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Background: Long non-coding RNAs (IncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides
that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with
critical roles in epigenetic regulation. Various INcRNAs have been implicated in the modulation of chromatin structure,
transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis
elegans, and Drosophila melanogaster. The purpose of this study is to identify the INcCRNA landscape in the malaria vector
An. gambiae and assess the evolutionary conservation of INcCRNAs and their secondary structures across the Anopheles

Results: Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 IncRNAs and
more than 300 previously unannotated putative protein-coding genes. The INcRNAs exhibit differential expression profiles
across life stages and adult genders. We find that across the genus Anopheles, INcRNAs display much lower sequence
conservation than protein-coding genes. Additionally, we find that INcCRNA secondary structure is highly conserved within
the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles.

Conclusions: This study offers one of the first INcRNA secondary structure analyses in vector insects. Our description of
INcRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into IncRNAs in this vector
mosquito, and defines a set of potential targets for the development of vector-based interventions that may
further curb the human malaria burden in disease-endemic countries.

Background

Sequencing the genome of the African malaria mosquito,
Anopheles gambiae [1], has fueled many large- and
small-scale investigations of the biology of this important
vector, in an effort to develop more effective interventions
to limit its harmful impacts on human health [2]. Func-
tional genomic studies using microarrays have described
basic biological processes and stimulus-responsive gene
expression by detailing transcriptome profiling during the
An. gambiae life cycle, in specific tissues, across Zeitgeber
time, following blood feeding and infection, and coinci-
dent with insecticide resistance [3-11]. More recent RNA
sequencing (RNAseq) studies in An. gambiae have
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described odorant receptor expression in various con-
texts [12,13] and other RNAseq efforts in vector in-
sects have enabled generation of the first de novo
transcriptome for Anopheles funestus [14]. Because
they are designed based on existing genome annota-
tions, gene expression microarrays cannot facilitate
the discovery of unannotated genes. RNAseq is not
constrained in this way, but high read depths are re-
quired for significant increases in analytical sensitivity.
Most previous RNAseq studies have focused on using
reads as a measure of expression of previously anno-
tated genes, rather than discovering new genes, in-
cluding new classes of genes such as IncRNAs
[15-17]. Indeed, recent RNAseq of the An. gambiae
midgut transcriptome demonstrated that high-depth
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sequencing can uncover many novel intergenic tran-
scripts, including putative IncRNAs [18].

Large-scale functional genomic projects such as EN-
CODE and modENCODE, as well as high-throughput
genomic screens, have revealed the presence of exten-
sive sets of IncRNAs in humans (approximately
9,300), as well as in model organisms (e.g., approximately
900 in nematodes and 1,100 in fruit flies) [19-27]. The func-
tions of these IncRNAs, however, remain largely unknown,
with a few exceptions that include IncRNAs with defined
roles in embryogenesis, development, dosage compensation
and sleep behavior [27-32]. Part of the difficulty in deci-
phering the functionality of IncRNAs lies in their rapid evo-
lution and the consequent reduction in levels of primary
sequence conservation for IncRNAs among different organ-
isms [33-35]. While this divergence presents some chal-
lenges, the lack of conservation could be exploited in
species-specific targeted therapeutics. Indeed, it has been
proposed that IncRNAs could be used as targets to regulate
gene expression and development, as an alternative to the
standard model of using small molecule drugs as antago-
nists of mRNA-encoded proteins [36]. This premise may
also be extended to controlling vector-transmitted infec-
tious diseases by identifying and perturbing non-coding
RNA (ncRNA) targets in vector insects [37].

Previously successful vector control methods have
begun to wane in efficacy with the development of
singly and multiply insecticide-resistant mosquitoes in
disease-endemic regions (e.g., [6,7]). Future malaria
vector control will have to rely on new approaches,
some of which may become apparent only as we de-
velop a more complete understanding of the reper-
toire of mosquito coding and non-coding genes
[18,37,38]. Using RNAseq across multiple mosquito
life stages and both genders, our study has developed
the most comprehensive deep RNAseq data set for
An. gambiae to date, encompassing more than 500
million alignable sequence reads. Differential gene ex-
pression analysis confirms the roles of different clas-
ses of annotated protein-coding genes during key
developmental phases, and quantification of protein-
coding potential of previously unannotated transcripts
identifies 318 new protein-coding genes and 2,949 pu-
tative IncRNAs. We find that the IncRNA gene set
exhibits much lower sequence conservation across
anophelines, when compared with either previously
annotated protein-coding genes or protein-coding
genes discovered in our study. While these IncRNA
genes exhibit low sequence conservation, we provide
evidence that the secondary structural features for
many IncRNAs have been conserved. These newly
identified IncRNAs provide a basis for an expanded
understanding of IncRNAs in dipterans, and for fu-
ture studies of ncRNAs within the genus Anopheles.
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Results

