuid moths have
another conserved subfamily, OR18 [54]. The OBP family
comprises OBPs, ABPs and three subfamilies conserved
within Lepidoptera PBP, GOBP, and ABPX [30,57]. S. litura
OBPs fell both within and outside these subfamilies and
clustered with other Lepidoptera. One of S. litura’s 18 CSPs
clustered with a CSP subfamily which is highly conserved



Figure 7 Expression levels of candidate IRs in male and female S. litura antennae measured in single-end RNA-seqence (A) and RT-
qPCR (B). In single-end RNA-seqence, vertical axis means the log scale of RPKM value to 10. The significant difference between female and male
was justified by method of Audic and Claverie (1997) and indicated by symbol “*” (FDR < 0.01 and P < 0.05). In RT-qPCR, vertical axis means log
scale of female gene expression to 10. Female gene expression was calculated by the 2-ΔΔCq algorithm with male as control and GAPDH and UCCR
as reference genes. The significant difference was ascertained by Students t test. Symbol “*” means the significant difference between female and
male (P < 0.05). Error bars signify SD”.
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across insects and the remainder clustered with lepidop-
teran CSPs.
In S. litura we found the number of candidate phero-

mone receptor genes (five) close to there are components
of the sex pheromone gland (Z9E11-14:OAc, Z9E12-14:
OAc, Z9-14:OAc, and E9-14:OAc) that are active in EAG
[41]. Multiple sex pheromone receptors (e.g. [35,52,58] and
multi-component sex pheromones (e.g. [59-61]) are found
in other moths and the excess of pheromone receptor
genes is not unique to S. litura [59]. Sex pheromone recep-
tors are very specific and so one might expect their number
to equal the number of sex pheromone components. It is
possible that multiple pheromone receptors may be in-
volved in identifying each component. Using heterologous
expression in Xenopus oocytes, both SexiOR13 and Sex-
iOR16 of S. exigua respond to Z9E12-14:OH [62]. Alterna-
tively, during evolution some components may have been
lost from the pheromone gland before the corresponding
receptor was lost from the antenna [63]. This might explain
the EAG response in S. litura to Z11-14:OAc and E11-14:
OAc, compounds related to known components of the sex
pheromone gland but not themselves present. Retention of
the ability to recognise pheromone components that no
longer signify conspecific females may assist in the main-
tenance of reproductive isolation of species.
There were dramatic differences in levels of expression

of the diverse olfactory genes in S. litura and some of
these can readily be related to function. The 15 most
highly expressed genes (RPKM larger than 1000) were all
binding proteins (OBPs, CSPs and PBPs). By contrast,
most ORs and IRs had RPKM values less than 50. OBPs
are usually highly expressed and solubilizing in sensillar
lymph. OBPs bind with multiple odorants, and are fewer
in number. The most highly-expressed binding protein
was a pheromone-binding protein, PBP1, and candidate
pheromone receptors were among the most highly-
expressed ORs. This reflects the value of being able to
detect very small amounts of pheromone [59]. The most
highly expressed OR was ORCO, consistent with evidence
from phylogenetic studies [45].
We found many sex differences in expression levels of

olfactory genes in S. litura, some of them extreme. Many
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olfactory responses are common to both sexes, such as
those to many host plant volatiles, and this is reflected
in the third of OR genes that we found equally expressed
in both sexes. Others, particularly those involved in
mating or oviposition behaviours, are likely to be sex-
specific. Using RT-qPCR, we found a strong bias towards
males in the number of OR genes with sex-specific
expression, 15 showing significantly more expression in
males and only 2 being more expressed in females.
Figure 4 summarises sex differences in olfactory gene ex-
pression. The majority of genes fall into the area where
sex differences in expression are less than ten-fold but 4
ORs were at least ten-fold as much expressed in males.
This imbalance may be associated with male responsive-
ness to female sex pheromone, yet the number of ORs
that show male-biased expression is well in excess of the
5 putative pheromone receptors we identified.
Our EAG studies support the conclusion that sex-

biased expression of ORs is related to function and, at
least in part, to the male response to sex pheromone.
The EAG measures the sum of neuronal activity in the
antennae reflecting the integrated response of olfactory
receptors to a volatile, other related genes might also be
involved in that responses. Of the 58 volatiles tested by
EAG, 19 evoked a significantly sex-biased response and
in each case greater electrical activity was recorded in
male antenna. Of these, the strongest EAG responses
were to the two behaviorally-active sex pheromone
components, Z9E11-14:OAc, Z9E12-14:OAc. The two
highly-expressed receptors found here, OR14 and OR23,
showed strongly male-biased (Figure 3B) and it is pos-
sible that they are the receptors for Z9E11-14:OAc and
Z9E12-14:OAc. Further studies are to be performed to
confirm these two receptors are the receptors respond
to pheromone components. Many ORs that were not
candidate pheromone receptors also showed male-
biased expression (Figure 2). An increase in the expres-
sion of genes that don’t have a sex-specific function
might in part be a by-product of the elaboration of the
male antenna that enables it to carry abundant
pheromone-sensitive sensilla. The sex-biased expression
of CSPs (10 male-biased, 8 female-biased) indicate that
CSPs play differential roles in the male and female
moths. There was no sex bias in the number of OBP
genes that showed sex-specific expression, probably
reflecting their less specific role as binding proteins.
However, the most highly expressed OBP was a phero-
mone binding protein, PBP1, which was ten times more
expressed in males, suggesting that it is involved in
detection of the sex pheromone. Moreover, our data ob-
tained from the field trials showed that some of S. litura
pheromone isomers play a sygnergistic or antagonistic
role when mixed into the sex pheromone blend (Du
et al., unpublished result). We infers that the ORs or
OBPs could be related to recognition of those phero-
mone isomers and the interspecific communications.
Conclusions
In summary, we have identified the 26 olfactory receptor
genes, 21 odorant-binding protein genes, 18 chemosen-
sory protein genes and 9 ionotropic receptor genes that
are key to understanding the molecular basis of olfactory
responses to sex pheromones and plant volatiles in S.
litura. Transcriptome and expression profiling analyses re-
vealed variation in gene expression, often sex-biased, that
was reflected in the strength of antennal responses and
may lead to the functional identification of genes. Our re-
sults pave the way for future elucidation of the molecular
basis of olfactory and mating behaviors of this moth, and
the development of new biorational pheromone technolo-
gies that target particular genes, proteins and behaviors
for pest monitoring and control.
Methods
Insects
Spodoptera litura (Lepidotera, Noctuidae) pupae were
purchased from the Institute of Zoology, Chinese Acad-
emy of Science, and lab reared. For details see Additional
file 1: Materials and Methods.
EAG recording
Recordings of whole-antenna electrical activity in re-
sponse to volatile stimuli were made according to stand-
ard techniques [64,65]. Antennae were challenged with
58 volatile chemicals presented singly and selected from
flowers, host or non-host plants, and the sex pheromone
components of S. litura and their isomers, some of
which are sex pheromones of other moths (Additional
file 1: Table S1). Each chemical was dissolved in paraffin
oil and tested at two concentrations, 10−4 v/v and 10−2

