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Abstract

Background: Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used
in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards
utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map
containing 28644 GBS markers.

Results: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 ×Muu, which share a
common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality.
The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by
calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion
was observed across the three populations. The consensus map was validated by comparing positions of known rust
resistance genes, and comparing them to wheat reference genome sequences recently published by the International
Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes
(Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high
resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right
chromosomes on the wheat reference genome sequence.

Conclusion: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits.
The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.

Keywords: Consensus map, Genotyping-by-sequencing (GBS), QTL mapping, Rust resistance, Segregation distortion,
Wheat
Background
Various marker systems, ranging from low-density re-
striction fragment length polymorphisms (RFLPs) to
high-density single nucleotide polymorphisms (SNPs),
have been developed and utilized successfully in wheat
for genetic diversity analysis, complex trait dissection,
and marker-assisted breeding [1-11]. Anchoring mo-
lecular markers on chromosomes and constructing a
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genetic linkage map are pre-requisites for their utilization
in breeding [7,8,10,12-14].
Advances in next-generation technologies have driven

the costs of DNA sequencing down to the point that
genotyping based on sequence data is now feasible for
high diversity, large genome species. Genotyping methods
usually involve restriction enzyme digestion of target
genomes to reduce the complexity at a reasonable cost
[7,15-20]. Davey et al. [17] grouped approaches that apply
genome complexity reduction methods into the following
classes: reduced-representation sequencing, restriction-
site-associated DNA sequencing (RAD-seq), low coverage
genotyping including multiplexed shotgun genotyping
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(MSG) and genotyping by sequencing (GBS). All of these
methods are more or less similar technically. The Diversity
Arrays Technology (DArT), Canberra, Australia (http://
www.diversityarrays.com/), has developed a GBS platform
known as DArT-seq, which provides an opportunity to se-
lect genome fractions corresponding predominantly to ac-
tive genes. Restriction enzymes used in this method
separate low copy sequences from the repetitive fraction
of the genome. These low copy sequences are informative
for marker discovery. Representative fragments are then
sequenced on Next Generation Sequencing (NGS) plat-
forms [21,22]. Using a combination of restriction enzymes,
DArTseq GBS offers affordable genome profiling through
generation of high-density SNPs as well as PAV (presence
and absence variations) markers [23-26]. In a standard
DArT assay, approximately 200,000 genomic fragments
are sequenced 10 times, on average, with approximately
2,000,000 tags per sample. As a significant percentage of
samples in each experiment are processed in duplicate (to
enable stringent marker selection based on scoring repro-
ducibility), all sequence variants that are not legitimate
SNP markers are filtered out. Large numbers of additional
metadata produced by the analytical pipeline (DArTsoft;
DArT P/L, Australia http://www.diversityarrays.com/
software.html#dartsoft) make further marker selection and
sorting easy, and enable users to choose specific groups of
markers that are most useful for their applications [24].
The GBS platform has been used for genetic charac-

terization of more than 40,000 wheat germplasm acces-
sions held by CIMMYT as part of its Seeds of Discovery
(SeeD) initiative. A genetic map of GBS markers would be
an important prerequisite for trait-based genetic analysis
of this large diversity panel. The validity and usefulness of
a genetic map depends on its suitability for mapping gen-
omic regions correctly and precisely. In wheat, the Ug99
group of stem rust fungus Puccinia graminis Pers. f. sp.
tritici Eriks. & E. Henn. is described as a major forthcom-
ing threat to global wheat production [9,27]. Mapping and
deploying adult plant resistance (APR) genes in popular
high yielding but susceptible varieties is needed by wheat
breeders. To date, more than 50 APR genes have been
identified through QTL analyses [28] and some of them
(such as Sr2, Lr46 and Lr34) are well characterized and
widely used in breeding. Genetic maps that can identify
APR genes would be useful for marker-assisted selection
(MAS), map-based cloning and detailed molecular charac-
terization in wheat breeding. In this study, three recom-
binant inbred line (RIL) populations, PBW343 × Kingbird,
PBW343 × Kenya Swara and PBW343 ×Muu (designated
as PB-KB, PB-KS, and PB-MU respectively), were used to
anchor the GBS tags to wheat chromosomes. Therefore,
the objectives of our investigation were to construct a con-
sensus map of GBS markers and validate known APR
genes/QTL against stem rust, yellow rust and leaf rust
through mapping, and by comparing them with wheat
reference genome sequences recently published by the
International Wheat Genome Sequencing Consortium,
Rye and Ae. tauschii genomes.

Results
Marker distribution in the consensus map and three
individual maps
Three RIL populations were analyzed using GBS tags. In
total, 13123, 18612 and 6936 markers were mapped on
PB-KB, PB-KS and PB-MU populations, respectively
(Table 1, Additional files 1, 2, 3 and 4). Using genotype
data of the three populations, a consensus genetic map
was constructed by assigning 28644 markers to wheat
chromosomes with 3757 unique positions (Table 1). The
maximum ratio of unique positions on the consensus
map was located on chromosome 4D (24.4%), whereas
chromosome 2D harbored the minimum ratio of unique
positions (4.3%). Of the 28644 markers of the consensus
map, 32.9%, 56.3% and 10.8% were mapped on the A, B
and D genomes, respectively (Table 1). On average, the
A, B and D genomes covered distances of 1252.6 cM,
1635.2 cM, and 414.7 cM, respectively.
Total genetic length of the consensus map was

3302.5 cM (Table 1), and average marker distance was
0.88 cM, reached by calculating the average distance be-
tween two adjacent unique positions. The length of 3016
marker intervals, corresponding to 80.3% of total marker
intervals by 3757 unique positions, ranged from 0 to 1 cM
(Figure 1A). In all three populations, 6.4% of markers on
the consensus map were found to be polymorphic; 71.4%
of markers were polymorphic in one of the three popula-
tions, and 22.3% of them were polymorphic in two of the
three populations (Figure 1B, and Additional file 5). Com-
pared to the three individual maps, the number of markers
in common between any two individual maps was roughly
43% of the number of markers in the map with the least
markers of the two (Figure 1C). For example, there were
3002 markers in common between PB-MU and PB-KB,
which was 3002/6936 = 43.2% of the number of markers
in the PB-MUU map. Also, there were 5729 markers in
common between PB-KB and PB-KS, which was 5792/
13123 = 43.6% of the number of markers in the PB-KB
map. Similarly, there were 1189 markers in common
among the three maps, which was 1189/6936 = 17.1% of
the number of markers in the PB-MU map.

