
Leung et al. BMC Genomics (2015) 16:238
DOI 10.1186/s12864-015-1376-9
RESEARCH ARTICLE Open Access
SV-AUTOPILOT: optimized, automated
construction of structural variation
discovery and benchmarking pipelines

Wai Yi Leung1*, Tobias Marschall2,3,4, Yogesh Paudel5, Laurent Falquet6, Hailiang Mei1, Alexander Schönhuth4

and Tiffanie Yael Maoz (Moss)7*
Abstract

Background: Many tools exist to predict structural variants (SVs), utilizing a variety of algorithms. However, they
have largely been developed and tested on human germline or somatic (e.g. cancer) variation. It seems appropriate
to exploit this wealth of technology available for humans also for other species. Objectives of this work included:

a) Creating an automated, standardized pipeline for SV prediction.
b) Identifying the best tool(s) for SV prediction through benchmarking.
c) Providing a statistically sound method for merging SV calls.

Results: The SV-AUTOPILOT meta-tool platform is an automated pipeline for standardization of SV prediction and
SV tool development in paired-end next-generation sequencing (NGS) analysis. SV-AUTOPILOT comes in the form of a
virtual machine, which includes all datasets, tools and algorithms presented here. The virtual machine easily allows one to
add, replace and update genomes, SV callers and post-processing routines and therefore provides an easy, out-of-the-box
environment for complex SV discovery tasks. SV-AUTOPILOT was used to make a direct comparison between 7 popular
SV tools on the Arabidopsis thaliana genome using the Landsberg (Ler) ecotype as a standardized dataset. Recall and
precision measurements suggest that Pindel and Clever were the most adaptable to this dataset across all size ranges
while Delly performed well for SVs larger than 250 nucleotides. A novel, statistically-sound merging process, which can
control the false discovery rate, reduced the false positive rate on the Arabidopsis benchmark dataset used here by >60%.

Conclusion: SV-AUTOPILOT provides a meta-tool platform for future SV tool development and the benchmarking of tools
on other genomes using a standardized pipeline. It optimizes detection of SVs in non-human genomes using statistically
robust merging. The benchmarking in this study has demonstrated the power of 7 different SV tools for analyzing
different size classes and types of structural variants. The optional merge feature enriches the call set and reduces
false positives providing added benefit to researchers planning to validate SVs. SV-AUTOPILOT is a powerful, new
meta-tool for biologists as well as SV tool developers.

Keywords: Structural Variation, SV tool, Meta-tool, Non-human genome, Standardized pipeline, SV prediction,
Benchmarking, Next-Generation Sequencing Analysis, SV tool development
* Correspondence: W.Y.Leung@lumc.nl; yaelmaozphd@gmail.com
1Sequencing Analysis Support Core, Leiden University Medical Center,
Leiden, The Netherlands
7Weizmann Institute of Science, Rehovot, Israel
Full list of author information is available at the end of the article

© 2015 Leung et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1376-9&domain=pdf
mailto:W.Y.Leung@lumc.nl
mailto:yaelmaozphd@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Leung et al. BMC Genomics (2015) 16:238 Page 2 of 14
Background
Structural variations (SVs) are the main source of intra-
and interspecies variation and have been shown to play
an important role in the evolution of many species [1-4].
SV detection is now playing a leading role in the ad-
vancement of research for many organisms such as plant
breeding and our understanding of human diseases and
disorders [5,6]. Indeed, SVs are of interest to researchers
from varying backgrounds aiming to address SVs from
different angles. Therefore the need to identify the most
efficient and reliable tools for SV analysis is critical to
the advancement of genomic research for all organisms.
Large genomic structural variants, such as insertions

and deletions of more than 20 base pairs (bp), copy num-
ber variants and translocations are often induced during
the course of DNA repair. Several DNA repair mecha-
nisms exist in plants and animals, but usage may vary ac-
cording to structure and arrangement of the genome
being studied. Some relevant, SV-inducing mechanisms
include non-homologous end-joining (NHEJ) associated
with DNA-repair at regions with very limited or no hom-
ology, non-allelic homologous recombination (NAHR) in
highly similar regions (unequal cross-over), fork stalling
and template switching (FoSTeS) as in replication-error
mechanisms, and finally transposable element (TE)-medi-
ated mechanisms of repair [see [7] for a more detailed re-
view of genomic technologies and computational techniques
currently used to measure SVs].
In addition to variations in the types of SV induced, ge-

nomes may also vary in their degree of complexity. In con-
trast to vertebrate genomes, for example, plant genomes
are more susceptible to hybridization and to further in-
creases of genome complexity [8]. These challenges can
often exacerbate the numbers of sequencing errors and
mapping uncertainties which further add to the complexity
of identifying structural variants [9]. This may lead to dif-
ferences in behavior of the SV detection tools that were
solely designed with Homo sapiens or animal data in mind.
While previous studies have sought to address problems of
sequencing errors and mapping uncertainties in human ge-
nomes with the development of new SV tools [10,11], we
are motivated by the need for insight into the performance
of SV tools on non-human genomes. It is critical that mul-
tiple tools be used in identifying SVs as each tool is likely to
respond to these changes in genome structure with varying
degrees of success [12]. This should be taken into consider-
ation when choosing a SV detection tool(s) as some are
more suited to one purpose than another. For this reason
we have chosen to benchmark tools using varying SV
techniques.

SV detection techniques
Four general techniques are employed to detect struc-
tural variations from paired-end sequencing data. Each
approach has merits and shortcomings. Here we provide
a brief sketch of each technique and list a few tools
which make use of them.
Coverage: The coverage, that is the amount of reads

aligning to a genomic region, can be used to draw con-
clusions on its copy number status. When a region is
not covered by any reads, for instance, one can conclude
that the respective part is not present in the genome
under investigation. An advantage of this technique is
that it allows for a direct estimate of the copy number.
However this technique only applies to larger events and
can be affected by sequencing biases. In general, this
type of methods works best for comparing pairs of sam-
ples sequenced using the same platform/protocol. Exam-
ples of such tools include CNVer and CNVnator [13,14].
Internal segment size (paired-end reads and mate-

pairs): The internal segment (IS) is the unsequenced
part between the two read ends in a paired-end se-
quenced (genomic) fragment. Library preparation and
sequencing protocols determine the shape of the distri-
bution of internal segment sizes. When alignments at a
particular locus give rise to estimates of an IS size that
deviates significantly from this background distribution,
the locus is likely to be affected by a structural variation
in the genome being examined. As tools draw conclu-
sions based on statistics of IS length, their performance
rates crucially depend on the shape of those distribu-
tions. In general, they perform best for unimodal distri-
butions with a small standard deviation. As the observed
IS size increases in the presence of insertions, the max-
imal length of insertions that can be detected is limited
by the mean IS size. This limitation, however, does not
exist for deletions. Examples of IS size-based SV discov-
ery tools include Breakdancer, CLEVER, GASV, HYDRA,
Modil, SVDetect and VariationHunter [10,11,15-19].
Split-reads: Split-read methods try to align reads across

structural variation breakpoints. That is, one of the two read
ends is aligned such that the SV is part of the unaligned
read. This technique has the advantage of yielding single
base pair resolution. However, performance is dependent on
the length of the reads as shorter reads lead to more, am-
biguous (split-read) alignments, especially in repetitive re-
gions of the genome. Examples of such tools include
PINDEL, SplazerS, and CREST [20-22]. Standard read map-
pers like BWA, Bowtie, GSNAP or Stampy, to a certain ex-
tent, can also provide correct, gapped alignments for
insertions and deletions (indels) shorter than 50 bp [23-26].
Local assembly: Structural variations can also be de-

tected by running a de novo assembly and comparing
the resulting contigs with the reference genome. This
method is unbiased, yields single base-pair resolution
and is, in general, the only way of detecting insertions of
novel sequence longer than the read length. Short reads
and repetitive areas, however, make it difficult to build

Leung et al. BMC Genomics (2015) 16:238 Page 3 of 14
sufficiently long contigs from NGS reads. Examples of
assembly tools include ALLPATHS, SOAPdenovo and
VELVET [27-29].
Combined: In recent years, several hybrid methods

using more than one of these four paradigms have been
developed (e.g. DELLY, MATE-CLEVER, PRISM, and
SV-seq2 [30-33]).

