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Abstract

the users to easily interpret the results more comfortably.

validation.

Background: Analysis of large-scale omics data has become more and more challenging due to high dimensionality.
More complex analysis methods and tools are required to handle such data. While many methods already exist, those
methods often produce different results. To help users obtain more appropriate results (i.e. candidate genes), we
propose a tool, GRACOMICS that compares numerous analysis results visually in a more systematic way; this enables

Results: GRACOMICS has the ability to visualize multiple analysis results interactively. We developed GRACOMICS to
provide instantaneous results (plots and tables), corresponding to user-defined threshold values, since there are yet no
other up-to-date omics data visualization tools that provide such features. In our analysis, we successfully employed two
types of omics data: transcriptomic data (microarray and RNA-seq data) and genomic data (SNP chip and NGS data).

Conclusions: GRACOMICS is a graphical user interface (GUI)-based program written in Java for cross-platform computing
environments, and can be applied to compare analysis results for any type of large-scale omics data. This tool can be
useful for biologists to identify genes commonly found by intersected statistical methods, for further experimental
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Background
Over the last decade, success in microarray data studies
has led to an expansion of large-scale omics data analyses
and their data types. Vast amounts of data, in various
forms, are produced for a common goal: to find genetic
variants related to a phenotype of interest (e.g., disease
status, etc.). In unison with technological advances, many
statistical tools were developed for separate types of
omics data analyses. In our study, we will illustrate the
application of our tool for different omics data types.
Many microarrays studies aim to detect “gene expression
signatures” specific to various human diseases by comparing
expression levels between two distinct groups. The main
idea is to identify overexpressed and underexpressed
genes, as compared to a control group, and label them as
deleterious or protective, respectively. The success of
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this approach in human cancer, and other diseases [1],
promoted the development of many statistical methods.
However, unifying the analysis results from disjointed
methods cannot keep up with the explosive rate of publi-
cations concerning the specific phenotype of interest.
Thus, annotation and replication studies are required in
this current era. Many databases, such as the National
Center for Biotechnology Information (NCBI), have
been used to infer biological information from omics data
and make note of novel findings that were detected
as previously reported “markers.”

The popularity of another type of array-based study,
focusing on single nucleotide polymorphism (SNP) associ-
ation studies, has steadily increased. In fact, SNP analysis
has been crucial in uncovering the genetic correlations of
genomic variants with quantitative traits, complex diseases,
and drug responses [2]. One well-known data source,
the Wellcome Trust Case Control Consortium (WTCCC)
database, which handles 14,000 cases of seven common
diseases and 3,000 shared controls, has led to many influ-
ential publications. While various analysis methods have
been published, and public databases such as dbSNP [3]
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and HapMap [4] are available, utilizing them well is
another issue.

Following the footsteps of array-based approaches, an
era of high-throughput sequencing began, and this
technology has been applied to RNA-seq and whole
exome and genome sequencing. RNA-seq has properties
that are different from microarrays, for example, a high
dynamic range and low background expression levels. To
address these properties, several statistical methods using
Poisson or negative binomial distributions have been
proposed [5-7]. In the case of exome and genome
sequencing, issues with missing heritability have led
researchers to study more than just common variants,
and various methods have now been proposed to handle
rare variants [8-10].

As for visualization tools, there are only a few programs
available for comparison. Multi Experiment Viewer (MeV)
[11] is one of the most popular tools included in the TM4
suite, which is used to analyze microarray data. Although
it supports several statistical methods of microarray data
analysis, MeV provides only multiple outputs in treeview.
Similar to MeV, PLINK [12] is a widely used genome asso-
ciation analysis toolset, but does not provide graphical
interactive comparison of results.

Here, we focused on exploring the inconsistent results
that can be produced from method-specific assumptions
and parameters. Taking an extra step to check, understand,
and interpret the different results can be challenging for
scientists without computational proficiency. We aimed to
ease such problems by proposing a visual comparison
tool in a user-friendly environment. In addition to its
accessibility, GRACOMICS can reflect a change in results
according to an immediate alteration of significance levels.
Such characteristics are valuable, and likely essential
for effective, interactive, and integrative comparison of mul-
tiple results. Therefore, the proposed tool, GRACOMICS,
provides a novel approach to visually compare several test
results through graphical user interface (GUI) components.