Segregation distortion across the three RIL populations
Segregation distortions were estimated in the three RIL
populations. For PB-KB, PB-KS, and PB-MU, 4561
(34.8%), 3686 (19.8%), and 2263 (32.6%) markers, respect-
ively showed evidence of segregation distortion at the 0.05
significance level. The most significant (i.e., -logP) segrega-
tion distortion regions (SDRs) were observed in PB-KB,
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Table 1 Markers distributed on different chromosomes in three populations and consensus map
Consensus map PBW343/Kingbird PBW343/Kenya Swara PBW343/Muu

Chr. LGα Length Total UPβ LGα Length silicoDArT SNP silicoDArT
& SNP

Total UPβ LGα Length silicoDArT SNP silicoDArT
& SNP

Total UPβ LGα Length silicoDArT SNP silicoDArT
& SNP

Total UPβ

1A 1 202.57 1275 189 2 152.57 601 102 11 714 128 2 159.47 584 102 14 700 63 2 34.31 128 40 3 171 21

1B 2 233.25 3640 437 1 151.16 2183 106 25 2314 306 2 124.23 2459 86 37 2582 97 1 113.87 1261 134 27 1422 106

1D 1 110.61 274 64 2 60.61 144 20 0 164 39 1 18.95 146 16 1 163 16 1 56.93 57 31 0 88 20

2A 2 160.79 1258 185 1 80.02 393 53 8 454 91 4 157.92 664 60 15 739 77 2 176.28 299 146 13 458 75

2B 1 270.05 3037 403 2 220.05 1480 204 35 1719 253 2 185.33 1605 124 43 1772 107 2 222.92 476 193 20 689 126

2D 2 37.23 1347 58 1 22.29 58 2 0 60 14 1 16.85 1184 34 28 1246 28 2 60.58 52 14 4 70 20

3A 1 255.06 1285 185 1 235.9 443 119 7 569 108 4 191.63 698 116 19 833 75 2 60.58 191 74 11 276 37

3B 2 329.89 2770 411 2 314.89 1146 226 17 1389 262 1 250.53 1487 138 30 1655 121 2 233.94 568 206 27 801 126

3D 1 52.57 433 57 1 52.57 75 10 0 85 24 2 66.38 339 10 3 352 29 1 7.3 9 11 0 20 7

4A 2 152.95 1838 232 1 188 760 105 5 870 155 2 121.16 1215 61 17 1293 90 1 18.25 4 4 0 8 5

4B 1 94.29 595 98 1 94.29 261 59 8 328 61 1 128.25 297 30 7 334 34 1 32.85 38 28 0 66 24

4D 1 42.86 119 29 1 42.86 47 26 2 75 19 1 15.79 42 3 0 45 5 1 18.25 31 7 0 38 10

5A 1 131.56 448 89 1 88.89 91 25 0 116 27 3 83.16 191 36 6 233 34 2 135.77 104 69 5 178 41

5B 1 287.15 1958 276 2 237.15 855 129 20 1004 159 3 210.54 900 79 25 1004 103 2 217.15 294 152 11 457 89

5D 1 31.76 188 19 1 4.86 48 8 1 57 9 1 32.63 127 9 1 137 7 1 13.14 42 18 3 63 6

6A 2 159.17 1521 164 1 132.57 435 47 10 492 72 3 104.21 972 71 14 1057 78 2 128.1 322 117 14 453 51

6B 1 224.42 1989 279 1 224.42 846 85 7 938 145 1 124.26 1227 114 27 1368 115 2 189.42 596 139 12 747 93

6D 1 34.92 316 40 1 25.14 107 13 1 121 17 2 79.13 186 16 4 206 23 1 21.9 35 11 2 48 9

7A 2 190.49 1799 268 1 206.91 718 99 13 830 152 3 220.58 873 94 16 983 79 3 140.15 364 174 13 551 84

7B 2 196.12 2146 217 3 116.66 637 91 13 741 115 2 182.11 1466 98 38 1602 102 1 21.9 185 35 2 222 35

7D 1 104.74 408 57 1 41.14 81 2 0 83 19 2 105.31 279 23 6 308 36 3 62.77 81 27 2 110 26

Total 29 3302.45 28644 3757 28 2692.95 11409 1531 183 13123 2175 43 2578.4 16941 1320 351 18612 1319 35 1966.36 5137 1630 169 6936 1011

A 11 1252.59 9424 1312 8 1084.86 3441 550 54 4045 733 21 1038.1 5197 540 101 5838 496 14 693.44 1412 624 59 2095 314

B 10 1635.17 16135 2121 12 1358.62 7408 900 125 8433 1301 12 1205.3 9441 669 207 10317 679 11 1032.05 3418 887 99 4404 599

D 8 414.69 3085 324 8 249.47 560 81 4 645 141 10 335.04 2303 111 43 2457 144 10 240.87 307 119 11 437 98

LGα: Number of linkage groups in each chromosome.
UPβ: Number of unique positions.