Creating a “Meta-Tool” for All Organisms
The difficulty in selecting tools for SV prediction in
non-human genomes is manifold.

� First, tools developed so far are often tailored
towards human or vertebrate genomes
[11,19,20,30-32]. That is, tools may expect genomes
to be diploid and of a certain repetitive structure,
gene count, CG content and so on. Without further
analysis, it remains unclear which tools are robust
with respect to changes in GC content, complexity
and, last but not least, ploidy. Reliable benchmark
datasets that reflect such modifications are required
to properly evaluate tool performance.

� Second, creating an optimal selection of SV calls
from the applicable tools is another, involved issue.
To do this, one needs a statistically sound procedure
by which to create reliable and strong consensus call
sets from the tools chosen, and one, again, needs to
rigorously evaluate such consensus call sets.

� Third, tools should be evaluated in a standardized
pipeline. Because SV discovery is still a relatively
recent and active area of research, benchmark
datasets that reflect both true sequence context and
SV abundance are hardly available [12]. What
confounds all the issues further is that many tools,
due to being in active use, frequently undergo
updates, which may decisively touch upon their
strengths and weaknesses.

Testing and comparing multiple tools in a standard-
ized fashion is daunting for both researchers and pro-
grammers. A “meta-tool” platform addresses these many
considerations as it is flexible with respect to frequent
version updates, integration of new tools and new data-
sets. Here, we provide such a platform in the SV-
AUTOPILOT Virtual Machine. This platform allows for

� Evaluation of new tools.
� Running multiple SV callers in a single run from an

easy, out-of-the-box program.
� Interoperability with downstream analysis as all

outputs are in VCF format.

In order to identify the SV tool(s) most adaptable to
non-human genomic research, we further propose to
benchmark all tools of interest on known genomes with
validated SVs through a standardized pipeline.
In summary, we present SV-AUTOPILOT, a Structural

Variation AUTOmated PIpeLine Optimization Tool. SV-
AUTOPILOT standardizes the SV detection pipeline and
can be used on existing computing infrastructure in the
form of a Virtual Machine (VM) Image. Modularization
of components allows for easy integration of additional
tools, version updates and other benchmark datasets. In
addition, the benchmarking data of tool performance
and computational demands provided here demon-
strates the critical need for using multiple SV tools for
predicting SVs. Using this platform, researchers are able
to identify SVs from multiple SV detection tools with
the choice of merging the call sets according to the
statistically-sound approach provided here. False posi-
tives are thereby reduced and the call set becomes
enriched for ‘true’ SV events. SV-AUTOPILOT provides
a much needed resource for biomedical researchers,
bioinformaticians and tool developers. The SV-
AUTOPILOT is available with a user guide via the open
source repository GitHub https://github.com/ALLBio/
allbiotc2 and the VM is hosted on the ALLBIO web site
https://bioimg.org/sv-autopilot.
Methods
Benchmarking: datasets
Tools were benchmarked on a reconstructed genome
using validated SVs from the Arabidopsis thaliana Lans-
berg (Ler) ecotype [34]. The SV calls were incorporated
into the TAIR9 genomic sequence as per the procedure
previously described [15] for Craig Venter’s genome
[35]. Reads were simulated to correspond to Illumina
HiSeq paired-end 100 bp read data with a fragment size
of 500 bp and 30x coverage, using simseq with the Illu-
mina HiSeq error profile [36].
Most SV tools were developed for human or animal

genomes [11,19,20,30-32]. In order to compare the per-
formance of the tools on human and plant genomes,
simulated reads from the human chromosome 21 of
Venter’s genome were used (see [15,35]), where read
simulation proceeded analogously to the read simula-
tion for the ‘Ler’Arabidopsis genome. In this way, reads
correspond to Illumina HiSeq paired-end 100 bp read
data with a fragment size of 500 bp and 30x coverage.
We chose Venter’s genome as the set of variants arising
from it make an independent, high-quality choice of a
set of variants which has already been used in previous
studies [15,16,31]. Most importantly, this set of “truth”
variants does not suffer from tool-specific biases, as, for
example, sets of variants obtained from the 1000 Genomes
project. As the variants from the 1000 Genomes project
stem from computational tools, those tools would

https://github.com/ALLBio/allbiotc2
https://github.com/ALLBio/allbiotc2
https://bioimg.org/sv-autopilot

Leung et al. BMC Genomics (2015) 16:238 Page 4 of 14
clearly outperform the others when evaluated on such
datasets.
We determined two standard deviation (sd) settings

for insert sizes, one of which reflects a popular, realistic
scenario (sd = 15, [37]) and the other one of which rep-
resents a “worst-case” scenario (sd = 50), which reflects
less optimal sequencing library protocols. This analysis
highlights how the performance rates of tools behave
relative to increased standard deviation. Although we
can expect much better sd values using the latest tech-
nologies, an sd of 50 is not atypical. The 1000 Genomes
project, for instance, contains samples with sd values in
this range. Table 1 provides detailed parameters for each
of the datasets used here. Note that, one can “downsam-
ple” these datasets to also emulate scenarios of lower
coverage if desired.

Benchmarking: SV tools
For benchmarking, several well-known SV discovery
tools were selected as defined by the following criteria:

� Open source (for the sake of comparing algorithms).
� Support of command line mode (excludes tools

requiring a graphical user interface).
� Default parameters provided and applicable in all

cases considered here.
� Scaled to process a moderate size genome with the

operating limits of a common laptop.

The tools selected varied in terms of their approaches.
We included paired-end methods, split-read methods and
combinations thereof, as those combined approaches re-
flect the state-of-the-art in indel discovery. In detail, we se-
lected Breakdancer, Clever, Delly, GASV, Pindel, Prism, and
SVDetect [11,15,16,19,20,30] for being included in SV-
AUTOPILOT, as a selection of well-known state-of-the-art
SV discovery tools. In addition, the modularized structure
of SV-AUTOPILOT conveniently allows one to replace and
add tools according to individual preferences. All tools were
run using the most recent releases available as of January
30, 2014. Although many tools are able to predict varied
types of structural variants (e.g. also inversions, transloca-
tions and mixed events beyond insertions and deletions),
the emphasis here is on insertions and deletions of more
Table 1 Overview of test datasets

Type Genome Sequencer

Illumina 1.9 FastQ Paired End Tair9 SimSeq Illum

Illumina 1.9 FastQ Paired End Tair9 SimSeq Illum

Illumina 1.9 FastQ Paired End Human Genome hg19 SimSeq Illumin

Illumina 1.9 FastQ Paired End Human Genome hg19 SimSeq Illumin

Arabisopsis (Tair9) and Human (hg19) datasets were simulated using a SimSeq Illum
standard deviations of insert size were created for each dataset, more ideal (15) and
than 20 bp. We leave an extension of our platform towards
those other classes of SVs as promising future work. All
technology presented here is easily adapted to also allow
for these extensions.
Discovery of insertions and deletions smaller than

20 bp is a prevalent part of variant discovery pipelines
(GATK, [38]) and poses no further challenges to the
user, while discovery of indels greater than 20 bp still
comes with substantial difficulties. Therefore, the focus
of this work will be on insertions and deletions larger
than 20 bp. They may be referred to as ‘indels’ or struc-
tural variants (SVs) although we recognize that this may
occasionally clash with existing nomenclature.