In addition to its interactive GUI, our tool provides
three distinctive layouts for comparison, including
pairwise plots, summary tables, and a “heatmap-like”
summary table highlighting pivotal markers, commonly
detected by different methods. Two of the modules, the
Pairwise Comprehensive Scatter Plots Module (Pair-CSP)
and the Pairwise Detailed Scatter Plot Module (Pair-DSP),
compare and contrast a pair of methods at the same
time, while the third, the Multiple Results Comparison
Module (Multi-RC), can handle all the employed methods
(more than two) at once. Note that the user can define
the top N significant markers (from input files) that
will be used in the modules, for more interactive and
efficient comparison. Furthermore, simple web-annotation
functionality adds to the benefits, in terms of biological
interpretation.
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Implementation

Microarray dataset and statistical methods

For microarray studies, statistical tests were performed
to detect differentially expressed genes (DEGs) between
two groups: cases and controls. A pre-processing step is
necessary for statistical analysis of the raw expression
profiles, including background correction, global or local
normalization, log-transformation, etc. Such processing
steps may alter the results and should be performed
only after fully understanding the platform and target
probes of the analysis. We employed a microarray dataset,
GSE27567 [13], from the Gene Expression Omnibus
(GEO) database, consisting of 45,101 Affymetrix probes
from 93 individual mice. To detect the DEGs from the
microarray data, we perform two group comparison tests
between tumor-bearing mice and non-transgenic controls.
We employed statistical tests such as t-test, significant
analysis of microarray (SAM) [14], permutation, and
Wilcoxon rank-sum test.

SNP dataset and statistical methods

In genome-wide association (GWA) studies, researchers
focus on the positions of genetic variants that are signifi-
cantly related to the phenotype of interest. There is no
gold standard for pre-processing such data, but a few
guidelines exist. Many steps, such as normalization and
bias removal are included in data pre-processing, and
the analysis results are very dependent on those steps. In
our analysis, we used a bipolar disorder data in the
WTCCC database, which includes 354,019 SNPs from
4,806 individuals (1,868 bipolar disorder patients and
2,938 normal controls). As a first step, we conducted a
quality control process based on specific criteria [15]. For
the association test between genotype and phenotype,
using SNP data, we used statistical methods such as
chi-square test, Fisher’s exact test, logistic regression
with covariate adjusting, and logistic regression with-
out covariate adjusting. These association tests were
implemented using the PLINK tool.

RNA-seq dataset and statistical methods

We employed results from RNA-seq, another type of
transcriptome measuring platform. Recently, its advantages
over microarray platforms have been described by
many comparative reports [16]. Thus, a more elaborated
estimation became possible by RNA-seq, in short.
However, RNA-seq gene expression is measured in
counts (i.e, number of strands synthesized), and therefore
direct application of RNA-seq methods to microarray ana-
lysis is impossible. Instead, RNA-seq analysis methods are
developed by applying statistical methodologies based on
analyzing serial analysis of gene expression (SAGE)
platform data, a traditional approach for measuring gene
expression in counts. Here, we employed RNA-seq data
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from a previous study [17] using edgeR, DESeq, and
NBPSeq methods. The RNA-seq data from a MicroArray
Quality Control Project (MAQC) had 7 replicates and one
pooled sample each from two types of samples, Ambion’s
(Austin, TX, USA) human brain reference RNA, and
Stratagene’s (Santa Clara, CA, USA) human universal
reference RNA. After filtering out the NA values; 10,473
genes remained, with three DE-analysis methods.