Liet
al.BM

C
G
enom

ics
 (2015) 16:216 

Page
3
of

15



Figure 1 Frequency of markers on consensus map polymorphic across three populations (A); proportion of common GBS markers
across the three RIL populations (B); and frequency of genetics distance (cM) between two adjacent markers on the consensus map (C).
In A, 1 means markers polymorphic in one population, 2 means markers polymorphic in two populations and 3 means markers polymorphic in
all three populations.
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followed by the PB-MU and PB-KS populations (Figure 2).
The highest significant SDR was in chromosome 6BL de-
tected in PB-KB, where -logP reached 21.6, and selection
favored alleles from PBW343. In both PB-KB and PB-MU,
SDRs detected in chromosome 3BS are near the Sr2 gene,
where selection favored alleles from PBW343. An SDR de-
tected in PB-KS on chromosome 7DS was in the region
around the Lr34 gene, designated by Dyck [29], for resist-
ance to leaf rust. In this region, selection favored alleles
from Kenya Swara. Among all chromosomes in the three
RIL populations, high segregation distortion was observed
on chromosome 1B and selection favoring PBW343.

Distribution of the recombinant inbred lines against
wheat rusts
Large variations for stem rust were observed in the three
RILs populations. Screening for yellow and leaf rusts
was also carried out (in population PB-KS) to detect
pleiotropic loci linked with yellow and leaf rust resist-
ance. Phenotypic variations for leaf and yellow rusts
were observed as well, but smaller than those for stem
rust (Table 1 and Figure 3). In the MS2009 (main season
2009) screening, percent stem rust severity in the PB-
KB, PB-KS and PB-MU populations ranged from 10% to
70%, 1% to 60%, and 0% to 80%, respectively. During
MS2010 (main season 2010), it ranged from 0% to 60%,
1% to 80%, and 0 to 80% in the PB-KB, PB-KS and PB-
MU populations, respectively; in MS2011 (main season
2011), percent severity varied from 1% to 100% in popu-
lation PB-MU; and in OS2010 (off season 2010), it was
5% to 80%, 0% to 100%, and 5.6% to 76.3% in PB-KB,
PB-KS and PB-MU populations, respectively. Population
PB-KS was screened for yellow rust in T2010 (Toluca,
Mexico 2010), with percent severity ranging from 0% to
100%, and for leaf rust in OB2010 (Obregon, Mexico
2010), with percent severity ranging from 1 to 100%.

APR QTLs mapped on individual population linkage maps
Eighteen QTL regions, projected on the consensus map,
were detected to be associated with APR to stem/yellow/
leaf rusts in three RIL mapping populations (Table 2 and
Figure 4). QTLs were distributed on 13 chromosomes, i.e.,
1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 5B, 6B, 6D, 7A, and 7D.
Well-characterized genomic regions associated with rust
resistance (i.e., Sr58/Lr46/Yr29, Sr2/Yr30/Lr27 and Sr57/
Lr34/Yr18) were identified on chromosomes 1BL, 3BS and
7DS, respectively. Genes Sr58, Sr2 and Sr57 explained
phenotypic variances of up to 15.9%, 37.8%, and 19.5%, re-
spectively (Table 2). Positive alleles for the effects of Sr2
and Sr57 were contributed by non-PBW343 parents in all
three populations. A positive allele for the effect of Sr58
from PBW343 was detected in population PB-KS across
trials, which may be the reason for this population’s trans-
gressive stem and yellow rust resistance (Table 2 and
Figure 4).
Apart from these three genic regions, four separately

QTLs on chromosome 2 (QSr.cim-2BS1, QSr.cim-2BS2,
QSr.cim-2BL and QSr.cim-2DS) and chromosome 3 (QSr.
cim-3AL, QSr.cim-3BS1, QSr.cim-3BS2 and QSr.cim-
3DS) and single QTL on chromosomes 1 (QSr.cim-1BL),



Figure 2 Manhattan plot of segregation distortion loci mapping across three RIL mapping populations. A is for RIL populations derived by
PBW343 and Kingbird; B is for RIL populations derived by PBW343 and Kenya Swara; and C is for RIL populations derived by PBW343 and Muu.
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4 (QSr.cim-4AS), 5 (QSr.cim-5BL), 6 (QSr.cim-6DL) and 7
(QSr.cim-7AS) were detected (Table 3 and Figure 4).
Alleles conferring APR to rust were contributed by
PBW343 for QSr.cim-2DS, QSr.cim-3DS, QSr.cim-4AS
and QSr.cim-5BL, and another nine regions were contrib-
uted by non-PBW343 parents. One QTL controlling leaf
rust (QLr.cim-2AL) was also identified. A pleiotropic locus
for APR to stem rust (Ug99) as well as yellow rust was
found on chromosome 6BL (QSr/Yr.cim-6BL). QTL de-
tails in individual populations are presented in Additional
files 6, 7, 8, 9 and 10. Genotypic and phenotypic data for
QTL mapping in the three RIL populations can be found
in Additional files 11, 12 and 13.

Comparison of consensus map with wheat genome
reference sequence
A draft of the wheat genome sequence was published
very recently [30]. To verify the consensus map in this
study, we BLAST the sequences of 28644 GBS markers
(Additional file 14) against the genome sequence of Chinese



Figure 3 Phenotypic distribution for rust resistance among population lines in six experiments. The six experiments were main season
2009 (MS2009), main season 2010 (MS2010), off-season 2010 (OS2010), main season 2011 (MS2011), Toluca, Mexico in 2010 (T2010), and Obregon,
Mexico in 2010 (OB2010). Phenotypic values of four parents for each trait in each season are indicated by colored arrows. A-D are for stem rust
(Sr); E is for yellow rust (Yr), and F is for leaf rust (Lr). Phenotype % represents disease severity.