Benchmarking: SV size classes
For the purposes of benchmarking, insertions and dele-
tions events were divided into 5 size categories: 20-
49 bp, 50-99 bp, 100-249 bp, 250-999 bp, 1kbp-50kbp.
Distinguishing between those size classes allows one to
identify size-dependent strengths and weaknesses of the
tools considered. The first class, 20-49 bp is, to a certain
degree, still in reach of even ordinary alignment tools,
while generally constituting the major area of activity of
split-read aligners. 50-99 bp can in general be considered
as the most difficult size range, where both split-read
aligners and IS based approaches face non-negligible
challenges. Overall, the first three size ranges, 20–49 bp,
50–99 bp and 100-249 bp have sometimes been referred
to as the twilight zone of SV calls as all of them are ra-
ther difficult to identify. Above 250 bp, the SVs are usu-
ally larger than the insert range, which makes calling
them relatively easy for IS based approaches. We deter-
mined 50Kb, the size of the largest validated SV docu-
mented in test datasets, as an upper limit for the
purposes of the benchmarking documentation provided
here. It is noteworthy that most tools that are able to de-
tect 50Kb SVs can also detect larger SVs. Validated SV
counts in the various size classes for both (Human and
Arabidopsis) data sets are provided in Table 2.

Virtual machine
Virtual machines (VM) ensure the consistency, reprodu-
cibility and reliability of our test environment. Each VM
was equipped with the same software installation. The
Length(bp) Insertsize (bp) Insert sd Coverage

ina Profile 100 500 15 30x

ina Profile 100 500 50 30x

a Profile 100 500 15 30x

a Profile 100 500 50 30x

ina 1.9 Paired End profile with 100 bp reads and an insert size of 500. Two
less ideal (50). All datasets were simulated to 30x coverage.

Table 2 Counts of Validated SVs used to benchmark SV tool performance

Data type Type Length 20-49 Length 50-99 Length 100-249 Length 250-999 Length 1000-50000

Human chr. 21 insertion 136 37 30 19 10

Tair v.9 insertion 8094 446 82 44 3

Human chr. 21 deletion 118 33 19 19 4

Tair v.9 deletion 3595 781 393 572 370

Leung et al. BMC Genomics (2015) 16:238 Page 5 of 14
virtual machines were installed with Ubuntu 12.04.3 LTS
using default configuration. After installation of the es-
sential system components, the software of each SV tool
was installed, and a non-persistent system image was
cloned from the master machine. The non-persistent
image provides a consistent and reliable working envir-
onment to run the benchmarking analyses.
For initial testing of computational performance by each

tool, VMs were created for varying numbers of CPU cores
(4/8/12/16/32) and varying amounts of available main
memory (32/64/96/128/256 GB). Multiple machines were
booted with this non-persistent image, SV discovery tools
were run and the resulting data was collected. Different set-
tings were tested to explore the computational resource re-
quirements of the SV discovery tools.
Analysis pipeline
SV-AUTOPILOT was implemented using Makefiles ac-
cording to the GNU Make syntax. A modularized setup
was employed, which allows one to disable and replace
aligners and SV discovery tools as needed or as per per-
sonal preference. Additionally, such modularity enables
tool-wise parallelization.
While generation of a BAM file from raw reads proceeds

sequentially, SV discovery tools may be run in parallel
(Figure 1). Additional scripts written in Python have been
included to transform the output of the tools into VCF, if
needed. Additional parameters can be set for the Perform-
ance Metrics analysis and the optional merge step, dis-
cussed below. The Makefiles for SV-AUTOPILOT are
supported and are available via the github repository
(https://github.com/ALLBio/allbiotc2). The pipeline for
SV-AUTOPILOT, including pre-processing via FASTQC
[39] and Sickle [40], is detailed in Figure 1.
Merging: statistical considerations
The difficulty in creating a “consensus” call set from dif-
ferent, individual call sets consists in identifying virtually
identical calls and merging such calls into one, unifying
call. While a few ad-hoc procedures have been suggested
in the literature [41,42], neither of them addresses how
to control the false discovery rate, that is the amount of
calls that are merged mistakenly because of random effects.
Moreover, they also do not address the specific strengths
and weaknesses of the tools whose usage led to generation
of the individual call sets. A statistically sound merging pro-
cedure should be guided by two insights:

1) The accuracy of SV breakpoints provided can vary
substantially among SV discovery tools. While
split-read aligners tend to deliver highly accurate
breakpoints, internal segment size based approaches
deliver inaccurate breakpoints. This has two
implications: first, merging criteria for internal
segment size based approaches should be more relaxed
and, second, the consensus call should indicate the
most accurate breakpoint predictions available.

2) Calls may be mistakenly merged, simply due to
random effects, such as fluctuations of call density, too
large individual call sets, and so on, and one would like
to control the false discovery rate, that is, the amount
of mistakenly merged events. In other words, merging
criteria should be such that randomly chosen call pairs
meet them only with low probability.

While 1) can be addressed by evaluating tools on
benchmark datasets, 2) needs further elaboration. Con-
sider, for example, two tools that, on a genome of length
G, within a certain size range–-for example, deletions of
size 20–50 bp—have generated call sets of size K1 and
K2, respectively. That is, K1 out of G bases in the gen-
ome are affected by a breakpoint (for deletions here and
in the following: the centerpoint between the left and
right breakpoint) of a deletion of size 20–50 bp pre-
dicted by the first tool, respectively K2 out of G bases
are affected by breakpoints (deletions: centerpoints) pre-
dicted by the second tool. Let the merging criterion be
that the breakpoints of two calls do not deviate by more
than L basepairs (see “Note on reciprocal overlap”
below, why reciprocal overlap is not a statistically sound
criterion, hence should be avoided when merging, and
also evaluating calls). The probability PK1;K2;G that the
breakpoints of two randomly picked calls, one from the
first tool and one from the second tool, are at a distance
of at most L basepairs is

PK1;K2;G ¼ 1− 1− 1− 1−
L
G

� �K1
 !K2

 !

¼ 1− 1−
L
G

� �K1K2

≈1− exp −K1K2
L
G

� �

https://github.com/ALLBio/allbiotc2

Figure 1 SV-AUTOPILOT pipeline. Illumina pair-end NGS data in the form of a fastq file is submitted to the pipeline for SV analysis along with
a genomic reference sequence. A quality report is provided by Fastqc, and Sickle is used for trimming low quality reads. Modularity allows for a
choice of read aligner and SV tools. Samtools flagstat is run to evaluate the quality of the mapping. Each tool’s output is converted to a VCF
format, unless already provided by the program, for downstream use by the researcher. For those wanting to benchmark tool performance, the
performance metrics for the tools can be compared in the PDF report provided. Finally, when using multiple tools as part of a pipeline leading
to SV validation, the option to merge SV calls according to the statistical method provided here is available to enrich the call set with true calls
by merging results and reducing false-positive calls.