Alignment and validation of RNAseq data sets

Our transcriptome analysis for each life stage was sup-
ported by two RNAseq data sets: one “high read depth
(HRD)” set with more than 140 million reads/stage that
was used for subsequent IncRNA discovery, and one
“low read depth (LRD)” set that contained approximately
30 million reads/stage that constituted biological repli-
cates for the validation of our HRD data sets. In total,
over 500 million HRD reads and over 100 million LRD
reads were aligned to the An. gambiae PEST genome as-
sembly AgamP3 (Table 1, see Methods). First, Cufflinks
fragments per-kilobase of exonic length per million base
pairs mapped (FPKM) expression values were validated
against SailFish, an alignment-free quantification method
that uses K-mers and defines expression levels based on
reads per-kilobase of exonic length per million base pairs
mapped (RPKM) [39]. The average FPKM and RPKM
values between the two biological replicates produced by
Cufflinks and Sailfish show Pearson correlation coeffi-
cients that were all above 0.6 (Figure 1A), indicating a
high level of confidence that Cufflinks FPKM values are
comparable to other, reference-free quantification
methods. Using Cufflinks FPKM values, the number of
differentially expressed (DE) genes identified varies
greatly depending on the life stages compared, as shown
by the clustered FPKM values in Figure 1B (Additional
file 1). Concordant with physiological changes, fewer DE
genes were identified between similar life stages, i.e., be-
tween larval stages [first larval instar (L1) and third lar-
val instar (L3)] or between adult genders, than between
larval and adult stages.

Only three protein-coding genes (AGAP007089,
AGAP010068, AGAP010708) exhibit significant de-
creases in expression in L3 compared to L1, while 61 are
significantly up-regulated. In an adult male to adult fe-
male comparison, 44 protein-coding genes are down-
regulated, while 88 are up-regulated. Adult to larval
comparisons range between 133 genes up-regulated be-
tween females and L3s, the lowest such difference ob-
served, and up to 388 genes down-regulated between
males and L3s, the greatest such difference observed.
When these DE genes are grouped based on their
GO_Slim2 categories [40], a total of 30 major categories
are identified, each of which constitutes greater than two
percent of the total gene count for a given comparison
(Additional file 2: Figure S2). Those categories with
greater than 2 percent of the gene count are distributed
across all life stage and gender comparisons. Any cat-
egory that is present in less than two percent of the total
DE genes for the given comparison is grouped into the
“Less Than 2 percent” category; this category is the lar-
gest group for many of our comparisons. Due to the ex-
pansive nature of these categories, the DE genes were
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Table 1 Read alignment of RNA-Sequencing data sets analyzed for functional enrichment using DAVID [41] to
Data set Raw read Percentage Aligned read define biologically relevant groups that are differentially
count mapped count expressed.
HRD 1*" Instar  184,145330  81.2% 149,517,068 Across the adult to larval comparisons, 16 categories
HRD 3" Instar 143,507,360 76.7% 110,094,659 possess an enrichment score greater than 1.5 (Figure 1C,
HRD Female 184150422  75.6% 139,217,446 Additional file 2: Figure S2). Genes associated with cu-
HRD Male 194170892 768% 145210510 ticle, ngtlfiase act1v1t){, chltln/ce{rbohydrate binding and
detoxification are enriched during larval stages, when
LRD 1% Instar 32,425,540 79.8% 25,888,403 . .
compared to adults. Genes associated with odorant rec-
LRD 3 Instar 38,489,668 81.2% 31,269,540 ognition, immunity and visual stimuli are enriched in
LRD Female 27,877,821 86.7% 24160317 adults, when compared to larval stages. Overall, differen-
LRD Male 31,876,060 82.1% 26,162,196 tially expressed genes and their associated DAVID-
enriched terms (Additional file 3) are congruent with
past studies of An. gambiae [4,5].
De novo identification of transcripts
Cufflinks and Scripture were utilized to produce a refer-
ence annotation-based transcript (RABT) assembly —
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Figure 1 Validation of RNA-Seq library and analysis techniques. A. Life stage comparison of Cufflinks FPKM values to Sailfish RPKM values. Pearson’s
correlation coefficient is represented for each life stage comparison. Genes used for comparison are those annotated in VectorBase release Agam3.7.
B. Clustered FPKM expression (Additional file 1) of differentially expressed genes between life stages in An. gambiae. Rows and columns were clustered
using Pearson correlation method with complete linkage distances. C. DAVID enrichment scores for differentially expressed gene groups between life
stage comparisons.
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using a merged data set of all HRD RNAseq data sets —
in order to identify previously unannotated RNA tran-
scripts (Figure 2A). As the aim of this study was not to
identify potential isoforms of previously annotated tran-
scripts, only gene classes of I, U and X (intronic tran-
script, intergenic transcript, and exonic overlap on
opposite strand, respectively) as identified by Cufflinks,
were analyzed. A total of 4,690 transcripts possessed assem-
bled transcript support by both Cufflinks and Scripture
(Figure 2A). After implementing a length cutoff of
200 nt, a set of 4,477 potential transcribed loci was
identified. All genes were given the identifier “Merged”
(e.g., Merged.1023), based on the use of merged HRD
life stage RNAseq data sets to enable the annotations.
Potential protein-coding mRNAs and IncRNAs were
identified based on sequence and amino acid lengths,
percent coding sequence and protein-coding potential
(using PhyloCSF), as described in MATERIALS and
METHODS. This yielded 318 potential protein-coding
transcripts (Additional files 4, 5, 6, 7 and 8) and 2,949
potential IncRNAs (Additional files 4, 9 and 10). Among
the 2,949 putative IncRNAs we have identified, most are
intergenic transcripts (2059 IncRNAs) (Cufflinks class
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code “U”), while 108 are in an anti-sense orientation
with respect to an exonic region of an overlapping,
protein-coding mRNA (Cufflinks class code “X”), and 782
map within an intron of a protein-coding gene (Cufflinks
class code “I”) (Additional file 11). For transcripts consist-
ing of a single exon, it may be difficult for Cufflinks to pre-
dict the correct strandedness of transcript, and the
pipeline may generate complementary-strand duplicate
gene calls by calling the inferred transcript twice, on each
of the complementary strands to which RNAseq reads
align. To determine the number of genes that may have
been defined as such complementary-strand duplicates we
compared all genes identified and found that only 241
genes (ie, less than 10%) exhibited 50% total overlap
(Additional file 12). This implies that only a very small
proportion of the transcripts identified may constitute
complementary-strand duplicates rather than single gene
calls. Potential protein-coding genes possess an average of
2.6 exons/gene (Figure 2B), while the IncRNA genes have,
on average, 1.2 exons/gene. To further characterize the
organization of the newly-annotated genes, respective
FPKM expression levels were analyzed (Figure 2C). The
FPKM values for the newly annotated protein-coding
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Figure 2 Flow chart of IncRNA and potential coding gene identification and expression/exonic structure of defined gene classes. A. Flow chart of
INcRNA and novel protein-coding gene identification. RNAseq data sets were merged and used to produce a transcriptome that was supported
by both Cufflinks and Scripture. Length, PhyloCSF score, maximum peptide length, protein domain and total coding-sequence length were used
to set inclusion and exclusion criteria for the sets of IncRNAs and putative protein-coding RNAs, among the previously unannotated transcripts.