Li et al. BMC Genomics  (2015) 16:216 Page 6 of 15
Spring [30], rye, and the D genome of Ae. tauschii with
E-value < 1e-5. In general, sequences of 3619 GBS markers
(that is, 34.9% of the total GBS markers) cannot hit to the
genome sequence of Chinese Spring, and sequences of
12.6% of GBS markers cannot be mapped to the same
chromosome in the genome sequence of Chinese Spring as
that on the consensus map. Genome-wide sequences of
52.4% of GBS markers can be mapped to the same
chromosome in the Chinese Spring genome sequence as
that on the consensus map (Figure 5). This ratio ranges
from 31.4% to 67.5% across the 21 wheat chromosomes
(Figure 5). For chromosome 1B, there was a very clear en-
richment for rye hits indicating the 1B/1R translocation
(Figure 6). There were increased hits to Ae. tauschii on
the D genome (Additional file 15).
Discussion
GBS is a preferred high-throughput genotyping method
involving targeted complexity reduction and multiplex
sequencing to produce high-quality polymorphism data
at a relatively low cost per sample. Three RIL popula-
tions sharing one common parent (PBW343) were geno-
typed using the GBS approach. A consensus genetic
linkage map distributed by 28644 markers was devel-
oped with 3757 unique positions (13.1% of the total
number of markers) covering a 3302.45 cM genetic dis-
tance (Table 1; Additional files 1, 2, 3 4 and 5). Recently,
a wheat genetic map of 40,267 SNP markers was re-
ported [10] where data were generated with the help of
SNP iSelect array comprising ~ 90,000 SNPs. On this
map, 13.7% of SNPs were specified to unique positions.



Table 2 Mean and range of stem/yellow/leaf rust severity in three RIL mapping populations and their parents over six
trials

Trial Entry PBW343 x KB PBW343 x KS PBW343 x MU

Sr-MS2009 PBW343 70 50 60

non-PBW343 10 1 5

Ave. (Std.) 32.23 (16.09) 31.20 (15.55) 43.00 (16.63)

Min-Max 10-70 1-60 0-80

Sr-MS2010 PBW343 60 55 70

non-PBW343 1 5 5

Ave. (Std.) 17.25 (17.42) 19.40 (18.35) 20.10 (18.73)

Min-Max 0-60 1-80 0-80

Sr-OS2010 PBW343 60 75 60

non-PBW343 10 5 5

Ave. (Std.) 31.28 (18.02) 22.80 (23.08) 28.40 (17.35)

Min-Max 5-80 0-100 5.6-76.3

Sr-MS2011 PBW343 70

non-PBW343 5

Ave. (Std.) 21.90 (16.39)

Min-Max 1-100

Yr-T2010 PBW343 15

non-PBW343 5

Ave. (Std.) 34.60 (26.38)

Min-Max 0-100

Lr-OB2010 PBW343 10

non-PBW343 1

Ave. (Std.) 29.80 (36.98)

Min-Max 1-100

KS: Kenya Swara.
KB: Kingbird.
MU: Muu.
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The percentage of unique positions in the two maps was
comparable. Fewer numbers of unique markers on chro-
mosomes were partially due to the lack of polymorphic
markers evenly distributed on wheat genome, and the lack
of recombination events captured by these populations.
Compared with the A and D genomes, in the B gen-

ome, the maximum percentage of the total number of
markers (56.3%; Table 1), the maximum percentage of
the total number of unique positions (56.5%; Table 1),
the longest genetic length (1635.2 cM), and the max-
imum number of detected QTL regions can be ob-
served (10 out of 18; Table 2 and Figure 4). These
results indicate that most of the recombination events
happened on the B genome, which was in accordance
with previously reported genetic maps [8,10,23,28,31]
and also with genome size, since the B genome is the
largest, followed by genomes A and D. Variation in the
D genome of bread wheat is consistently low [9-11]. In
the present study, 10.8% of markers on the consensus
map were located on the D genome (Table 1). Yet in
some regions (chromosome 3D in the PB-KB and PB-
KS populations, and chromosome 7D in three popula-
tions, etc.), a high number of markers with unique posi-
tions can be observed (Additional files 1, 2, 3 and 4).
Four QTL regions were detected on the D genome
(Table 2). This map can be a useful resource for finding
more genes located on the D genome to dissect the
traits of interest.
In terms of the marker distribution across popula-

tions, the highest number of polymorphic markers
was available in the PB-KS population, followed by
PB-KB and PB-MU (Table 1). When comparing the
maps from different populations, the number of
markers in common between any two maps was ap-
proximately 43% of the number of markers on the
smaller map (Figure 1C). The number of markers on
all three maps was 17.1% of the number of markers
on the smallest map. The reduced percentage of



Figure 4 Identified chromosomal regions harboring APR to stem, yellow and leaf rusts. QTLs named in red font are well characterized APR genes.
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markers in common to all maps may be due to the
known structural diversity among the parents and the
varying recombination frequency patterns across the
genome for the three crosses. These trends indicate
PBW343 may have the largest genetic distance from
Kenya Swara, compared with Kingbird and Muu.
Although we had 28644 markers on the consensus

map, polymorphism markers are still lacking in some
chromosome regions of the respective RIL population.
Possible reasons are: (1) vast parts of the chromo-
somes of the Triticeae are recombination deserts (the
so-called genetic centromeres) [30], so most meiotic
recombination events occur in genomic regions that
correspond to ~20% of the chromosome length, while
there is little recombination in 1/3 to 2/3 of the
chromosome; in the region of recombination deserts,
it is difficult to explore polymorphic markers; and (2)
the different variations among four parental genomes,
and different genetic distances between PBW343 and
the other three parents (Table 1 and Figure 2). In our
study, the numbers of linkage groups for the consen-
sus map and each of the three mapping populations
were 29, 28, 43, and 35, respectively (Table 1). If two
markers are physically located on the same chromo-
some but very far away from each other, it is very
likely that they will act as unlinked loci in a popula-
tion of limited size. Due to the recombination desert
between them, they will fall into different linkage
groups.
A popular variety in South Asia, PBW343 is known

