(omc

Genomics

O
g Fungal necrotrophes
N

~N

N

c

v mpAIN :

c Ag1Q. o= Ewounding

Q | Hues.oy

E Ag80

o

O

Pseudomonas syringae
O

Component 1 (43.84%)

Early response to nanoparticles in the Arabidopsis
transcriptome compromises plant defence and
root-hair development through salicylic acid
signalling

Garcia-Sanchez et al.

() Biomed Central Garcia-Sanchez et al. BMC Genomics (2015) 16:341

DOI 10.1186/512864-015-1530-4




Garcia-Sanchez et al. BMC Genomics (2015) 16:341

DOI 10.1186/512864-015-1530-4
BMC

Genomics

RESEARCH ARTICLE Open Access

Early response to nanoparticles in the Arabidopsis
transcriptome compromises plant defence and
root-hair development through salicylic acid
signalling

Susana Garcia-Sanchez', Irantzu Bernales® and Susana Cristobal®*

Abstract

Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants
represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect
them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size
effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds.
However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have
not been compared and the impact on plant defence has not been analysed.

Results: Arabidopsis plants were exposed to TiO,-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes
as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in
gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of
expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other
stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased
bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns
characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented

colonization of distal leaves by bacteria.

through hormonal priming.

some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the

Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major
sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds
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Background

Nanoparticles (NPs) are materials with at least one di-
mension in the nanoscale (1-100 nm). The high surface-
to-volume ratios and unique physicochemical properties
of these materials have led to myriad practical applica-
tions, resulting in increased production and potential re-
lease into the environment. However, the effect of NP
exposure on biological systems may differ from what is

* Correspondence: susana.garcias@ehu.es

'Department of Physiology, Faculty of Medicine and Dentistry, University of
the Basque Country UPV/EHU, Leioa, Spain

Full list of author information is available at the end of the article

( BioMed Central

known about exposure to their bulk counterparts. Fate
and transport studies have demonstrated that disposed
NPs are present in nature at concentrations that might
pose a risk [1,2].

Unicellular algae are widely used to test NP acute tox-
icity in the aquatic environment. At the cellular level,
nano-forms of ZnO,, TiO,, or Ag can differently modify
growth rates, cellular viability, and chlorophyll content
compared to their corresponding bulk materials [3-5].
Subcellularly, alterations of organelles like chloroplasts
and vacuoles and accumulation of NPs near the cell wall
and plasma membrane have been observed [6,7]. At the
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molecular level, NPs increase reactive oxygen species
(ROS) formation and lipid peroxidation to a higher extent
that bulk materials [4,8-10]. However, many environmen-
tal pollutants can also induce ROS formation through an
endogenous mechanism to alert for potential cell damage
and increase environmental stress tolerance [11,12].

Physiological studies of higher plants have demon-
strated that NPs up to 40 nm can be taken up by roots
and travel symplastically through the vascular system,
whereas larger NPs accumulate in the apoplastic space.
Therefore, some of the damaging effects of NPs have been
attributed to mechanical damage or clogging of plant
structures, like plasmodesmata or stomata, which regulate
water flux [7,9]. In maize TiO,- and clay-NPs reduced the
size of cell-wall pores of roots and inhibited hydraulic con-
ductivity and transpiration [13]. Consequently, plant mo-
lecular responses to mitigate NP-related damage might
involve mechanisms to control water-stress, although this
possibility has not been tested.

Research on crop plants has prompted further ques-
tions about the impacts of released NPs in agricultural
production and the implications for the food chain [14].
Uptake, translocation, and generational transmission of
carbonaceous nanomaterials have been demonstrated in
rice [15]. Photothermal and photoacoustic methods have
revealed the spatial distribution of carbon nanotubes
(CNTs) in roots, leaves, and fruits of tomato plants [16].
In that work, the authors assayed the addition of four
carbon-based materials to the plant growth medium and
observed physiological responses for the single (SWCN'Ts)
and multiwall (MWCNTs) CNTs only. MWCNTSs over
SWCNTs produced a maximum effect on biomass accu-
mulation, thereof plants fed with MWCNTs were chosen
for further examination by photothermal/photoacoustic
scanning cytometry or microarray analysis. Imaging tech-
niques detected MWCNTs in roots but also in the leaves
and fruits of the plants exposed to NPs, and data were
integrated in parallel with tomato microarray analysis to
discover that MWCNTs induced changes in gene expres-
sion of stress- related genes. A number of differentially-
expressed transcripts were identified that corresponded to
16 genes with known function, some of which are involved
in plant responses to pathogen infection. This observation
suggested that plants sense the penetration of nano-sized
materials into their tissues as a biotic stress factor similar
to pathogen or herbivore attack.