B. Density plot of exons per-gene for INcRNAs (blue) and novel protein-coding RNAs (red). C. Expression values [Log;o (FPKM + 1)] calculated by
Cufflinks for previously annotated genes in VectorBase (red), INcRNAs (green), and newly identified putative protein-coding RNAs (blue) for all
genes that had an FPKM greater than zero for the merged RNAseq data set.
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genes we have identified tend to be lower than those for
previously identified protein-coding genes in the refer-
ence AgamP3.7 gene set, while newly identified
IncRNAs tend to have mean/median FPKM values lower
than those for newly annotated protein-coding genes
(Figure 2C) (Additional file 13). Figure 3 illustrates ex-
amples of a novel protein-coding gene (Figure 3A), an
intronic IncRNA (Figure 3B) and an anti-sense IncRNA
(Figure 3C) and an intronic IncRNA (Figure 3C) that
were identified in our study. Of the 2,949 IncRNA
genes, 39 exhibit significant differences in expression
patterns (Additional file 2: Figure S3) among life stages
(Additional file 14). Comparison of our IncRNA gene
set to that recently described based on a gut transcrip-
tome [18] identifies 209 genes that possess at least 50
percent overlap (“Merged” IncRNAs exhibiting overlap
can be found in Additional file 15).

Evolutionary conservation of IncRNA sequences and
secondary structures

In light of recent studies of the evolutionary conserva-
tion, and the lack thereof, among IncRNAs in tetrapods
[33,35], we examined the conservation of An. gambiae
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IncRNAs across the Anopheles genus. First, we quanti-
fied the presence/absence of IncRNA-homologous gen-
omic regions in whole genome multiple sequence
alignments across the Anopheles phylogeny, based on
the presence/absence of an alignable region in our whole
genome alignments (WGA) (Figure 4, Additional file 16:
Table S1 and S2). Of the IncRNAs we have identified in
An. gambiae, almost all exhibit conserved homologous
regions within the genomes of the closely-related species
within the Gambiae complex, e.g. approximately 97
percent are found in the genome of Anopheles merus
(Figure 4). At this close evolutionary distance, similarly
high percentages of homologous regions are found for
the previously annotated protein-coding genes (99 percent)
and the newly annotated protein-coding genes (92 percent).
In the more distantly-related species, Anopheles minimus,
of the Myzomia Series, the percentages of protein-coding
genes with identifiable homologs drop to 97 percent
(previously annotated) and 79 percent (newly anno-
tated), respectively. In the most distantly related spe-
cies, Anopheles albimanus, from the Nysorrhynchus
Series, these percentages decline even further to 91
percent and 60 percent, respectively, for previously and
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Figure 3 Examples of newly annotated protein-coding and IncRNA genes.

Strandedness of INcRNAs is determined by Cufflinks and based on output GTF
indicating read depth (Log scale maximum of 6) with a PhyloCSF track below

C. IncRNA Merged.11296.1 is antisense and overlapping to AGAPO11074.

annotated genes, viewed using IGV (Broad Institute, Cambridge, MA) [86,87]. Chromosomal coordinate scales vary among panels. AGAP designations
are given for genes encoding mRNAs (blue boxes for exons) that are complementary to newly annotated antisense IncCRNAs (green boxes for exons).

below 0), followed by the gene GTF track. Colored triangles indicate the orientation of the given gene. A. Putative protein-coding gene Merged.4500.1
maps antisense to the 3" untranslated region of protein-coding gene AGAP007209. Regions with red boxes of Merged4500.1 indicate the
protein-coding segments of the gene (107 amino acids in length). B. INcRNA Merged.6207.1 maps intronically with respect to AGAP002451.