for harboring the 1B/1R translocation. On the
consensus map, there are 3640 markers located on
chromosome 1B, with around 2251 markers on its
short arm (1BS) and 1389 markers on its long arm
(1BL). Only 12.0% of 3640 markers on chromosome
1B were located uniquely, which is a low proportion
across 21 chromosomes. Looking at chromosome 1B
specifically, 9.6% of markers are located uniquely on
chromosome 1BS, while 16.3% of markers are located
uniquely on chromosome 1BL. In other words, the
vast majority of markers on chromosome 1BS are
represented in the map as clusters of co-segregating
markers. Interestingly, high segregation distortion was
observed in the three populations on chromosome 1B
as compared to the others (Figure 2). Also, regions
on chromosome 1B having low hits to the Chinese
Spring genome clearly had high hits to the rye gen-
ome (Figure 6). These phenomena could be assigned
to the 1B/1R rye translocation in PBW343. In
addition to the 1B/1R translocation, translocations
2D/2R and 7B/4R have also been reported in wheat.
Rye has been used extensively in CIMMYT wheat
breeding, and the three parents (PBW343, MUU and
Kingbird) used in this study were derived from CIM-
MYT germplasm. In our study, we could not find
evidence of these parents carrying the 2D/2R and 7B/
4R translocations.
The consensus map constructed in this study can

be used to locate major genes controlling target traits.
Phenotypic variation in the three RIL populations
suggests polygenic inheritance for APR to stem rust
race Ug99 (Table 1 and Figure 3). QTL analysis



Table 3 Additive QTL identified with adult plant resistance to stem/yellow/leaf rust resistance in three RIL mapping
populations based on consensus map

Population Trial Chr Pos. Marker interval Interval LOD Add PVE (%) QTL/Gene

PBW343 x MU Sr-MS2011 1BL 111.5 4260657 - 1110373 1.97 2.61 -3.78 5.34 QSr.cim-1BL

PBW343 x MU Sr-MS2010 1BL 112.5 4260657 - 1110373 1.97 3.27 -4.51 5.78

PBW343 x KS Sr-MS2010 1BL 51.6 2289154 - 982224 1.05 3.89 7.37 15.9 Sr58/Yr29

PBW343 x KS Sr-OS2010 1BL 48.3 7348297 - 999754 0.30 3.01 5.93 6.52

PBW343 x KS Yr-T2010 1BL 48.3 7348297 - 999754 0.30 2.62 8.14 9.35

PBW343 x KS Lr-OB2010 2AL 12.5 4409864 - 1123745 3.04 2.62 -7.37 3.96 QLr.cim-2AL

PBW343 x MU Sr-MS2010 2BS 4.25 4989818 - 1088282 4.73 3.59 -4.83 6.68 QSr.cim-2BS1

PBW343 x KB Sr-MS2010 2BS 120.6 2256042 - 988615 1.56 2.63 -3.51 4.06 QSr.cim-2BS2

PBW343 x KS Sr-MS2009 2BL 165.5 2277655 - 1772231 0.22 2.62 -4.84 9.08 QSr.cim-2BL

PBW343 x MU Sr-MS2009 2DS 28.5 989323 - 1242814 2.19 3.4 5.36 10.31 QSr.cim-2DS

PBW343 x KS Sr-MS2010 3AL 229.0 3941600 - 1252939 2.46 3.12 -6.63 13.16 QSr.cim-3AL

PBW343 x KB Sr-MS2009 3BS 19.5 1057406 - 1280418 6.87 13.1 -7.94 24.45 Sr2

PBW343 x KB Sr-MS2010 3BS 19.5 1057406 - 1280418 6.87 17.1 -10.12 33.95

PBW343 x KB Sr-OS2010 3BS 19.5 1057406 - 1280418 6.87 16.3 -10.39 33.39

PBW343 x KS Sr-OS2010 3BS 29.05 1106039 - 1314625 13.40 4.95 -8.38 13.3

PBW343 x MU Sr-OS2010 3BS 28.89 1106039 - 1140316 4.21 15.7 -10.63 37.79

PBW343 x MU Sr-MS2009 3BS 25.8 1280418 - 1035021 1.05 2.84 -4.93 8.72

PBW343 x MU Sr-MS2011 3BS 20.3 1321267 - 1280418 6.87 9.3 -7.88 23.24

PBW343 x KS Sr-MS2009 3BS 96.6 2296999 - 3022044 1.40 2.79 -4.87 9.66 QSr.cim-3BS1

PBW343 x KB Sr-MS2010 3BS 170.3 1258147 - 993237 1.71 2.69 -3.66 4.42 QSr.cim-3BS2

PBW343 x KS Sr-MS2010 3BS 144.0 3222133 - 4991367 2.82 2.77 -6.49 12.62

PBW343 x KS Sr-OS2010 3DS 14.0 2327992 - 1148522 0.98 3.23 6.05 6.89 QSr.cim-3DS

PBW343 x KB Sr-OS2010 4AS 4.0 1092224 - 3945735 3.40 2.81 4.12 5.18 QSr.cim-4AS

PBW3433 x KB Sr-OS2010 5BL 148.0 4410058 - 1161136 1.72 3.85 5.48 9.28 QSr.cim-5BL

PBW343 x MU Sr-OS2010 5BL 156.0 1298718 - 1025982 0.57 3.88 5.14 7.88

PBW343 x MU Sr-MS2011 5BL 156.0 1298718 - 1025982 0.57 2.54 4.35 6.3

PBW343 x KS Sr-OS2010 6BL 93.1 984306 - 3025087 2.82 2.69 -4.87 5.89 QSr/Yr.cim-6BL

PBW343 x KS Yr-T2010 6BL 95.0 984306 - 3025087 2.82 2.54 -3.66 8.99

PBW343 x KS Sr-MS2010 6DL 0.74 1096393 - 1128614 11.69 4.5 -8.53 21.73 QSr.cim-6DL