Gene expression analyses of the model plant Arabidopsis
thaliana have provided new insights into the molecular
mechanisms of plant response to NPs [17,18]. These two
studies both reported gene expression changes upon long-
term exposure to TiO,-NPs, ZnO-NPs, Ag-NPs, and
fullerene of different sizes. There were important differ-
ences among NP doses, germination conditions, and plant
developmental stages during exposure. Landa et al. [17]
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concluded that ZnO-NPs caused the most dramatic
changes in gene expression, resulting in the up- and down-
regulation of 660 and 826 genes, respectively, whereas
TiO,-NPs only affected 80 and 74 genes, respectively, indi-
cating minimal toxicity. ZnO-NPs and fullerenes up-
regulated genes involved in functional responses to abiotic
(salt or metal concentrations; water deprivation) and biotic
stresses, whereas TiO,-NP exposure differentially regulated
(both up and down) genes involved in both stresses, al-
though data about the significance of these functional rep-
resentation were not provided. In the study by Kaveh et al.
[18], exposure to Ag-NPs was associated with the down
regulation of genes involved in pathogen response, but a
significant overlap was observed with the genes responding
to bulk material. Importantly, some of the genes regulating
hormonal stimuli and stress response were also identified
as NP-responsive and connected with systemic acquired re-
sponse (SAR), an enhanced immunity in tissues remote
from the initial infection site [19,20]. SAR is triggered upon
challenge by certain pathogens or, to some extent, by mech-
anical damage, ie., as a result of wounding by herbivore in-
sects. SAR results in thickening of the cell wall and other
physiological responses that enhance general plant defences
in a non-specific way.

Here we produced a set of 16 comparable transcrip-
tome profiles to monitor early changes in gene expres-
sion upon NP and stress exposure. We evaluated A.
thaliana response to different types (metallic and car-
bonaceous) and sizes (4—80 nm) of NPs in comparison
to biotic and abiotic stress inducers representing the
most common environmental challenges for plants. Bi-
otic stress was induced by infection with a necrotizing
fungus (Alternaria brassicicola) or a hemibiotrophic bac-
terium (Pseudomonas syringae pv. tomato, Pst). These
pathogens trigger plant defence and immune responses
through mechanisms involving respectively, phytohor-
mones like salicylic acid (SA), a key modulator of SAR,
and jasmonic acid/ethylene pathways [21]. Abiotic stresses
induced by hyper-saline conditions, drought, and mechan-
ical wounding were also assayed. The effect of abscisic
acid (ABA), the most studied stress-responsive phytohor-
mone, which mediates stomatal closure and other re-
sponses to drought and osmotic stress [22], on the gene
expressions and phenotypes of NP-exposed plants was
also tested.

Results

Exposure of plants to pathogens, abiotic stress and NPs
Since the range of the transcriptional responses to stress
depends on the growth conditions and developmental
stage of the plant, synchronized hydroponic cultures
were used for all exposures. Plantlets were grown in li-
quid MS medium until rosette leaves (8—12-leaf stage)
emerged and begun aerial development. At this stage
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leaves can be inoculated with microbial pathogens as in
the infection models used before to study immune re-
sponse and roots are well developed to allow NP or salt
uptake. Plants were infected with A. brassicola (Abr) or
P. syringae (Pst) to study the transcriptional response to
biotic stress in 2 of the 16 conditions that were assayed.
Infected plants developed chlorotic leaves or other
macroscopic signals of a plant hyper-sensitive immune
response by the second day post infection (dpi), indicat-
ing that mechanisms of defence against biotic stress
were already activated. Similarly, physiological responses
to saline stress were observed 2 days upon addition of
100 mM NaCl (NaC) to the medium. Drought (Drou)
and wounding (Wou) stress were induced as described
in the methods section to assay a total of 3 conditions
for abiotic stress that have been connected before with
NP-induced damage.