v/v. A 10-μl aliquot of paraffin oil on the filter paper
was used as the control. The responses of antennae from
ten male and ten female moths were tested for each
treatment. For further details see Additional file 1:
Materials and Methods.
Extraction of total RNA from tissues
To obtain complete gene expression information in the
transcriptome analysis, RNA was extracted separately
from different developmental stages and sexes and then
pooled. Separate RNA extracts were made of the anten-
nae of each sex for expression profiling analysis and for
RT-qPCR. Total RNA was extracted using RNAiso Plus
(Takara, China). For further details see Additional file 1:
Materials and Methods.
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Transcriptome de novo analysis
The cDNA libraries for transcriptome analysis were pre-
pared using TruSeq SBS Kit v3-HS (Illumina, America)
following manufacturer’s recommendations. The libraries
were sequenced using Illumina HiSeq™ 2000 (Illumina,
America) with 90 bp read length of reads-paired end.
Dirty reads containing adapters and unknown or low qual-
ity bases were discarded from raw reads to obtain clean
reads for analysis. Transcriptome de novo assembly was
carried out with the short reads assembling program,
Trinity [66]. Blastx alignment (E value < 0.00001) between
unigenes and protein databases (NCBI non-redundant
protein database, Swiss-Prot, KEGG and COG) was suc-
cessively performed. When a unigene could not be aligned
to any of the databases, ESTScan software was used to
decide its sequence direction and the predicted coding
region [67]. Gene ontology (GO) annotations of the
unigenes were determined using Blast2go (https://
www.blast2go.com/) [68]. WEGO software was used for
GO functional classification for all unigenes and to under-
stand the distribution of gene function at the macro level
[69]. The raw sequence of the transcriptome has been de-
posited in the National Center for Biotechnology Informa-
tion (NCBI) (accession number: PRJNA273435; http://
www.ncbi.nlm.nih.gov/bioproject/273435). For further
details see Additional file 1: Materials and Methods.

Olfactory gene analysis
The candidate olfactory gene was obtained from GO an-
notation. In addition, a 50% ORF length cutoff was used
for considering a putative gene to prevent a gene from
being counted twice. Amino acid sequence alignment
were performed using clustalx [70]. For the phylogenetic
analysis, amino acid sequences of ORs, CSPs and OBPs
of D. melanogaster [22,38], Apis mellifera [71], Acyrtho-
siphon pisum [72], Bombyx mor [8,11], Manduca sexta
[73], Spodoptera littoralis [18,51] and Heliothis virescens
[14,32], and IRs of D. melanogaster [36], Bombyx mor
[25], Manduca sexta [73], Spodoptera littoralis [18,51]
and Helicoverpa armigera [37] were used. Phylogenetic
analyses were conducted with maximum likelihood
method of MEGA 6.0 based on Jones-Taylor-Thornton
(JTT) substitution model, partial deletion gaps with 95%
site coverage cutoff and Nearest Neighbour Interchanges
(NNI) heuristic search [74]. Node support of phylogen-
etic tree was assessed using the bootstrap method with
100 bootstrap replicates.

Profiling analysis of antennal gene expression using
single-end RNA-Seq library
Clean reads were mapped to de novo library sequences
using SOAP2 [75]. Sequence saturation analysis was used
to measure the sequencing data. The distribution of reads
locating on reference genes was used to evaluate the
randomness of fragmentations [76]. The gene expression
level was calculated using the RPKM method [77] to take
account of differing gene lengths. The raw sequence has
been deposited in NCBI as above. For further details see
Additional file 1: Materials and Methods.

RT-qPCR analysis of olfactory gene expression in
antennae
RT-qPCR was performed on total RNA of male and of fe-
male antennae to validate between-sex comparisons of gene
expression made using single-end RNA-Seq data and extend
them to all candidate olfactory genes, including those with
lower expression levels. The PCR primers used are listed in
Additional file 1: Table S3. Six or more replicates were
made. The data were analyzed using SPSS 17.0. For further
details see Additional file 1:Materials and Methods.

Statistical analysis
Data analysis was conducted using SAS 9.2. Significance of
the difference between means was determined by Student’s
t-test.

Additional file

Additional file 1: Supporting information.
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