PBW343 x KS Sr-OS2010 6DL 0.74 1096393 - 1128614 11.69 2.59 -5.49 5.69

PBW343 x KS Sr-OS2010 7AS 3.50 4989858 - 989662 4.00 3.91 -6.74 8.52 QSr.cim-7AS

PBW343 x MU Sr-MS2010 7AS 2.36 1240640 - 4990306 2.86 3.6 -4.99 7.13

PBW343 x KS Lr-OB2010 7DS 61.0 1128052 - 4991056 3.16 9.53 -17.21 19.5 Lr34

KS: Kenya Swara.
KB: Kingbird.
MU: Muu.
Marker intervals: Numbers correspond to the GBS based SNP tags.
Pos.: Position of QTLs on chromosomes in centi-Morgan.
Intervals: Centi-morgan distance between two markers of the interval.
MS: Main season; OS: Off season; Sr: Sem rust; Yr: Yellow rust; Lr: leaf rust.
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revealed a couple of APR QTLs against stem rust
fungus Ug99, which were mapped as reported. To
anchor and determine the relationship between the
APR QTLs found in the present study and those
found in previous reports (Table 1), we calculated the
correlation coefficient of the genotypes of array-based
DArT markers and DArT-seq markers on the consen-
sus map. Array-based DArT markers wPt-744022 and
wPt-5896 are reported to be linked with APR to stem
rust [9]. QTL QSr.cim-2BS1 reported in this study was
flanked by DArT-seq markers, i.e., 4989818 and 1088282.
The correlation between 4989818 and wPt-744022 was



Figure 5 Frequency of the sequences of GBS markers that were mapped to correct chromosome in the Chinese Spring genome.
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0.81 in population PB-MU, which is highly significant.
DArT-seq markers 1298718 and 1025982 were the two
markers flanking QSr.cim-5BL (Table 2). The correlation
between wPt-5896 and DArT-seq marker 1298718 was
0.91 in population PB-MU, which is highly significant as
well (Additional files 1, 2, 3, 4 and 5). A QTL on chromo-
some 3BS, which is most likely the Sr2 gene (in Table 2
designated as Sr2) was flanked by DArT-seq markers
1106039 and 1140316 in population PB-MUU. According
to the consensus map reported by Yu et al. [31], the Sr2
gene is 9.2 cM apart from the array-based DArT marker
wPt-3761. Marker 1140316 was highly correlated with
wPt-3761 in population PB-MUU (correlation coefficient:
0.75). A gene for leaf rust resistance on chromosome 7DS
was mapped and flanked by DArT-seq markers 1128052
and 4991056 (Table 2). The correlation between 4991056
and wPt-733087 was 0.69, which is highly significant.
Array-based DArT marker wPt-733087 was associated
with leaf rust resistance and was found to be 9 cM apart
from Lr34 gene-based marker csLV34 in the PBW343 ×
Diniza population (Singh et al., CIMMYT, unpublished).
In addition to marker co-location for the above mentioned
QTLs/gene(s), a recently published consensus map for
Ug99 stem rust resistance loci in wheat [31] was compared
with QTLs mapped in this study. Since this map did not
contain GBS markers, exact co-location could not be
made. However, based on the location of APR QTLs on
chromosome arms for some of the QTLs, i.e., QSr.cim-
2BS1, QSr.cim-2BS2, QSr.cim-2BL, QSr.cim-2DS, QSr.cim-
3AL, QSr.cim-3DS, QSr.cim-1BL1 and QSr.cim-6DL could
be co-located with the ones projected on the consensus
map of Ug99 stem rust resistance [31]. Singh et al. [9] also
reported an APR QTL for Ug99 on chromosome 7AS,
which is likely the same as the one on that chromosome in
the present study (Table 2 and Figure 4). QSr.cim-3BS1,
QSr.cim-3BS2, QSr.cim-4AS, and QSr/Yr.cim-6BL were
new QTL regions associated with stem rust and yellow
rust.
The high density GBS consensus map increased

the mapping resolution of linkage mapping. Identified



Figure 6 Averaged hits to the Chinese Spring genome, and rye genome on across chromosome 1B within sliding window with 30
markers in length and 15 markers overlapped between neighboring windows.
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genomic regions (i.e., the genetic region of each
QTL’s flanking-marker interval in each individual
linkage map) for stem rust resistance ranged from
0.1 to 15.8 cM (Additional file 6). The interval size
of 14 of the QTLs was < =1 cM and most of them
were < 5 cM (Additional file 6). QTLs in genomic
regions of this size are valuable for further under-
standing the molecular basis and developing perfectly
linked markers. Co-location of the APR QTLs/genes
in their respective chromosomal regions (Table 2 and
Figure 4) and a high proportion of markers BLAST
to the correct chromosomes of the genome sequence
of Chinese Spring (Figure 5) indicate the validity and
utility of the consensus map.
CIMMYT’s Seeds of Discovery project has character-