NGS dataset and statistical methods

Shortcomings of common variants in explaining the
whole heritability of diseases has led to the study of rare
variants. Unlike common variants, rare variant analyses,
based on single genetic associations, often shows large
false-negative results, unless the sample or effect sizes
are very large. Hence, collapsed genotype scores for a set
of rare variants are suggested for an analysis scheme.
For our input, we employed the results from rare
variant association tests such as C-alpha, burden test,
and SKAT-O. These association tests were implemented
using the FARVAT tool [18]. For illustrative purposes, we
used the simulation dataset of FARVAT consisting of 100
SNPs and 16 genes which was enlarged to have 10,000
SNPs and 2,000 genes, using the same settings.

Implementation of GRACOMICS

GRACOMICS is a java-based stand-alone program using
a GUI platform. It was developed under Java because
statistical analysis tools are generally developed by
diverse codes such as R, SAS, etc. Java programs are
renowned for their compatibility with various computing
environments, are supported by all operating systems,
and can easily be executed by other programs written
in different computer languages. GRACOMICS can
read tabular types of tab-separated values (TSV) files
containing p-values for each method in columns and
genetic markers in rows. Also, using simple mouse clicks,
rather than command lines as input, helps bridge the
gap between biology-based researchers and computer
science-based researchers. Our plan was to design
and implement a user-friendly program any researcher
could use in any environment. The proposed tool,
GRACOMICS, has the following three interactive
modules with distinct features:

Pairwise Comprehensive Scatter Plots Module (Pair-CSP)

Pair-CSP provides a scatter plot of pairwise compari-
sons between statistical method inputs simultaneously
(Figures 1 and 2). Pair-CSP automatically generates
these pairwise scatterplots using the p-values from the
input file(s), letting the user interpret the similarities
between the test results through correlation plots and
correlation coefficients at a glance. When the significance
level is manipulated, the pairwise scatterplots change
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accordingly, to display markers over the threshold only.
There are two reasons behind this feature: one is to reduce
computational time for drawing multitudinous points, and
the other is to show only what the researcher wants to
see, i.e., the meaningful results.

Pairwise Detailed Scatter Plot Module (Pair-DSP)

Pair-DSP is an interactive plot to compare the results
between two methods on a more detailed level than
Pair-CSP (Figures 3 and 4). This module is linked to
Pair-CSP, enabling the user to directly access Pair-DSP
from Pair-CSP for extended summarization of the
chosen biomarkers. The summary organizes meaningful
results via a Venn diagram, a table, and a marker list.
For the known marker’s function, simple annotation of a
single biomarker is offered via the NCBI database. Its
simple annotation function automatically provides a link
to the NCBI web page corresponding to its marker type,
for convenience. In addition, for pathway analysis of
microarray data, GRACOMICS connects to the web-based
DAVID database. As a result, researchers can summarize
their list of significant results, and then check the biological
functions of the chosen markers.

Multiple Results Comparison Module (Multi-RC)

Multi-RC provides simultaneous comparison of numerous
test results (Figures 5 and 6). Researchers can choose an
interesting subset of methods and set their significance
levels separately. A tabular output with rows as significant
markers and columns as statistical methods, is provided
(with p-values in each cell). Each cell is color-coded red or
green, representing significant or not, respectively. Also,
variation of color intensities are used to represent the
degree of significance, with more significant markers
colored more intensely. In addition, Multi-RC summarizes
commonly significant results and provide links to their
annotation. As an extra option (with a checkbox) for
meta-studies, we implemented Fisher’s method in
combining p-values to provide overall importance in
version 1.1.

Results

Application of GRACOMICS to real microarray data

In Figure 1, the plots provided by Pair-CSP compare the
test results of t-test, Wilcoxon rank-sum test, SAM, and
permutation test, displaying the top 1,500 markers by
their average p-values (the user can designate the number
or percentage of markers to be displayed). Pair-CSP
reveals a close relationship between each pair of methods;
most correlation coefficients are over 0.9, except for
those with the Wilcoxon rank-sum test. Although both
Wilcoxon rank-sum and permutation tests are nonpara-
metric tests, the Wilcoxon rank-sum test uses only rank
information, while the permutation test uses the variance
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Figure 1 Pair-CSP plot with GSE27567 data. Four test results were compared, and all pairwise scatterplots and their correlation coefficients are

information that arises when defining -test statistics.
Thus, they provide different results.