Leung et al. BMC Genomics (2015) 16:238 Page 6 of 14
Merging: note on reciprocal overlap as criterion
Reciprocal overlap does not represent a sound criterion for
merging two calls, and also for evaluating calls, because:

1. For large deletions, breakpoints are allowed to
deviate by massive amounts of base pairs. For
example, requiring 50% reciprocal overlap for two
deletions of 10,000 bp in length allows a distance of
5000 bp between breakpoints. A random caller that
randomly places breakpoints in the genome is
considerably more likely to place a “good”
breakpoint than, for example, when considering
100 bp deletions.

2. For truly small deletions, say of 20 bp in length,
breakpoints are only allowed to deviate by at most
10 bp (for the case of 50% reciprocal overlap). This,
however, is oblivious to the repetitiveness of many
genomes and to the fact that gap placement is
difficult, which renders it possible that two different
calls are virtually identical although deviating by up
to 50 bp in terms of breakpoints.
3. There is no obvious, overlap-based criterion for
insertions.

In summary, the idea of using (whatever form of)
overlap for merging and evaluating calls is statistically
unsound and introduces severe, misleading biases when
merging calls.

Merging: parameters
Guided by the considerations outlined above, we deter-
mine that two calls are to be merged if their breakpoints
do not deviate by more than 50 bp and the lengths of
the indels predicted do not deviate by more than 20 bp.
While the merging algorithm is able to take tool-specific
criteria into account, we found that the unifying criteria
in use here yielded excellent results in our benchmark.
As a general guideline for adapting criteria to tools, we
recommend stricter criteria for split-read aligners (for
example, 20 bp distance and 10 bp length deviation), be-
cause (split-)alignment based breakpoint predictions
tend to be very accurate (while still being prone to

Leung et al. BMC Genomics (2015) 16:238 Page 7 of 14
misplacement due to repetitive sequence and gap place-
ment artifacts) whereas for IS based approaches 100 bp
distance and 100 bp length deviation are still the most
sensible, because on top of the usual issues due to re-
petitive sequence, these tools can predict highly inaccur-
ate indel breakpoints.
It is worth noting that the probability that the break-

points of two calls do not deviate by more than 50 bp is
never larger than 0.01, for any of the tools and genomes
considered here when merging calls whose lengths do
not deviate by more than 20 bp—which determines the
sizes and K1 and K2 of two different call sets to be com-
pared, as computed by the above formula. Therefore,
criteria of this order of magnitude (i.e., allowing differ-
ences of tens of basepairs) are a good general choice
when studying within-species genetic variation.

Merging: algorithm
The merging algorithm receives calls (insertions or dele-
tions) from different tools, all of which are specified by a
breakpoint and the length of the variant in question (for
insertions: the base position where the new sequence
has been inserted; for deletions: the center point be-
tween the left and the right base position that specify
the boundaries of the deleted sequence. Note: specifying
the center-point and the length of a deletion uniquely
determines a deletion. As discussed above, the merging
algorithm merges calls that are significantly close to each
other, such that both calls are statistically likely (signifi-
cantly) to have discovered the same insertion or deletion
in the genome under consideration.
As a formal model to capture this, consider a graph, in

the sense of graph theory. The nodes of the graphs are
the calls from the different tools, and an edge between
two calls reflects that the breakpoints are at a distance
of not more than 50 bp and that the length does not de-
viate by more than 20 bp, which, as per the consider-
ations from above, translates into statistical evidence
that the two calls correspond to the same indel.
After having constructed this ‘call graph’, all of its

maximal cliques are identified. We recall that, by defin-
ition, a clique is a subset of nodes all of which are pair-
wise connected by edges. Hence, a clique translates into
a set of calls all of which are statistically likely to repre-
sent virtually identical variants. Maximal cliques, that is
cliques to which no further nodes can be added without
violating the clique property, represent maximal sets of
calls that point at the same, likely correct indel. Hence,
they are maximal call subsets that one should merge into
one unifying call.
Enumerating all maximal cliques proceeds by making

use of an algorithm that greatly profits from the fact that
calls can be ordered by their breakpoints in a left-to-
right fashion. The algorithm was successfully used in
other graph-based settings where nodes specified genomic
loci and could be ordered in a left-to-right fashion [15].
The merging algorithm is implemented in Python. The al-
gorithm is very fast; for example, using a MacBookPro5,5
(2.53 GHz Intel Core 2 Duo processor), it merges call sets
from as many as 8 tools within only 2 or 3 minutes.
Benchmarking: comparative analysis report
In the final step of the SV-AUTOPILOT pipeline, the
predictions of each tool are compared to the true anno-
tations if available. In this, the considerations are similar
to those used for merging. That is, we take into account
that the breakpoint and length specifications of tools can
deviate from the true annotations, even though they
have indeed discovered the true indel in question. Rea-
sons for this are plentiful. As expected, internal segment
size based approaches are unable to specify breakpoints
(highly) accurately. Even (split) alignment based ap-
proaches may fail to provide accurate breakpoints, as ac-
curate gap placement in alignments has remained an
algorithmic challenge in bioinformatics (see e.g. [26] for
a description of effects such as gap annihilation, gap
wander and so on).
A predicted insertion/deletion is considered as a match

to a true insertion/deletion if the distance of their center
points and their length difference are below user defined
thresholds. When choosing thresholds, the tools’ character-
istics, the genome under investigation, and the insert size
distribution of the sequencing library should be taken into
consideration. As discussed above, split-read methods tend
to be more accurate than paired-end methods in terms of
breakpoint resolution. A large standard deviation of the se-
quencing library will lead to read pair methods being less
accurate when estimating the length of an indel.
Here, two different sets of parameters were used,

which we refer to as strict and relaxed. The strict param-
eters require a center distance of at most 50 bp and a
length difference of at most 20 bp, while the relaxed cri-
teria ask for a center distance of at most 100 bp and a
length difference of at most 100 bp. Both definitions still
ensure that a match is statistically significant (i.e. un-
likely to occur just by chance), which has been guided
by considerations that are similar to the ones we have
described for merging call pairs – the difference here is
that one of the call sets are the true annotations. The re-
laxed setting was included to show that some tools make
calls that are near true events but don’t exactly hit them
(as indicated by the difference between strict and relaxed
precision). Based on these criteria, the analysis scripts
reports various different statistics stratified by length
range. The above parameters were used in benchmark-
ing; however, these can be modified by SV-AUTOPILOT
users and adapted to their dataset and tool set.

Leung et al. BMC Genomics (2015) 16:238 Page 8 of 14
To assess general performance, the absolute number
of calls as well as precision and recall are reported. Pre-
cision is the percentage of predictions that match a true
annotation and thus measures the fidelity of the calls
made by a given tool. Recall, on the other hand, is the
percentage of true events that have been spotted by the
given tool and thus measures the comprehensiveness of
the delivered call set. Reporting these two performance
statistics allows researchers to choose a tool that suits
their needs. For instance, when seeking to discover new
variants, high recall may be more important than high
precision so as to capture as many true calls as possible.
Conversely, when validation is planned, a low false posi-
tive rate is imperative and the focus of SV detection
would be on high precision. Following validation, re-
alignment may be performed and the preference may
again change to that of a high recall rate for the pur-
poses of SV discovery, knowing you may encounter a
higher number of false positives. For the purposes of
presenting an overall tool performance metric, the F-
measure is provided, defined as 2*precision*recall/(preci-
sion + recall). Thus, this measure integrates recall and
precision into one single performance indicator.
Some false positive predictions of insertions or dele-

tions are caused by substitution (or mixed) events where
a stretch of DNA in the reference genome has been re-
placed by another piece of DNA in the donor genome
under study. The lengths of the deleted and the inserted
parts need not be equal and we refer to their difference as
the effective length of a substitution event. Internal seg-
ment size based approaches are especially prone to con-
fusing such events with insertions or deletions of the same
effective length. Therefore, the reports provided by SV-
AUTOPILOT contain another column (Mix.) with the
percentage of predictions that do not match an insertion/
deletion but do match a true mixed event of similar effect-
ive length.
To assess the accuracy of each tool in terms of the re-

ported breakpoint positions, we also report the average
center point distance as well as the average length differ-
ence of all predictions that match a true event. Knowing
the accuracy in terms of breakpoint coordinates can be
valuable for correctly merging calls of different tools and
for the design of primers used in SV validation.