Read count profiles of RNAseq alignments to a selected set of newly

file (Additional files 4 and 8). Each panel consists of the top graph
(scale =70 to 50, red indicating values above 0 and blue indicating values
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Figure 4 Evolutionary conservation across the genus anopheles. Percentage of previously annotated protein-coding genes (left column), newly
annotated protein-coding genes (this study, middle column) and newly annotated IncRNAs (this study, right column) that could be aligned
among An. gambiae and other comparator species using whole genome alignments. Percentages represent percent of total gene class that could
be aligned to the genome of each species (heatmap colors are depicted in legend). Number of models for each class of gene, for An. gambiae,
listed at the top of each column.

newly annotated protein-coding genes (Figure 4). Strik-
ingly, while 77 percent of the An. gambiae IncRNAs de-
tect identifiable homologous regions in An. minimus,
the number of conserved IncRNA-homologous regions
drops dramatically, to only 20 percent, in the distant
species An. albimanus.

To further characterize the conservation of IncRNAs,
PhyloP was utilized to determine per-nucleotide conser-
vation p-values across all of the genus members studied
(Figure 5A). Previously annotated genes in An. gambiae
possess higher —log(p-value of conservation) scores com-
pared to both newly identified protein-coding and IncRNA
gene classes identified in this study. The previously anno-
tated protein-coding genes exhibit a mean (95 percent CI)
value of 122.0 (120.1-123.8), newly identified protein-
coding RNAs exhibit a value of 38.34 (31.88-44.80) and
IncRNAs exhibit a value of 10.64 (9.958-11.32). All pair-
wise comparisons of the extent of conservation between
all classes were significantly different (Mann—Whitney
Test, p-value < 0.001).

Next, we employed REAPR (realignment for predic-
tion of structural non-coding RNA) to examine the con-
servation of RNA secondary structures in our set of
newly identified transcripts. The IncRNA class contains
1,166 conserved secondary structures that possess high-
confidence RNA secondary structures according to their
RNAz scores (an RNAz score above 0.5 was regarded as

a basis for high confidence), distributed among 835 dis-
tinct IncRNAs (Figure 5B, Additional file 2: Figure S4
and S5, Additional file 16: Table S3). By comparison, our
set of newly annotated protein-coding genes contains
223 conserved RNA secondary structures among 126
distinct genes. Among the high-confidence secondary
structure loci identified among IncRNAs in this study,
we next analyzed the conservation of these structures
across the genus Anopheles (Figure 6, Additional file 2:
Figure S6). The genomes of species studied from the
Gambiae complex exhibit high numbers of conserved
secondary structures, with most genomes retaining simi-
lar numbers of conserved structures (Figure 6). Those
species outside of the Gambiae complex exhibit much
lower numbers of conserved secondary structures com-
pared to An. gambiae, especially those species outside of
the Pyretophorous Series. The 293 IncRNAs that map to
genomic intervals that exhibit primary sequence conser-
vation across all of the anopheline genomes that we ana-
lyzed possess 164 distinct secondary structural features.
Those features were present in all species within the
Gambiae complex, within 129 of the secondary struc-
tures we define (Additional file 2: Figure S7). Addition-
ally, only two of the secondary structures were present
in all 21 genomes analyzed. Overall, the rate of diver-
gence for conserved secondary structures is much
greater than for the conserved IncRNA-homologous
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Figure 5 Sequence, structural and expression profiles of identified gene classes. A. Characterization of sequence conservation across the genus
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statistical significance was determined using a Mann-Whitney T-Test. Starred bars denote p-value <0.001. B. Stacked histogram of RNAz score
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genomic regions, though the observed difference is not
statistically significant (p-value = 0.09) (Figure 6B.)

of IncRNAs in any mosquito species, to date. Our quantifi-
cation of reads mapped to genome assemblies has enabled
determination of differential expression among life stages,

Discussion and our aggregate data set of such genes includes many

Our deep RNA sequencing has facilitated comprehensive
transcriptional profiling across four An. gambiae life
stages, identified multiple previously unannotated protein-
coding genes and created the most comprehensive catalog

cation methods,

genes that have been defined as being differentially
expressed in previous microarray-based studies of An. gam-
biae gene expression [4,5]. First, we compared two quantifi-
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whether an alignment-free quantification method was com-
parable to Cufflinks and potentially preferable to currently
used alignment-based methods (Figure 1A). Overall, both
Cufflinks FPKM and Sailfish RPKM values are comparable
and exhibit correlation values 0.6 or higher (Figure 1A).
We note that we were unable to produce correlation values
between Cufflinks and SailFish that were reported previ-
ously when comparing the accuracies of both methods to
synthetic and qPCR data sets [39]. Combined with down-
stream analyses and visualization packages, we chose to use
Cufflinks and its component packages for our IncRNA
analysis.

Our differential gene expression profiles (Figure 1B,
Additional file 1) were compared to earlier microarray-
based studies to validate our RNAseq data sets. These
microarray-based studies identified greater numbers of
differentially expressed genes in larval-adult comparisons
than in larval-larval or adult-adult comparisons, a trend of
differences that is also clearly observed based on our RNA
sequencing approach (Additional file 2: Figure S2). Studies
by Koutsos et al. [4] and Harker et al. [5] both identified
more differentially expressed genes, especially in the L1-
L3 comparisons, which can be attributed to the greater
number of replicates performed in their microarray stud-
ies. Similar to the Koutsos et al. [4] study, we identify
more DE genes between males and larvae than between
females and larvae. Functional classes of differentially
expressed genes include many cuticular, peptidase and
chitin-binding genes that are up-regulated during lar-
val stages, and odorant recognition and immune class
genes that are up-regulated in adults (Figure 1C,
Additional file 3). Similar life stage-related expression
patterns have been observed for immunity genes in
the pollen beetle, Meligethes aeneus [42]. Harker
et al. [5] described similar larval up-regulation of
various gene ensembles in their study of An. gambiae using
microarrays, including the cuticular gene AGAP010469 and
peptidase-associated genes AGAP005671, AGAP001250,
AGAP006676 and AGAP006677. Koutsos et al. [4] found
genes that contain immune-related domains and fall within
the pheromone-sensing GO class are up-regulated in
adults, and our RNAseq-based analyses have identified
similar expression patterns. The consistencies we observe
in differential gene expression patterns between life stages,
and in functional classes up-regulated during larval and
adult life stages, respectively, engender confidence in the
quality of our data set.