In order to compare the Wilcoxon rank-sum test to
other tests more systematically, we used Pair-DSP focusing
on the ¢-test and the Wilcoxon rank-sum test. As shown in
Figure 3, Pair-DSP displays a pairwise plot of the two
methods using p-values, and summarizes the number of
genes commonly identified by the two methods. Unlike the
pairwise plot of Pair-CSP, the pairwise plot of Pair-DSP
shows far more detailed information. For example, a red
color represents the significant genes identified by #-test
only, a blue color signifies those identified by Wilcoxon
rank-sum test only, and purple color indicates those
identified by both tests. The gene name, in tool tip
form, of a point is provided when the cursor is put
directly over the single point. The summary table, at the
top right, shows a decrease in the number of significant
genes commonly identified by the two methods goes from
1,049 to 12, as the cut-off value decreases from 5% to

0.1%. Pair-DSP also provides a Venn diagram displaying
the numbers of genes identified commonly and separately
by the two methods. Pair-DSP shows that 171 genes
remained significant by both t-tests and Wilcoxon
rank-sum tests at the 1% significance level. 86 genes
were significant by t-test only and 141 genes by Wilcoxon
rank-sum test only, at the same significance level. The
bottom right table shows the list of genes identified by the
two methods.

To investigate the functions of the identified genes,
simple annotation is provided via the NCBI database.
This simple annotation function automatically opens a
link to the NCBI web page corresponding to the gene of
interest, for convenience. In addition, for a pathway
analysis annotation database, GRACOMICS provides
connection to the web-based DAVID database [19]. For
example, clicking the gene Cyyrl, followed by a right
click shows a popup window with two menus of “Link
to NCBI annotation database” and “Link to DAVID
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Figure 4 Pair-DSP plot with WTCCC SNP data. Two logistic models, one with and the other without covariates, has been chosen for detailed
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Figure 6 Multi-RC plot with WTCCC SNP data. The Multi-RC module provides an overall summary in a heatmap-like tabular format which
highlights markers with the lowest average p-values. Note rs1112069 is colored in red by 3 of the 4 tests, as discussed in the manuscript.

annotation database”. From the NCBI database, re-
searchers can investigate known gene functions, and re-
lated papers in PubMed, for each gene. We observed
that Cyyrl [20] and [I9 [21] are genes reported in
PubMed. Next, when using DAVID to analyze the func-
tional annotation of the 171 commonly identified genes
from t-tests and Wilcoxon rank-sum tests, we observed
the gene list to be enriched in the GO term “cell cycle
arrest,” with a p-value of 4.1e-3. As a result, researchers
can summarize their list of significant results, and then
check the biological functions and related publications
of the chosen markers.

The Multi-RC module allows simultaneous comparison
of two or more results, as shown in Figure 5. We selected
four methods: t-test, SAM, Wilcoxon rank-sum test, and
permutation test, with a cut-off value of 0.1%. In this
setting, we observed 12 common significant genes between
all the methods. The genes BB471471, Cyyrl, 19, and
Stégalnacl [22] were consistent candidates from all
four methods. However, while BB471471 was at the
top of the list, no reports were found of its association
with tumours or any other diseases. Therefore, we suggest
the BB471471 is a worthy candidate to examine further
for its possible association with tumours. By analyzing
this real microarray data analysis with GRACOMICS,
we identified several commonly significant DEGs from
comparisons from each method, to obtain the most
reliable candidate DEGs.

Application of GRACOMICS to real SNP data

In Figure 2, the plots are provided by Pair-CSP, which
compares the test results of chi-square test, Fisher’s
exact test, and logistic regression analyses. In the figure,
two results from logistic regression analyses are provided:
one is without covariates and the other is with the
adjusting covariate effects of sex, age and the first
two principal components. Although the significance
of covariates can be easily tested, it is not always
straightforward to determine which adjusting covariates to
include in the model [23]. Here, we focused on the results
from the two logistic models and demonstrate how
efficiently GRACOMICS can be used to compare these
two results, showing that the correlation between the two
logistic regression models was 0.598.