Interpretation of the results with Radarplots
To ease the interpretation of the performance metrics,
radarplots, generated using matplotlib [43], are plotted
providing the measurements of tool performance for Re-
call, Precision, and the F-measure. Some tool types are
expected to perform better than others for a given
metric. In general, it is expected that split read aligners
will be more accurate at reporting breakpoints and thus
perform with higher precision than other types of
aligners. The radar plots provided here are in the shape
of a pentagon (Figure 2). Each angle of the pentagon re-
lates to a size class of SV evaluated. Tool performance
data is plotted for each size class and the points are con-
nected to provide a visual representation of performance
across all size classes.

Results and discussion
The SV-AUTOPILOT pipeline was created to provide a
“meta-tool” platform for using multiple SV-tools, to
standardize benchmarking of tools, and to provide an easy,
out-of-the-box SV detection program. As most SV tools
have been designed, and/or optimized for performance on
human datasets, benchmarking tool performance on an-
other organism was needed to determine whether some
tools are more adaptable to a non-human genome than
others. As the field of SV detection continues to develop
and evolve, and more tools continue to become available,
a standardized method of evaluating their performance
relative to other existing tools was also needed. Here we
show that SV-AUTOPILOT addresses each of these needs.
SV-AUTOPILOT was used to benchmark seven Struc-

tural Variation (SV) prediction tools. The tools were
tested on their ability to identify SVs in the two recon-
structed genomes described, human chromosome 21
and the Arabidopsis Lansberg (Ler) genome, a plant gen-
ome. Human chromosome 21 was chosen as a represen-
tative sample of the human genome which is small in
size and for which many structural variants have been
validated. As most SV tools were designed for use with
the human genome, it is expected that tools will perform
well on the human dataset and that it can be used in a
comparison of tool performance on the Arabidopsis gen-
ome. For reports on tool performance on the human
genome as a whole, please see the original SV tool publi-
cations. In addition, we have provided the results of the
entire Venter genome data as an example of a larger,
whole genome run in the Additional file 1. As expected,
the tools perform much the same, however some tools
were unable to meet the demands of managing such a
large genome, likely due to the higher memory needs for
SV processing.
The tools included in the SV-AUTOPILOT virtual ma-

chine and which were used for benchmarking included
GASV, Delly, Breakdancer, Pindel, Clever, SVDetect, and
Prism. Due to the modularized set-up employed by SV-
AUTOPILOT, SV tools can be easily added or removed
from the pipeline. In addition, the user is able to choose
which of several alignment algorithms is used in their
analysis. For example, in the initial testing phase, both
BWA-mem and Bowtie2 were tested for each tool.
BWA-mem was chosen for continued downstream use
in the benchmarking as all the tools tested performed a
few percentage points higher in recall and precision (data

Figure 2 Radar plot interpretation. Each corner of the pentagon represents a size class of SV. Performance is measured on a scale of 0–1.0,
with 1.0 as the most accurate calls. Each tool is associated with a color as indicated in the associated figure legend. Tool performance across all
size classes is easily assessed by evaluating the total area of the radar plot covered by a given tool.

Leung et al. BMC Genomics (2015) 16:238 Page 9 of 14
not shown). For the purposes of benchmarking, the ability
of a tool to accurately call an SV was measured using the
analysis tools described and reports were generated for
both Ler and Human Chromosome 21 data at standard
deviations of 15 and 50 (provided in Additional file 1).

Performance metrics
Often researchers are unable to predict the computing re-
quirements for a given tool as this information may be
missing in the literature or beyond the reach of the aver-
age biologist. For those required to make specific requests
for computing time at computing centers or on the Cloud,
this can be a severe bottleneck to initiating their research.
To facilitate future analysis of tool performance, each tool
in this study was evaluated for its computing performance
(Table 3) in addition to SV prediction assessment. Data
was collected for RAM and CPU usage, run time, as well
as IO and threading abilities.
Each tool was run independently on the Arabidopsis

dataset and evaluated for computational performance.
As shown in Table 3, CPU time varied widely across
tools. For example, GASV completed the run in 2 minutes,
while Pindel took 3 hours and 3 minutes to run. Clever
and Pindel both allow for parallelization while the others
tools run on a single thread. Although parallelization gen-
erally improves performance, Pindel does not appear to
show the gains expected. This may be due to the large vol-
ume of calls made by Pindel in addition to Pindel’s very
verbose VCF file.

Prediction performance
The ability of each SV tool to accurately call an SV event
was evaluated and a PDF report produced as part of SV-
AUTOPILOT’s pipeline (see Additional file 1). While
there are multiple ways of defining ‘accuracy’, in statis-
tics it is typically defined as (true positive + true
negative)/(true positive + true negative + false positive +
false negative). As ‘true negatives’ are not applicable in
this setting, we choose to use an integrative measure of
recall and precision, provided here as the F-measure. In
a biological context, ‘accuracy’ can refer to a measure of
how close the breakpoint predictions of true positive
calls were to the true breakpoint coordinates. Therefore
we provide the average length difference and the center
point distance between true call and prediction. We have
separated statistics into ‘strict’ and ‘relaxed’ categories
which implicitly address questions of tool accuracy.
Each length class of SV was examined individually to

evaluate performance. Table 4 provides an overview of
performance by each of the tools on ideal (sd = 15) and
less ideal (sd = 50) datasets for Arabadopsis and Human
Chromosome 21. When examined for Precision, the
ability to match a true insertion/deletion, and Recall,
percentage of predicted true insertion/deletions out of
total true SVs provided in the dataset, a few tools were
shown to be more adaptable to the Arabidopsis dataset
than the others: Clever and Pindel, with Delly perform-
ing well in the largest size class (>1000 bp).

Effect of different standard deviations
In the purification of ligation product step of llumina
paired-end sample preparation protocol, different set-
tings may cause the resulting DNA fragment library
to have an insert library with variations in standard
deviation (sd) of the insert size [12]. Therefore simu-
lated reads for each sample were prepared at both sd
15 and 50.
In the low quality (sd = 50) Arabidopsis dataset, Pindel

outperformed other tools in precision and recall at SV
lengths ranging from 20–49, whereas in human chromo-
some 21, Clever showed better precision and recall. At
the better standard deviation of 15, Clever consistently

Table 3 Typical computational performance by SV tools used for a single run

Tool Multi- threading Mem use on
Tair (Mb)

Mem use on
Human (Mb)

CPU time Tair (h:m.s) CPU time
Human (h:m.s)

Algorithm SV’s

GASV n 1058 594 0:02.08 0:01.20 PE IDVT

Delly n 578 1236 0:15.02 0:03.18 PE & SR DVTP

Breakdancer n 21.9 7 0:02.41 0:27.7 PE IDVT

Pindel y 3500.5 5779 3:02.46 1:16.0 SR IDVP

Clever y 238.7 1598 0:15.47 0:14.04 PE ID

SVdetect n 172.3 3223 0:07.56 0:07.31 PE IDVTP

Prism n 1024.9 6817 0:28.15 0:05.59 PE & SR IDVP

Log files document computation performance for each tool used in this benchmarking study. Documentation from a single run shows memory (mem) usage and CPU time
need to run each tool on Arabidopsis (Tair) and on the Human dataset used in the benchmarking. Additional columns refer to the type of algorithm used (PE: Paired-end;
SR: Split-read) and the SVs that the tool is reported to be able to predict (I: Insertion; D: Deletion; V: Inversion; T: Translocation; P: Duplication). Raw log files are included in
the supplementary data.