While approaches for the alignment of RNAseq reads
to genomes are relatively mature, the task of grouping
such aligned reads into IncRNAs or other gene classes
remains challenging and is less well-defined. Previous
classifications of IncRNAs have been based on their
lengths, protein-coding potential, and maximum OREF size,
and the probability of identifying full-length IncRNA
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transcripts using RNAseq [21,26,27,43,44]. In our study,
no FPKM cutoff was utilized, as many IncRNAs have been
shown to exhibit very low expression levels [35]. Imple-
mentation of our IncRNA detection pipeline (Figure 2A)
identifies 2,949 IncRNAs and 318 protein-coding genes
(Additional files 4 and 9). The number of IncRNAs we
identify in An. gambiae is more than double the number
identified in D. melanogaster and other members of the
genus Drosophila, for which more than 1,000 long inter-
genic non-coding RNAs (lincRNAs) have been identified
in each species, and many fewer than have been defined in
studies of mice and humans, which have identified many
thousands of potential IncRNAs [44,45]. As only lincRNAs
have been highly studied in D. melanogaster; the total
number of IncRNAs may be comparable in An. gambiae.
Additionally, our putative set of IncRNA genes is smaller
than that recently described for the gut transcriptome of
An. gambiae [18]. One of the major reasons for this differ-
ence in identified IncRNAs between the two studies is that
Padron et al. (2014) did not use a peptide length cutoff,
and their protein-coding potential analyses did not take
advantage of whole genome alignments. By utilizing our
peptide length cutoff on their IncRNA data set and only
using Cufflinks codes ‘TU; and’X] the number of IncRNAs
identified from their data set is reduced by 62 percent, to
3,740 IncRNA. Among these, only 209 genes exhibit at
least 50 percent sequence overlap between the two studies.
This limited overlap indicates that tissue-specific RNAseq
analysis can yield a vastly different IncRNA population
compared with whole organism RNAseq, which will be an
important consideration for the eventual identification of
a complete IncRNA gene set in An. gambiae and other
vector insects.

Members of the IncRNA and putative protein-coding
gene classes identified in our study have lower average
FPKM levels and lower DNA sequence conservation, in
general, than those observed for previously annotated
An. gambiae protein-coding genes (Figure 2C). This
trend of lower observed levels of expression and se-
quence conservation may explain why genome annota-
tion pipelines have previously missed the putative
protein-coding genes that we have defined. In addition,
the average number of exons per IncRNA is much lower
than the average number of exons per novel protein-coding
gene that we have identified in this study (Figure 2B). This
is similar to the trend in exon number per transcript that
has been characterized for human IncRNAs, which have
been shown to possess significantly fewer exons per gene
compared to protein-coding genes [45].

Previous studies of IncRNA sequence evolution have
indicated that primary sequence conservation is very low
across tetrapods [33], while only a few such studies have
considered conservation of secondary structure in asses-
sing net evolutionary conservation of IncRNAs [46,47].
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Those studies that have considered secondary structure
have focused mainly on comparisons between a few spe-
cies and not on comparisons across complete lineages,
such as is now possible within the Anopheles genus
[34,46,47]. The ability of RNA to maintain secondary
structural features and associated RNA-protein interac-
tions, even in the absence of primary sequence conserva-
tion [33,34], may underlie, in part, the increased rate of
divergence for IncRNAs that has been observed in these
previous studies.

Our study illustrates that across the sequenced ge-
nomes within the genus Anopheles, 91 percent of previ-
ously annotated protein-coding genes in An. gambiae
exhibit matching genomic regions in An. albimanus
(Figure 4). This level of conservation we observe is lower
for the set of protein-coding genes we have newly anno-
tated, e.g., 79 percent for An. minimus and 60 percent
for An. albimanus. It is even lower for the IncRNA class,
e.g., 77 percent for An. minimus and 20 percent for An.
albimanus. Furthermore, examining sequence conserva-
tion within these genomic regions using PhyloP p-values
of conservation scores indicates that IncRNA sequences
are much more divergent across the Anopheles genus,
compared with previously and newly annotated protein-
coding classes (Figure 5A). The reduced numbers of identi-
fiable conserved IncRNA-homologous genomic regions is
in agreement with previous findings in tetrapods, which
illustrated a rapid decrease in 1:1 orthologous IncRNA fam-
ilies across many classes of tetrapods [33]. The proportions
of IncRNAs that identify homologous genomic regions in
our whole genome alignments are similar to the propor-
tions of conserved protein-coding genes, when considering
only the closely-related species within the Gambiae com-
plex (Figure 4). However, beyond the Pyretophorus Series,
the proportions of conserved IncRNA-homologous regions
decline much more rapidly than those for protein-coding
genes. Those putative IncRNA-harboring genomic regions
that are identifiable in other species also show much higher
levels of sequence divergence compared with protein-
coding genes. Together, these results imply that anopheline
IncRNAs diverge at a much higher rate than protein-coding
genes. Accordingly, some An. gambiae IncRNAs present in
the most recent common ancestor of the Pyretophorous
Series and the Neocellia and Myzomyia Series, for example,
may have diverged beyond recognition within the Neocellia
and Myzomyia, while other An. gambiae IncRNAs may
have arisen relatively recently and are therefore restricted
to species within the Gambiae complex.