For a further detailed comparison between these two
results, Pair-DSP, in Figure 4, was conducted on these
two logistic models. The summary table, at the top right,
shows that the number of significant genes commonly
identified by the two methods gradually decreases from
15 to 4, as the cut-off value decreases from 5.0e-6 to
2.4e-6. The Venn diagram illustrates that Pair-DSP
successfully identified rs1344484 [24], rs708647, rs2192859
[25], rs11647459 and rs4627791 [26], in purple, as the most
commonly detected SNPs. The four SNPs in red,
rs11112069, rs1375144, rs11622475, and rs4627791, were
detected by the with-covariates model only. We found
rs11112069 as the top result (in average p-value), with low
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p-values in all four analyses. This SNP is within intron-2 of
CHST11, a gene which has previously been reported as
bipolar disorder-associated [27].

In the next module (Multi-RC; Figure 6), users can see
the change in p-values for each marker, according to the
method used or adjustments for covariates. Rs11112069
is displayed at the top of the list, and is marked in red
(very significant) from 3 of the 4 tests, with a fairly low
p-value for the fourth test also. To further analyze the
top results, GRACOMICS can automatically distin-
guish marker types and links to dbSNP in the NCBI
database for selected SNPs. From the annotation,
researchers can attain detailed SNP information, such
as location of the SNP, its mapped gene, clinical sig-
nificance, etc. Unlike the microarray example, DAVID
is not directly applicable to SNP data. However, we
expect that other annotation databases will be added
to future updates.

Application of GRACOMICS to real RNA-seq data

As shown in Additional file 1: Figure S1, Pair-CSP shows
that all three analysis methods; edgeR, DESeq, and
NBPSeq, yield very similar results. All of the correlation
coefficients are over 0.86, and the highest was between
edgeR and DESeq. In addition, the plots illustrate that
edgeR generates lower P-values than the others, due to
scattered points being skewed toward the y-axis (edgeR).
Under the 1% significance level, approximately 7,000
genes were detected as DEGs by each method. In
Additional file 2: Figure S2, Pair-DSP shows that
more DEGs were identified by edgeR, as compared to
DESeq. In the Venn diagram, significant genes that
intersected ranged from 7087 to 1621, when decreasing
the cut-off values from 0.01 to 1.0E-100. Finally, we can
observe that most of genes are very significant in
Multi-RC. As shown in Additional file 3: Figure S3,
6983 genes were detected by all the methods under a
1% significant level. Here, the gene symbol of RNA-seq
data is its Ensemble ID, and these should be converted to
official gene symbols for successful functional annotation.
Although implementing the Ensemble annotation func-
tion on the web is possible, we did not include it in the
current version of GRACOMICS, because accommodat-
ing several symbols in the program may lead to user
confusion. Although we determined that only official
gene symbols should be accommodated in the tool,
later versions can be updated with such functions, if
there are user demands.

Application of GRACOMICS to simulated NGS data

Using a simulated rare variant dataset, we successfully cat-
aloged significant genes that were test-specific or marginal
in all tests. The results are shown in Additional file 4:
Figures S4, Additional file 5: Figure S5 and Additional file 6:
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Figure S6. In this analysis, gene names were masked as
Genes 1~2000 and therefore could not be annotated to
NCBI or DAVID. However, if a real dataset is used, the
genes can be annotated in similar fashion as microarray
and RNA-seq datasets. In accord with the above three
applications, we could infer which methods showed
higher correlation, in terms of p-values, from the
Pair-CSP, followed by a detailed comparison of the
number of significant genes detected in each method,
and finally, by comparing the p-values in a tabular
heatmap form. Here, we observed the highest correlation
of 0.961 between the C-Alpha and SKAT-O methods, and
these two methods shared 129 genes with a p-value
threshold of <0.05. The top-ranked genes all showed
p-values ~ 0.001 using all the methods, and would be
candidates of interest for end-users if this was a real
data analysis.