Leung et al. BMC Genomics (2015) 16:238 Page 10 of 14
performed with the best recall in all SV length classes
(Figure 3).
Unlike the other tools, Delly showed no change in call-

ing ability between the sd 15 and sd 50 datasets. Delly
consistently excelled at recall in the largest SV classes of
deletions (>1000 bp). For other tools the change in sd
resulted in more significant changes in performance. For
instance, Breakdancer’s performance dropped consider-
ably in the lower quality dataset, especially for the
smaller size classes. However, this is consistent with
Breakdancer documentation [11].

Adapting to non-human datasets, benchmarking in
Arabidopsis
Tools tested in this study were initially developed for
use in human genome analysis. However, with the reduc-
tion in sequencing costs, many non-human genomes are
being sequenced to identify SVs. Arabidopsis is a well-
studied plant species with many validated SVs. In this
analysis we compared the ability of various tools to ac-
curately call SVs in the genome of a species for which it
was not initially designed.
Only 4 of the tools tested were able to predict inser-

tions: BreakDancer, Pindel, Clever and SVDetect. How-
ever, although SVDetect made a few predictions of
insertions in the human dataset, it did not make any
predictions at all in the Arabidopsis dataset regardless of
sequence library insert size standard deviation. This was
unusual as although more tools performed at sd 15 than
50, all the other tools were able to make predictions for
both genomes.
As most tools performed better overall on the datasets

with a smaller standard deviation, the comparison of
tool performance, between Human Chromosome 21 and
Arabidopsis, provided here is limited to the sd 15 data-
sets. When compared to the human chromosome 21
dataset, SV tools performance on the Arabidopsis data-
set showed reduced precision of calls in size classes
spanning from 50-99 bp and 100-249 bp, but higher
recall over all size classes among insertion events. When
examining deletions, the Arabidopsis dataset had com-
parable recall to the human dataset at 50-99 bp, but was
reduced in the class 20-49 bp. Above 100 bp, the Arabi-
dopsis data set performed with higher recall than the
human dataset, however, it is possible that the limited
number of validated events in the human chromosome
21 dataset in this size class may limit the statistical
power of this analysis. When examining calls on the
basis of recall and precision, Pindel and Clever consist-
ently out-performed other callers. In general, Clever had
higher overall recall while Pindel was found to perform
with higher precision in its calls. However, Prism often
performed with better recall in the human dataset, but
not in Arabidopsis. Interestingly, Delly showed the high-
est recall in the largest size class of Arabidopsis. This
suggests that Pindel and Clever may be able to offer the
best calls for non-human datasets with Delly being use-
ful for identifying deletions in the largest size class.

Meta-tool performance
Benchmarking of the Arabidopsis dataset used here has
shown that some SV tools may be more adaptable in
working with a non-human dataset than others. As
demonstrated here, tools may vary considerably in their
performance depending on the size class of SVs to be
identified as well as the quality of the genomic reads.
Therefore, it is clear that a meta-tool is needed to not
only provide SV calls, but to group the call-sets from
multiple SV tools and provide a filtered output based on
the performance metrics of the individual tools. In SV-
AUTOPILOT, a merging script was developed to take
all the calls, filter them, and provide a merged output
(provided in Additional file 1). This merging may be initi-
ated by the user following the completion of all SV tool
runs and parameters set to tailor the output according to
user preferences pertaining to recall and precision.
Unlike other SV merging tools, here researchers re-

ceive fewer and more accurate calls to begin their

Table 4 Best performing SV tool for each size class of insertion and deletion using normal and less-ideal datasets of
Arabidopsis and Human Chromsome 21

A. Precision

Data type Std Dev Length 20–49
P (rel/str)

Length 50–99
P (rel/str)

Length 100–249
P (rel/str)

Length 250–999
P (rel/str)

Length 1 K-50 K
P (rel/str)

Insertion

Human chr. 21 15 Clever Pindel Clever Clever n/a

88.3/77.8 85.7/68.8 88.5/45.8 100.0/50

Tair v.9 15 Pindel Clever/ Pindel Clever Clever n/a

95.0/93.2 94.3/47.4 68.1/23 66.7/55.6

Human chr. 21 50 Pindel Clever/Pindel Clever n/a n/a

87.9/75.2 83.3/55.6 66.7/17.9

Tair v.9 50 Pindel Clever/Pindel Clever Clever n/a

94.9/92.7 94.6/46.2 73.9/8.3 60.0/20

Deletion

Human chr. 21 15 Clever/Pindel Pindel Clever/Pindel Pindel Breakdancer/Clever

92.8/89 92.3/76.9 84.6/42.9 100/100 100/33.3

Tair v.9 15 Pindel Delly Pindel Pindel Clever

94.6/94.2 100/100 89.2/90.2 87.9/88.7 68.3/58.1

Human chr. 21 50 Clever/Pindel Pindel Clever/Pindel Pindel Breakdancer/Clever

90.9/88.2 100/90 59.1/42.9 81.8/81.8 100/50

Tair v.9 50 Pindel Delly/Pindel Pindel Pindel Clever/Pindel

94.5/94.3 100/90.6 86.5/86.3 89.4/89.4 69.6/61

B. Recall

Data type Std Dev Length 20–49
R (rel/str)

Length 50–99
R (rel/str)

Length 100–249
R (rel/str)

Length 250–999
R (rel/str)

Length 1 K-50 K
R (rel/str)

Insertion

Human chr. 21 15 Clever Clever Clever Clever n/a

72.8 83.3 60 5.3 n/a

Tair v.9 15 Clever Clever Clever Clever n/a

56.4 81.2 92.7 15.9 n/a

Human chr. 21 50 Pindel Clever Clever Clever n/a

61.8 48.6 76.7 10.5 n/a

Tair v.9 50 Pindel Pindel Clever Breakdancer n/a

34.6 43 95.1 51.2 n/a

Deletion

Human chr. 21 15 Prism Clever Clever Delly Breakdancer

88.1 90.9 52.6 73.7 50

Tair v.9 15 Clever Clever Clever Delly SVDetect

65 82.1 89.8 93 97

Human chr. 21 50 Prism Prism Clever Breakdancer Breakdancer

85.6 72.7 63.2 73.7 50

Tair v.9 50 Pindel Clever Clever Delly SVDetect

94.5 52.9 91.9 94.9 96.2

For this work, a standard deviation of 15 is considered normal while a standard deviation of 50 is considered less-ideal. Recall and Precision were two measures used to
evaluate the ability of a tool to accurately predict SVs. Here the winner for each length class is provided along with the tools winning value for that category. (P = Precision;
R = Recall; Std. Dev = Standard Deviation of the Insert size; n/a = no call was made by any tools tested). The Additional file 1 contains all tool performance statistics in the
PDF reports. In Table 4a both ‘relaxed’ and ‘strict’ criteria (REL/STR) (see Methods) are provided for the precision measurements which indicates how accurate the tools are at
making their calls. In Table 4b the scores of tool recall demonstrate how much of the SVs the tools are able to discover.