To extend our analysis beyond primary sequence con-
servation for IncRNAs, we employed REAPR to identify
IncRNA secondary structures and analyze their conser-
vation across the anophelines (Figure 6, Additional file
2: Figure S6). Among all putative An. gambiae IncRNAs
we define, only 28 percent exhibit high-confidence RNA
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secondary structures. Although it has been proposed
that all IncRNAs should possess a functional secondary
structure, this premise has not been validated at the
genome-wide level for other sets of related organisms,
nor has the conservation of IncRNA secondary struc-
tures across multiple related species in other clades been
analyzed and described in comparable depth [32,48-50].
The closely related members of the Gambiae species com-
plex, in which homologous genomic regions are found for
almost all An. gambiae IncRNAs, all exhibit similar pro-
portions of high-confidence RNA secondary structures
within these IncRNAs. While these structures are highly
conserved within the Gambiae species complex, the num-
bers of IncRNA secondary structures conserved relative to
An. gambiae decline rapidly for species outside of the
complex, at an apparent rate even more pronounced than
the decline in the numbers of conserved IncRNA-
homologous genomic regions (Figure 6A). However, when
corrected for the root age of divergence for each species
analyzed, we see that primary sequences and secondary
structures exhibit similar rates of divergence (Figure 6B).
Both of these rates are much higher than those that have
been described for IncRNAs in chordates [33]. Increased
divergence rates in insects, as compared to chordates,
have been noted previously for protein-coding genes
[51,52]. Rapid divergence of IncRNA sequences as com-
pared to protein-coding genes (Figures 4 and 6) has also
been reported for rodent species [34].

These differences in the number of conserved IncRNA
regions and number of secondary structures across the
anophelines, especially evident for those IncRNAs that ex-
hibit conserved genomic regions in all species but second-
ary structures in only a subset of those species (Additional
file 2: Figure S7), imply that IncRNA secondary structures
tend to evolve after a most recent common ancestor for a
given set of species has acquired transcriptional activation
of particular genomic loci. This finding is consistent with
the long-acknowledged idea of “pervasive transcription”
across the genome [53]. Pervasive transcription describes
the process by which most regions of the genome are tran-
scribed, including those that fail to encode proteins or
functional ncRNAs. Through random mutations, these
“pervasive” transcripts acquire protein-coding ability or a
functional RNA structure, over evolutionary time.
Selective pressure causes these altered transcripts to
become fixed within a population if they are advanta-
geous for the organism. Given the evolutionary interval
between the onset of transcriptional activation of a
particular genomic region and the time at which the
transcript becomes functionally beneficial, some line-
ages/species that have evolved during that time period
may express a particular pervasive transcript before it
becomes a functionally beneficial transcript within that
species or lineage.



Jenkins et al. BMC Genomics (2015) 16:337

Increased evolutionary rates of IncRNA sequences
compared to protein-coding genes may contribute to
bionomic diversity that has been observed across the
genus Anopheles by affecting the evolution of species-
specific behaviors, such as resting, mating and feeding
patterns [54,55], just as behavioral control has begun to
be attributed to variation among Drosophila IncRNAs
[28]. The notion that IncRNAs modulate the activities of
protein-coding genes is well-established [17,56,57]. How-
ever, we speculate that IncRNA-mediated regulation of
gene expression, coupled with the rapid evolution of
lineage-specific IncRNA ensembles in mosquitos, may
underlie the rapid diversification of vector mosquito be-
haviors [58] for which it has been, thus far, difficult to
define differentiating causal mechanisms. Our deep RNA
sequencing of An. gambiae has provided the most com-
prehensive catalog of IncRNAs in mosquitoes to date,
and presents the prospect of identifying a new gener-
ation of targets for approaches to vector control that will
enable further reductions in the burden of human
malaria.

Conclusion

Malaria is a life-threatening infectious disease for which
half of the global human population is at risk. Malaria
control currently relies on population control of vector
mosquitos of the genus Anopheles. Vector control
methods are becoming less effective due to the propaga-
tion of insecticide resistance alleles within and between
many Anopheles populations. In order to identify new
prospective targets for vector control, we have identified
a pan-genomic set of almost 3,000 long non-coding
RNAs (IncRNAs) in Anopheles gambiae, the predomin-
ant vector of human malaria in sub-Saharan Africa.
Members of this IncRNA set evolve much faster across
the Anopheles genus than do protein-coding genes, but
they retain conserved secondary RNA structural features
across the genus. In contrast, we find that IncRNA se-
quences and secondary structure are highly conserved
among six species within the Gambiae Complex. Con-
tinuing analysis of these IncRNAs will provide new in-
sights in vector biology that can be applied to develop
next-generation vector control methods.