Discussion

From the aforesaid illustration, we demonstrated the
potential of GRACOMICS to successfully highlight
biologically meaningful results from multiple methods.
Traditional bioinformatics studies, and some recent
works, show that simple comparison of results has been
widely used for biological interpretation. For example, a
transcriptome study concluded that in a situation where
the most reliable list of markers is desirable, the best
approach was to examine the intersection of genes
identified by all tried methods, or by more conservative
tests. Since checking the underlying assumptions of all
methods is not easy, and even if the assumptions are met,
each method may provide different results, which are hard
to interpret. The easiest and most conventional method
is to find commonly identified markers to trim down
the candidate list, and carry on further analysis. While
GRACOMICS cannot give conclusive evidence that
the highlighted markers are significant, it can help
the biologist narrow down the candidate list, based on
the intersection of markers for efficiency for further
validations, such as RT-PCR.

In addition to comparison of multiple results of the
same datasets, GRACOMICS can be applicable to other
types of studies. First, GRACOMICS can compare the
results from different datasets, such as different tissues or
organs. An RNA study compared differentially expressed
test results from various tissues, such as liver, adipose
tissue, muscle, and brain. GRACOMICS can effectively
provide the list of common genes, as well as tissue-specific
genes. Second, GRACOMICS can compare results from
different platforms, such as microarray vs. RNA-seq [28].
Here, GRACOMICS can trim down the list of candi-
dates significant to both platform results, for further
biological validation. Finally, meta-analysis combining
independent results from different studies can be analyzed



Seo et al. BMC Genomics (2015) 16:256

by GRACOMICS; the p-values from each study can be
efficiently compared to others and can be combined
easily by Fisher’s method. For meta-analysis, the compared
results should be from independent datasets. However,
when one single dataset was analyzed by multiple
methods, the independent assumption is violated; the
interpretation of this Fisher’s combined p-value should
be made with caution.

Conclusions

Comparative study of omics data analyses is unavoidable;
however, many researchers skip the comparative step
because it is a complicated process. GRACOMICS enables
easy comparison of several methods for analyzing specific
omics data platforms by any user. The four omics data
employed are active areas of study in bioinformatics. We
employed microarray & RNA-seq data at the transcriptomic
level, and SNP and NGS data at the genomic level, to dis-
play the utility of GRACOMICS. So far, GRACOMICS can
also employ proteomic analysis results, and will be extended
to accommodate other types of annotations for proteomics
data in a future study. In summary, we believe that this will
be a highly valuable and straightforward tool for non-
computational biologists, strongly assisting them in their in-
terpretation of results from new cutting-edge technologies.

Availability and requirements

Project name: GRACOMICS

Project home page: http://bibs.snu.ac.kr/software/
GRACOMICS

Operating system: Platform-independent
Programming language: Java

Other requirements: Java 1.7.0_45 or higher

License: LGPL 2.1

Additional files

Additional file 1: Figure S1. Pair-CSP plot with MAQC RNA-seq data.
Three tests results have been compared, and all pairwise scatterplots and
their correlation coefficients are given on Pair-CSP.

Additional file 2: Figure S2. Pair-DSP plot with MAQC RNA-seq data.
EdgeR and DESeq were chosen for detailed investigation. Venn diagrams
and the summary tables are key features of Pair-DSP.

Additional file 3: Figure S3. Multi-RC plot with MAQC RNA-seq data.
The Multi-RC module provides an overall summary in a heatmap-like
tabular format which highlights markers with the lowest average
p-values.

Additional file 4: Figure S4. Pair-CSP plot with simulated NGS data.
Three tests results were compared, and all pairwise scatterplots and their
correlation coefficients are given on the Pair-CSP GUI.

Additional file 5: Figure S5. Pair-DSP plot with simulated NGS data.
C-alpha and SKAT-O were chosen for detailed investigation. Venn diagrams
and the summary tables are key features of Pair-DSP.

Additional file 6: Figure S6. The Multi-RC plot with simulated NGS
data. The Multi-RC module provides an overall summary in a heatmap-like
tabular format which highlights markers with the lowest average p-values.
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