Leung et al. BMC Genomics (2015) 16:238 Page 11 of 14

ArabidopsisHuman

Figure 3 Data quality affects the performance of SV tools in human and Arabidopsis data sets. Some tools are more affected by changes
in data quality than others. The standard deviation of the insert size of paired end reads was used as a measure of data quality. The Recall and Precision of
Deletion calls are measured for Human and Arabidopsis datasets at the less optimal (sd = 50) and more optimal standard deviation (sd = 15).

Leung et al. BMC Genomics (2015) 16:238 Page 12 of 14
investigations to validate SVs. When Arabidopsis (sd =
15) calls were filtered through the merge script, total
calls were reduced by as much as 70% (average 61%)
with recall diminished, on average, 27%. In merging a
small portion of recall is lost for the benefit of a reduc-
tion of more than half of the calls total (due to merging
and elimination of many false-positives). This results in
an enriched set of true calls in the call set for validation.
As shown in Figure 4, the merging script is able to

cluster calls by evaluating their breakpoints relative to
the tool algorithm type applied (see methods section
for a complete description). The user may select which
VCF outputs from the various tools run in the SV-
AUTOPILOT pipeline to be considered in the merging
process. Merged call-sets, as with the other tools
Figure 4 Example of merged call set compared to individual call sets
by each tool are shown in individual tracks, and the merged call set provid
larger call by Breakdancer has been recentered by the merging algorithm.
reference variants.
included in the pipeline, are provided in VCF format
and can be visualized on any genomic browser (how-
ever, indexing and/or a track definition file may be
required).

Tool use and development
The SV-AUTOPILOT meta-tool is packaged as a VM.
This allows for standardization of the pipeline for SV
prediction. SV tool benchmarking on new genomes, and
provides a platform for evaluating the performance of
SV tools under development. The SV-AUTOPILOT vir-
tual machine is packaged with 7 of the most popular SV
tools currently available, reflecting the most recent up-
dates and versions (as of January 2014). In addition, a
merge script has been added which will filter and rank
. Integrated Genome Browser view of merged predictions. Calls made
ed by SV-AUTOPILOT is shown in the bottom track. In this example a
The red lines on the bottom indicate the position of the

Leung et al. BMC Genomics (2015) 16:238 Page 13 of 14
calls providing researchers with an accurate and con-
densed set of calls curated from all the tools. For the
purposes of this work, SV-AUTOPILOT has been run
in a whole with all SV-modules enabled. Default config-
uration of the pipeline is set to the pipeline described
for the benchmarking in this work, however, it is also
customizable to allow for a tailored analysis.
Each of the modules, both SV-callers and pre- and

post-processing steps, can be modified by changing the
predefined running parameters while maintaining the
structure. A general pipeline config file hosts the config-
uration for the pipeline. Project specific or sample spe-
cific settings, involving file conventions, locations of
genome files and program definitions can be altered
from the invocation. More specific settings can be chan-
ged or a new procedure added into the pipeline (De-
tailed instructions can be found in Additional file 1).
For example, the alignment algorithm used in this pro-

ject was BWA-mem [23]. The modularized design of
SV-AUTOPILOT allows for other aligners, currently
provided in the modules section (bowtie1, bowtie2, bwa-
backtrack, bwa-mem, stampy), to be used. This allows a
comparative study of different settings or versions of
software using the same reproducible setup. Indeed, we
cannot claim that our decision to do alignment with
BWA-mem is the best practice now or in the future.
Therefore the pipeline allows replacement of functional
components with alternative implementations. It is our
intention that this tool be used not only by researchers
for generating comprehensive SV calls, but also by pro-
grammers/developers for the testing performance of
tools they are developing against currently available
tools. SV-AUTOPILOT is packaged in a VM and allows
for just that. The tool is available at https://bioimg.org/
sv-autopilot.

Conclusions
Here we have taken ‘human’ SV prediction technology
and applied it to a non-human organism, Arabidopsis.
We have provided benchmarking data on the perform-
ance of seven of the most popular SV prediction tools
and tested them on reads of varying quality. Tools were
shown to vary in their ability to adapt to a non-human
genomic dataset and datasets of varying quality.
This work demonstrates the importance of using mul-

tiple SV tools in order to cover a wide range of SV size
classes and to minimize false-positive calls. We have
packaged several of these tools into a single Virtual
Machine pipeline, SV-AUTOPILOT, to facilitate repro-
ducible research and coupled that with a powerful
merging script that filters and ranks calls providing re-
searchers with an accurate dataset on which to begin
their bench validations. All call-sets have been formatted
to fit the standard VCF format to facilitate visualization
in genomic browsers and interoperability with other
genomic tools. SV tool developers and SV researchers
are able to test new tools against existing tools to
examine performance, evaluate new datasets for tool
optimization, and to generate a high quality enriched set
of SV calls for further validation. The SV-AUTOPILOT
VM can be downloaded with all datasets, tools and algo-
rithms presented here at https://bioimg.org/sv-autopilot.

Additional file

Additional file 1: The data sets supporting the results of this article
are available in the as part of the SV-AUTOPILOT virtual machine, in
https://bioimg.org/sv-autopilot. The scripts used as the basis for the
virtual machine described in this article are available via the GitHub
repository, in https://github.com/ALLBio/allbiotc2/.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WYL created and maintained the virtual machine, designed and
implemented the pipeline to facilitate for this research project. TM
participated in the design of the study and designed the evaluation script
for assessing benchmarking results. LF participated in the conception and
design of the study. YP participated in the sequence alignment. LM
participated in the design of the virtual machine. AS performed the statistical
analysis, which includes the design of the merging algorithm, and helped to
draft the manuscript. TYM conceived of the study, and participated in its
design and coordination and drafted the manuscript. AS and TM are the
developers of Clever. In order to ensure the objective nature of this work, all
SV tools included for benchmarking are strictly followed the exactly same
selection and parameter tuning procedure as stated in the section of
"Benchmarking: SV Tools". All authors read and approved the final
manuscript.

Acknowledgements
This project was also partially supported by EU FP7 ALLBIO project, grant
number 289452, www.allbioinformatics.eu.
Part of this work was carried out on the Dutch national e-infrastructure with
the support of SURF Foundation.
Wai Yi Leung and Hailiang Mei are partially funded by the TraIT project
(grant 05 T-401) within the framework of the Center for Translational
Molecular Medicine (CTMM).
Yogesh Paudel is partially supported by The European Research Council under
the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC
Grant agreement no 249894 (SelSweep project).
Alexander Schönhuth acknowledges funding from the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO), through Vidi grant
639.072.309.
We are grateful to Gert Vriend and Greg Rossier for providing technical and
logistical support for our hackathon meetings.
COST-SeqAhead: This project was partially supported by the EU: Cost Action
BM1006: NGS Data Analysis Network.

Author details
1Sequencing Analysis Support Core, Leiden University Medical Center,
Leiden, The Netherlands. 2Center for Bioinformatics, Saarland University,
Saarbrücken, Germany. 3Max Planck Institute for Informatics, Saarbrücken,
Germany. 4Centrum Wiskunde and Informatica, Amsterdam, The Netherlands.
5Animal Breeding and Genomics Centre, Wageningen University,
Wageningen, The Netherlands. 6University of Fribourg and Swiss Institute of
Bioinformatics, Fribourg, Switzerland. 7Weizmann Institute of Science,
Rehovot, Israel.