Methods

Colony and sequencing

Anopheles gambiae G3 colony (courtesy of Dr. Flaminia
Catterucia, Harvard School of Public Health, Boston,
MA, USA) was reared with an 11:11 Light:Dark (L:D)
photoperiod with a one-hour crepuscular period be-
tween light and dark stages. Adults were fed 10 percent
glucose solution ad libitum, and both genders were kept
in the same cage. First larval instar (L1) and third larval
instar (L3) stages were removed from the colony within

Page 10 of 14

12 hours of emergence from chorion or previous larval
cuticle, respectively. Adults were sampled three days
post-emergence, and all samples were collected at ap-
proximately eight hours into the light cycle of the 11:11
LD photoperiod. All samples were kept in RNA-Later
(Ambion, Austin, TX) until RNA extraction and sequen-
cing. The L1 and L3 life stages were chosen because they
represent early and late stages during larval develop-
ment, which can be synchronized clearly, and because
previous studies have defined a set of contigs that are
differentially expressed between these stages [4]. Future
IncRNA discovery studies may include the pupal stage,
due to its importance for the completion of morphogen-
esis that yields the adult mosquito.

High read depth (HRD) paired-end RNA sequencing
was performed at the Broad Institute (Cambridge, MA)
using a Qiagen RNAeasy Mini Kit for RNA extraction
and the Illumina TruSeq RNA Sample Preparation Kit
v2, and libraries were sequenced on the HiSeq 2000 plat-
form. Low read depth (LRD) paired-end RNA sequen-
cing of larval replicates was performed by Otogenetics
Corp. (Atlanta, GA), using the same protocol as the
HRD samples. Low read depth adult single-end RNA se-
quencing data sets were obtained from Pitts et al
(2011). All RNA sequencing data produced have been
submitted to the European Nucleotide Archive and can
be accessed under the SRA Accession number of
PRJEB5712.

RNAseq read alignment and analysis

HRD RNAseq reads were soft clipped, and replicate
RNAseq reads from Otogenetics Corp. were subse-
quently hard clipped by 10 bp on both the 5" and 3’ ends
of each read (Additional file 2: Figure S1). First, hard
clipping of the LRD replicate samples was performed to
reduce the number of potential adapter sequences, even
though read quality scores were high overall, as the
reads were long enough to support such hard-clipping
(~100 bp in length). Second, clipping the reads makes
their length more comparable to other replicate reads
from Pitts et al. (2011) that were trimmed as previously
described. Reads were aligned to the An. gambiae
AgamP3 genome assembly, which was softmasked using
RepeatMasker (www.vectorbase.org) [59,60]. Alignment,
transcriptome assembly and analyses were performed
using the Tuxedo Suite [61-63], which comprises
Tophat2, Cufflinks, Cuffmerge and Cuffdiff2 programs,
Scripture and Sailfish [39,64]. Splice junction mapping
was performed using Tophat2 (version 2.0.10) with a
mismatch (-N) appropriation of 3 and a read-edit-dist
of 3. Cufflinks (version 2.1.1) was run with default set-
tings using the An. gambiae AgamP3.7 annotation —gtf
function and a reference annotation-based transcript
(RABT) assembly. Scripture (Beta-2 version) was run
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using default settings. Cuffmerge was used to combine
and filter artifacts from the resulting transcriptome as-
semblies from Cufflinks, Scripture and the reference An.
gambiae AgamP3.7 annotation. Cuffdiff2 was used to de-
termine differentially expressed genes of interest with an
FDR of 0.05 and the —u (multi-read correct) function,
and differentially expressed genes were determined using
the Benjamini-Hochberg correction, with two replicates
for each life stage (HRD and LRD for each stage). In
order to validate the FPKM (fragments per kilobase of
exonic length per million reads) values produced by the
Tuxedo Suite, Sailfish was used to compare values. Sail-
fish was run with default parameters and the average
RPKM (reads per kilobase exonic length per million
reads mapped) was compared to FPKM values deter-
mined using Cufflinks.

Identification of newly annotated transcripts

HRD RNAseq data sets for all four stages and genders
(L1, L3, Male, Female) were combined and aligned using
Tophat2, as previously described [61]. Cufflinks and
Scripture were subsequently used to identify newly an-
notated transcripts. Cuffcompare was used to compare
newly annotated transcripts to the An gambiae
AgamP3.7 gene set. To identify probable IncRNAs, class
codes “T”, “U” and “X” were used in Cufflinks (as this
study does not aim to identify potential novel isoforms
of known protein-coding genes, the “J” class was not
utilized).

Anopheles genome alignments and PhyloCSF scanning for
protein-coding potential

A set of 21 available Anopheles mosquito genome assem-
blies species were retrieved from VectorBase [60]. These
included assemblies of An. gambiae PEST [1], An. gam-
biae Pimperena S form and An. coluzzii (formerly An.
gambiae M form) [65], the species sequenced as part of
the Anopheles 16 Genomes Project [66], An. darlingi
[67], and the South Asian species An. stephensi [68]. De-
tails of assemblies used can be found in Additional file
16: Table S1.