ized more than 40,000 wheat gene bank accessions
through the DArTseq GBS platform. The high density
GBS consensus map reported in this study is an essen-
tial prerequisite for analyzing the GBS data of a large
diversity panel. It will facilitate the genetic dissection of
important quantitative traits either by linkage mapping
as we reported in this paper, or by genome-wide associ-
ation mapping. GBS markers associated with important
traits can be utilized by designing primers according to
their sequence, for genomics applications in wheat
breeding.
Conclusions
A high density map of 28644 GBS markers using
genotypic data of the three RIL populations with a
common parent, PBW343. Total genetic length of
map was 3302.5 cM with 3757 unique positions, and
the average marker distance was 0.88 cM by calculat-
ing the averaged distance between two adjacent
unique positions. The length of marker intervals
ranged from 0 to 28.3 cM. The number of markers in
common between any two individual maps was
roughly 43% of the number of markers in the map
with the least markers of the two. Significant vari-
ation of segregation distortion was observed across
three populations. Three genes (Sr58/Lr46/Yr29, Sr2/
Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published
QTL were validated. The common parent PBW343
harbors the 1B/1R translocation, and there was a very
clear enrichment for rye hits on chromosome 1B.
Also, there were increased hits to Ae. Tauschii D
genome. The high-density and better quality of
genetic maps will advance the genetic studies of com-
plex trait in wheat and facilitate genomics-assisted
breeding.
Methods
Plant materials
Three RIL populations were used for consensus map
construction and QTL analysis for rust resistance.
Moderately susceptible bread wheat (Triticum aesti-
vum) parent PBW343 was used as a common parent
and crossed with three other bread wheat APR par-
ents: Kingbird, Kenya Swara, and Muu. PBW343, a
major variety in India, is a selection (GID2430154)
from CIMMYT line Attila with the pedigree Nord
Deprez/VG9144//Kalyansona/Bluebird/3/Yaco/4/
Veery#5 [9]. Parents Kingbird and Kenya Swara have
maintained high levels of APR to stem rust. Kingbird
has shown a high level of APR in field tests con-
ducted at Njoro, Kenya, during the last six cropping
seasons, including the 2008 main season, which was
characterized by very high stem rust pressure. Muu
(pedigree: Pfau/Weaver//Kiritati; GID5090613) was
found to be susceptible to wheat stem rust at the
seedling stage but adult plants showed low disease se-
verity in response to stem rust race Ug99 during mul-
tiple years of field trials in Kenya [32].
DArTseq™ GBS markers
DArTseq is a GBS platform developed by DArT PL,
Canberra, Australia. It is a combination of complexity
reduction methods developed initially for array-based
DArT and sequencing of resulting representations on
next-generation sequencing platforms. For sequencing-
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based DArT genotyping, two complexity reduction
methods optimized for several other plant species at
DArT PL (i.e., PstI/HpaII and PstI/HhaI) were used to
select a subset of PstI-HpaII and PstI-HhaI fragments,
respectively [23]. DNA samples were genotyped twice
using two different 4-bp cutters on one end of the RE
fragments (HpaII and HhaI). Although the general con-
cept of discovering markers through sequencing of gen-
omic representations was presented over two decades
ago [33,34], it was only very recently that the cost and
throughput of sequencers reached a point where any GBS-
type approach can compete effectively with hybridization-
based arrays (DArT and/or SNP; [11]).
The DArTsoft marker extraction pipeline produced large

numbers of markers in each of the three populations.
Markers were filtered on the basis of reproducibility (that
is, the percentage of technical replicate pairs scoring iden-
tically for a given marker), call rate (that is, the percentage
of samples for which a given marker was scored), and the
average read depth (that is, the average number of se-
quence ‘tag’ counts contributing to the genotype calls for a
given marker). Approximately 60% of samples from each
population were assayed twice to derive reproducibility
scores. The minimum threshold value for reproducibility
was 95%, with an average value of 98.5% for SNPs and
99% for silicoDArTs. The minimum threshold value for
call rate was 85%, with an average value of 99% for SNPs
and 95% for silicoDArTs. The minimum threshold value
for Average Read Depth for SNPs was 7, with an average
of 18; for silicoDArTs, it was 8, with an average of 17.2.
Markers with identical genotypes were placed in redun-
dant bins, and markers with unique genotypes (those that
did not belong in a redundant bin) were excluded from the
mapping process. This provided an additional quality con-
trol step for marker selection. The markers were selected
to minimize the number of missing calls as per the selec-
tion criterion. The only filtering for ‘false homozygote’ calls
was the masking of apparent double crossovers after or-
dering of the linkage groups. Genotyping errors will
present themselves as apparent double crossovers in the
ordered map data as ‘singletons’ (data points with geno-
type scores that differ from those of the immediately pre-
ceding and following markers) [35]. For SNP calling, the
variants were called within the data only (clustering se-
quences by sequence similarity), and no external reference
genome was used. The sequence defined as the ‘Reference’
for each SNP pair was either the most common sequence
in the population or the sequence that had been previously
recorded from DArT genotyping analyses of wheat.

High-density linkage map and consensus map construction
Our three individual maps were constructed using DArT
PL’s OCD MAPPING program [36], which implements a
marker-ordering algorithm combined with a tunable
double cross-over (DCO) masking algorithm. Markers
were clustered into linkage groups according to the
method described by Anderson et al. [37]. Markers with
identical genotypes were placed in redundant bins, and
the resulting markers/bins within each linkage group
were ordered using the traveling salesman path solver
program Concorde [38]. Since silicoDArT markers were
dominant markers, while SNP markers were co-dominant
markers, silicoDArT markers were separated into paternal
and maternal phases. A map was produced for each parent
by combining the relevant silicoDArT markers with all of
the SNP markers. This resulted in two maps that were
joined in a single population consensus map using the
SNP markers in common to facilitate consensus map
construction. Apparent double-crossovers were masked
before reordering the linkage groups and calculating re-
combination fractions, with Kosambi function used to es-
timate genetic distances.
Construction of consensus maps presents a challenging

problem in wheat due to its structural diversity, particu-
larly the chromosomal structure differences between the
parents of mapping populations. We applied DArT PL’s
OCD MAPPING program [36] to order DArTseq, array-
based DArTs, and SSR markers. We then applied DArT
PL’s consensus mapping software [24,36].

Evaluating stem, leaf and yellow rust severity
The parents, highly susceptible bread wheat check
variety, Cacuke and the three RIL populations were
evaluated for stem rust severity at the Kenya Agricul-
tural Research Institute (KARI) in Njoro during four
crop seasons: main season 2009, main and off-season
2010, and main season 2011, denoted as Sr-MS2009,
Sr-MS2010, Sr-OS2010, and Sr-MS2011, respectively.
All three populations were evaluated for APR to stem
rust, and PBW343 x Kenya Swara was screened for
yellow and leaf rusts in one season at one location
(Additional file 12). The RILs and parents were sown
using a completely randomized design with two
replicates. Field plots consisted of two 1-m rows spaced
20 cm apart with a 0.5-m pathway. Approximately
60–70 seeds were sown in each plot. The experimental
block was surrounded by a spreader row consisting of
varieties differentially susceptible to the Sr24 virulent
variant TTKST. Hill plots of spreaders were also planted
in the middle of the pathway on one side of each plot to
facilitate uniform disease build-up and spread. On at
least two occasions just prior to booting, freshly
collected urediniospores suspended in distilled water
were injected into culms in the spreader plots (1–3
plants/m) using a hypodermic syringe. Disease response
in the field was assessed twice, first, when the
susceptible check variety Cacuke displayed 50–60%
stem rust severity and subsequently at peak disease
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development, when Cacuke displayed 100% stem rust at
the mid-dough stage of plant growth. Percent disease
severity was scored using the modified Cobb Scale [39].
The second rating was considered as the phenotype in
this study.
Parents and population lines were evaluated for leaf