Received: 27 May 2014 Accepted: 21 February 2015

https://bioimg.org/sv-autopilot
https://bioimg.org/sv-autopilot
https://bioimg.org/sv-autopilot
http://www.biomedcentral.com/content/supplementary/s12864-015-1376-9-s1.zip
https://bioimg.org/sv-autopilot
https://github.com/ALLBio/allbiotc2/
http://www.allbioinformatics.eu/

Leung et al. BMC Genomics (2015) 16:238 Page 14 of 14
References
1. Ventura M, Catacchio CR, Alkan C, Marques-Bonet T, Sajjadian S, Graves TA,

et al. Gorilla genome structural variation reveals evolutionary parallelisms
with chimpanzee. Genome Res. 2011;21:1640–9.

2. Lisch D. How important are transposons for plant evolution? Nat Rev Genet.
2013;14:49–61.

3. Feulner PG, Chain FJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, et al.
Genome-wide patterns of standing genetic variation in a marine population
of three-spined sticklebacks. Mol Ecol. 2013;22:635–49.

4. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al.
Genomic variation landscape of the human gut microbiome. Nature.
2013;493:45–50.

5. Olsen KM, Wendel JF. A Bountiful Harvest: Genomic Insights into Crop
Domestication Phenotypes. Annu Rev Plant Biol. 2013;64:47–70.

6. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of
genomic structural variation: insights from and for human disease. Nat Rev
Genet. 2013;14:125–38.

7. Raphael BJ. Structural Variation and Medical Genomics. PLoS Comput Biol.
2012;8:e1002821.

8. Cai X, Xu SS. Meiosis-driven genome variation in plants. Curr Genomics.
2007;8:151.

9. Hayes M, Pyon YS, Li J. A Model-Based Clustering Method for Genomic
Structural Variant Prediction and Genotyping Using Paired-End Sequencing
Data. PLoS ONE. 2012;7:e52881.

10. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. Combinatorial algorithms for
structural variation detection in high-throughput sequenced genomes.
Genome Res. 2009;19:1270–8.

11. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al.
BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nat Methods. 2009;6:677–81.

12. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, et al. A
survey of tools for variant analysis of nextgeneration genome sequencing
data. Brief Bioinform. 2013;15(2):256–78.

13. Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M. Detecting copy
number variation with mated short reads. Genome Res. 2010;20:1613–22.

14. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from family
and population genome sequencing. Genome Res. 2011;21:974–84.

15. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, et al. CLEVER:
clique-enumerating variant finder. Bioinforma Oxf Engl. 2012;28:2875–82.

16. Sindi S, Helman E, Bashir A, Raphael BJ. A geometric approach for
classification and comparison of structural variants. Bioinforma Oxf Engl.
2009;25:i222–30.

17. Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang Y, Hurles ME, et al.
Genome-wide mapping and assembly of structural variant breakpoints in
the mouse genome. Genome Res. 2010;20:623–35.

18. Lee S, Hormozdiari F, Alkan C, Brudno M. MoDIL: detecting small indels
from clone-end sequencing with mixtures of distributions. Nat Methods.
2009;6:473–4.

19. Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-Né P, Nicolas A, et al.
SVDetect: a tool to identify genomic structural variations from paired-end and
mate-pair sequencing data. Bioinformatics. 2010;26:1895–6.

20. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach
to detect break points of large deletions and medium sized insertions from
paired-end short reads. Bioinforma Oxf Engl. 2009;25:2865–71.

21. Emde A-K, Schulz MH, Weese D, Sun R, Vingron M, Kalscheuer VM, et al.
Detecting genomic indel variants with exact breakpoints in single- and
paired-end sequencing data using SplazerS. Bioinforma Oxf Engl.
2012;28:619–27.

22. Wang J, Mullighan CG, Easton J, Roberts S, Ma J, Rusch MC, et al. CREST maps
somatic structural variation in cancer genomes with base-pair resolution. Nat
Methods. 2011;8:652–4.

23. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics. 2009;25:1754–60.

24. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

25. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinforma Oxf Engl. 2010;26:873–81.

26. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast
mapping of Illumina sequence reads. Genome Res. 2011;21:936–9.
27. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, et al.
ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome
Res. 2008;18:810–20.

28. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an
empirically improved memory-efficient short-read de novo assembler. Giga
Science. 2012;1:18.

29. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821–9.

30. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-read analysis.
Bioinforma Oxf Engl. 2012;28:i333–9.

31. Marschall T, Hajirasouliha I, Schönhuth A. MATE-CLEVER: Mendelian-inheritance-
aware discovery and genotyping of midsize and long indels. Bioinforma Oxf Engl.
2013;29:3143–50.

32. Jiang Y, Wang Y, Brudno M. PRISM: pair-read informed split-read mapping
for base-pair level detection of insertion, deletion and structural variants.
Bioinforma Oxf Engl. 2012;28:2576–83.

33. Zhang J, Wang J, Wu Y. An improved approach for accurate and efficient calling
of structural variations with low-coverage sequence data. BMC Bioinformatics.
2012;16 Suppl 6:S6.

34. Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, et al. Multiple
reference genomes and transcriptomes for Arabidopsis thaliana. Nature.
2011;477:419–23.

35. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The Diploid
Genome Sequence of an Individual Human. PLoS Biol. 2007;5:e254.

36. Earl D, Bradnam K, John JS, Darling A, Lin D, Fass J, et al. Assemblathon 1: A
competitive assessment of de novo short read assembly methods. Genome
Res. 2011;21:2224–41.

37. Boomsma DI, Wijmenga C, Slagboom EP, Swertz MA, Karssen LC, Abdellaoui
A, et al. The Genome of the Netherlands: design, and project goals. Eur J
Hum Genet. 2014;22:221–7.

38. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res. 2010;20:1297–303.

39. FastQC A Quality Control tool for High Throughput Sequence Data [http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/]

40. Sickle: A sliding-window, adaptive,quality-based trimming tool for FastQ files
[https://github.com/ucdavis-bioinformatics/sickle]

41. Wong K, Keane TM, Stalker J, Adams DJ. Enhanced structural variant and
breakpoint detection using SVMerge by integration of multiple detection
methods and local assembly. Genome Biol. 2010;11:R128.

42. Mimori T, Nariai N, Kojima K, Takahashi M, Ono A, Sato Y, et al. iSVP: an integrated
structural variant calling pipeline from high-throughput sequencing data. BMC
Syst Biol. 2013;7:1–8.

43. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng.
2007;9:0090–5.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/ucdavis-bioinformatics/sickle

	Abstract
	Background
	Results
	Conclusion

	Background
	SV detection techniques
	Creating a “Meta-Tool” for All Organisms

	Methods
	Benchmarking: datasets
	Benchmarking: SV tools
	Benchmarking: SV size classes
	Virtual machine
	Analysis pipeline
	Merging: statistical considerations
	Merging: note on reciprocal overlap as criterion
	Merging: parameters
	Merging: algorithm
	Benchmarking: comparative analysis report
	Interpretation of the results with Radarplots

	Results and discussion
	Performance metrics
	Prediction performance
	Effect of different standard deviations
	Adapting to non-human datasets, benchmarking in Arabidopsis
	Meta-tool performance
	Tool use and development

	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