Multiple whole genome alignments of 21 available
Anopheles assemblies were built using the MULTIZ fea-
ture of the Threaded-Blockset Aligner suite of tools [69],
employing a similar approach to that used for other
multi-species whole genome alignments such as those
for 12 Drosophila [70] and 29 mammal [71] genomes.
Before computing the alignments, repetitive regions
within each of the input genome assemblies were
masked. Assemblies were analysed using RepeatModeler
[72] to produce repeat libraries that were then combined
with known repeats from An. gambiae and retrieved
from VectorBase, before being used to mask each gen-
ome assembly using RepeatMasker [59]. The 21-species
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maximum likelihood phylogeny, required to guide the
progressive alignment approach of MULTIZ, was esti-
mated using RAxML [73] from the concatenated protein
sequences of Genewise [74] gene predictions using
Benchmarking sets of Universal Single-Copy Orthologs
(BUSCOs) from OrthoDB [75], and rooted with predic-
tions from the genomes of Aedes aegypti [76] and Culex
quinquefaciatus [77]. The MULTIZ approach first runs
all-against-all pairwise LASTZ alignments (default set-
tings), followed by projections ensuring that the refer-
ence species is “single-coverage,” with projection steps
guided by the species dendrogram to progressively com-
bine the alignments.

Examining patterns of evolutionary conservation
across multiple whole genome alignments can help to
distinguish protein-coding regions from non-protein-
coding regions, e.g., as in the analyses of 12 Drosophila
[70] and 29 mammal [71] genomes. Specifically, PhyloCSF
[78] is a method developed to determine whether a multi-
species nucleotide sequence alignment represents a
protein-coding region, based on patterns of evolutionary
conservation such as codon substitution frequencies
(CSF). Thus, PhyloCSF can be used to help distinguish
protein-coding and non-coding RNAs represented among
new transcript models obtained from high-throughput
transcriptome sequencing. Gene transfer format (GTF)
files (from Cuffmerge output) defined the required gen-
omic intervals for PhyloCSF analyses per codon, per exon,
and per gene. Per-codon analysis scanned each transcript
region (plus flanking 50 bp) in the six translational frames
to score for protein-coding potential across the entire re-
gion. Per-exon analysis identified the best-scoring transla-
tional frame for the length of each exon, and per-gene
analysis identified the best-scoring, start-codon-to-stop-
codon open reading frame of the complete annotated
transcript.

Coding transcripts were classified as those new tran-
scripts that possess an open reading frame >100 amino
acids in length and a PhyloCSF score greater than ten
(i.e., 10 times more likely to be coding than non-coding).
Non-coding transcripts were classified as those novel tran-
scripts that possess a maximum open reading frame < 50
amino acids in length, an open-reading frame that is < 35
percent of the total transcript length, a PhyloCSF score
less than negative ten, and no recognizable domains as de-
fined by PFAM, TIGRFAM or SUPERFAMILY libraries
[79-81], which were searched using HMMER with default
settings for e-value cutoffs (website version 1.9) [82].

Differential gene expression and categorization

Using the Cuffdiff function as described above, differen-
tially expressed (DE) genes were defined using a false
discovery rate of 0.05. Gene Ontology (GO) terms [83]
were extracted for those DE genes from VectorBase [60].
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These GO terms were grouped by GO_Slim2 categories
with CateGOrizer [40]. To define the groups or classes
of genes that are DE, DAVID [41] was utilized to deter-
mine enrichment scores. DE genes were compared in
order to define genes that were up/down-regulated, re-
gardless of adult gender and regardless of larval life stage.

Determining conservation and secondary structure of
newly annotated genes across anopheles lineages

In order to quantify the sequence conservation of the
IncRNA and newly annotated protein-coding classes of
genes, we employed PhyloP. First, PhyloFIT, part of the
PHAST package (version 1.3) [84], was utilized to create
a nonconserved substitution model from the multiple
genome alignments, using four-fold degenerate sites.
Using PhyloP, part of the same PHAST package, the p-
value of conservation was then calculated for all genes
identified in this study or for genes in the An. gambiae
AgamP3.7 annotation release, for comparisons. For ana-
lysis, only newly annotated genes that had strandedness
predicted by Cufflinks were used.

REAPR (realignment for prediction of structural non-
coding RNA) was utilized to determine secondary struc-
ture scoring of identified IncRNA class members using
the RNAz score [49] . Realignment of the IncRNA genes
using REAPR was performed using a delta value of 15
and the -alistat functions. For confident secondary
structures, only loci possessing RNAz scores over 0.5
were used, as these correspond to an FDR of ~ 0.04 as
described in RNAz 2.1 documentation [85]. Rate of deg-
radation of number of secondary structures and con-
served genomic regions was determined using a linear
regression and ANCOVA test to determine significance .
Analyses were performed using GraphPad Prism 5.0b for
Mac, GraphPad Software, San Diego, California USA,
www.graphpad.com.

Availability of supporting data

The data sets supporting the results of this article are
available in the European Nucleotide Archive, under ac-
cession PRJEB5712 (http://www.ebi.ac.uk/ena/data/view/
PRJEB5712). All files produced by Scripture, PhyloP and
REAPR, along with all whole genome alignment and
gene alignment files, can be accessed freely at http://
bioinformatics.bc.edu/~jenkinad/.
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Additional file 1: Expression of Anopheles gambiae genes across
life-stages.

Additional file 2: Figure S1. Representative quality scores of LRD
samples. Figure S2. GOSLIM2 terms of genes that exhibit differential
expression among life stages/genders. Figure S3. INcRNAs that exhibit
differential expression among life stages/genders. Figure S4. RNAz scores
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