rust reaction in field nurseries operated by CIMMYT in
Ciudad Obregon, Sonora, Mexico, in 2010, denoted as
Lr-OB2010. Replicated trials with parents and popula-
tion lines were grown in Obregon in 2010. Leaf rust se-
verity in each plot was visually scored (near anthesis
flowering time) using the modified Cobb scale [39]. For
yellow rust screening, parents and population lines were
evaluated under field conditions in rust nurseries oper-
ated by CIMMYT near Toluca, Edo. Mexico, Mexico, in
2010 and in Njoro, Kenya, in 2010 and 2011, which were
denoted as Yr-T2010, Yr-K2010, and Yr-K2011, respect-
ively. Two replicated rows of parents and population
lines were assessed in each trial. Each row was visually
scored around anthesis flowering time for yellow rust se-
verity with the percentage of leaf covered with disease
infection calculated as described for leaf rust. Consider-
ing the low phenotypic variance of yellow and leaf rust
resistance in the PB-KB and PB-MU populations (data
not shown), we did not use them to do QTL analysis in
this study. Phenotypic distribution and correlation of
rust resistance across the three RIL populations are
shown in Figure 3 and Additional file 12.

QTL mapping of the individual RIL populations
Inclusive composite interval mapping (ICIM) [40-42]
implemented by QTL IciMapping 3.2 (available at www.
isbreeding.net) was used to map additive and epistatic
QTLs controlling stem, leaf and yellow rust resistance.
In ICIM for additive QTL mapping, marker selection
was performed just once using stepwise regression and
considering all marker information simultaneously; this
is a key step in determining the scanning profile. Pheno-
typic values were then adjusted by all markers retained
in the regression equation, except the two markers flank-
ing the current mapping interval [40-42]. Permutation
tests were conducted using stem rust in the three RIL
populations to determine the criteria for model selection
in the first step of ICIM. For all three RILs, the probabil-
ity of a marker moving into the model corresponding to
the overall type I error α = 0.05 was approximately 10-5.
The probability of a marker moving out of the model
was set at twice the probability of a marker moving into
the model. The LOD threshold to declare the existence
of a QTL was calculated by permutation tests as well.
Permutation tests revealed LOD thresholds of 3.50, 3.53,
and 3.51 for PB-KB, PB-KS, and PB-MU, respectively.
Considering that thresholds retained from permutation
tests are always conservative [43], an LOD threshold of
2.5 was used to report QTLs and determine common
QTLs across seasons and populations.
For epistatic QTL mapping, we tested all possible pairs

of scanning positions by ICIM [41]. That is to say, we can
detect digenic interactions regardless of whether the two
interacting QTLs have significant additive effects or not.
Due to the large amount of variables in digenic QTL map-
ping, we used a much stricter probability (10-6) of a
marker moving into the model. The probability of a
marker moving out of the model was set at twice the
probability of a marker moving into the model. An empir-
ical LOD threshold of 4.0 was used to declare the exist-
ence of epistatic QTLs.
Common QTL across the three RIL populations
Due to the differences in the three individual linkage
maps, it was difficult to directly find common QTLs
across the three RIL populations based on the QTL or
marker position in each linkage map. Therefore, we
projected each QTL’s flanking markers to the consen-
sus map. If the flanking markers of one QTL were
15 cM apart from the flanking markers of another QTL
on both sides, the two QTLs were declared as common
QTLs.
Availability of supporting data
All the genotype data used for analysis are presented
along-with manuscript through Additional files 11, 12,
13 and 14. Also, these files have been shared through lab
archives http://www.labarchives.com/bmc. DOI for the
GBS data: “10.6070/H4Z31WNT”; DOI for the GBS tag
sequence: “10.6070/H4TD9V9T”.
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in consensus map constructed in the study.

Additional file 2: Chromosome locations and positions of markers
in linkage map of PBW343 x Kingbird population.

Additional file 3: Chromosome locations and positions of markers
in linkage map of PBW343 x Kenya swara population.

Additional file 4: Chromosome locations and positions of markers
in linkage map of PBW343 x Muu population.

Additional file 5: Details of markers in consensus map, and in
linkage maps of PBW343 x Kingbird, PBW343 x Kenya swara, and
PBW343 x Muu populations.

Additional file 6: Additive QTLs identified for rust resistance in
three RIL populations.

Additional file 7: LOD profile from QTL mapping across the three
RIL populations for stem rust.

Additional file 8: LOD profile from QTL mapping in PB-KS for
yellow rust.

Additional file 9: LOD profile from QTL mapping in PB-KS for leaf rust.

Additional file 10: Measured traits across seasons and populations,
and their correlations across trials.
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Additional file 11: Genotypic and phenotypic data used for QTL
mapping in PBW343 x Kingbird population.

Additional file 12: Genotypic and phenotypic data used for QTL
mapping in PBW343 x Kenya Swara population.

Additional file 13: Genotypic and phenotypic data used for QTL
mapping in PBW343 x MUU population.

Additional file 14: Sequences of GBS markers on the consensus map.

Additional file 15: Averaged hits to the Chinese Spring genome,
rye genome, and D genome of Ae. Tauschii across 21 chromosomes
within sliding window with 30 markers in length and 15 markers
overlapped between neighboring windows.
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