NPs were added to the cultures at the same time that
the other stressors and incubated with the plants for
2 days before collection. We performed preliminary
dose- and size-dependent measurements of the effects of
NPs on plant biomass under these particular growth
conditions. These experiments narrowed the range of con-
centrations at which NPs had measurable effects on plant
growth to 0.2-25 pg/mL, similar to previous studies
[7,16,23]. We assayed NPs made of 3 different materials,
Ag, TiO, and carbonaceous materials (COOH-functio-
nalised MWCNTs, COOH-MWCNTs), and diameters
ranging from 10 to 80 nm for Ag-NPs, 10 to 40 nm for
TiO,-NPs and 4-12 nm for COOH-MWCNTs. This
made a total of 8 different conditions (AgNPI10,
AgNP20, AgNP40, AgNP80, TiO,NP10, TiO,NP20,
TiO,NP40 and COOH-MWCNT) for NP-exposed
plants. Bulk materials that release equivalent metallic
ions (AgNO;3; and TiO,) were added to 2 additional
series of plants and one more condition was assayed in
which plants were supplemented with ABA 12 h. before
addition of COOH-MWCNTs (COOH-MWCNT+).
Combined exposure to NPs and ABA was performed to
determine whether NP-induced effects at the transcrip-
tomic level could be prevented or reverted with ABA
treatment. This hormone activates physiological responses
to drought, salt, and other abiotic stresses through a com-
plex network of transcriptional regulators. Exogenous
addition of ABA can mimic the endogenous accumulation
of the hormone that triggers stress responses in the tissues
and increases plant tolerance to saline stress [24-26].

Transcriptome analyses of exposed plants

We examined the changes that occurred in the tran-
scription of 26,184 genes represented in the At V4
microarray. Hybridization signals from the c¢DNA of
plants exposed to the 16 conditions described above
were normalised relative to the values of non-exposed
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plants (Additional file 1). Changes in these normalised
gene expression values were further analysed.

Principal Component Analysis (PCA) was performed
to detect major trends in the expression data. The first
and second components of the analysis, which captured
respectively 43.84% and 11.24% of the variation, were plot-
ted to visualize similarities among samples (Figure 1A).
The scatter-plot shows that all NP exposures clustered to-
gether, independently of material (TiO,, Ag or carbon-
aceous) or size in the nano scale. The biotic stresses
induced upon pathogen challenge (samples Pst and Abr)
were discriminated from other conditions to the right side
of the plot. The abiotic stressors (NaC and Drou and, to a
higher extent, Wou) graphed closer to the NP exposure
samples. Thus, plants exposed to NPs show similar tran-
scriptional behaviours, and pathogen challenge, saline or
drought stress -in this order- cause major changes in the
transcriptome when compared to NP exposure. In support
of this, box-plot representation of normalised expression
ratios shows that the ranges of expression changes under
these stress conditions are spanned (Figure 1B). For ex-
ample, 90% of the genes in the Pst-infected plants had ex-
pression ratios between —1.3 and 1.5, whereas this range
was only -04 to 0.3 in samples exposed to NPs. Pre-
treatment with ABA in COOH-MWCNT-exposed plants
did not decrease the range of expression changes to that
of non-exposed plants, suggesting that the addition of this
hormone had side effects on the plant transcriptome.

Identification and functional classification of genes with
significant transcriptional responses to NPs
Microarray data was statistically analysed to identify
differentially-expressed genes that responded to all NP
treatments, irrespectively of particle size or type. The ana-
lysis recovered a set of 351 genes with significant (p <
0.05) changes in expression (Additional file 2). Quartile
(Q) representation of the expression changes for this set
(Figure 2) showed that most were repressed (Q3<0) in
NP-treated samples, and median expression ratios were
low (Q, < -1) compared with those of non-exposed plants.
To detect genes that were empirically (rather than in
silico) responding to biotic or abiotic stress, we per-
formed independent analyses of Abr, Pst, NaC, Drou,
and Wou samples to define five sets of biotic- or abiotic-
stress-responsive genes under our experimental conditions.
These sets were overlapped with the group of 351
NP-responsive genes to produce four subsets of 141
(Abr), 114 (Pst), 34 (NaC), and 16 (Drou) differentially-
expressed genes, with broad overlap between the Abr- and
Pst-responsive subsets (Figure 3 and Additional file 3).
Thus, most of the 351 genes with significant responses to
NPs were also regulated upon pathogen challenge in our
hydroponic growth model. In contrast, none of the
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Figure 1 Principal Component Analysis and distribution of normalised expression ratios for the total of genes analyzed. (A) PCA was performed
to reduce the dimensions of expression data to 4 components. Components 1 to 4 explained respectively 43.84%, 11.24%, 10.58% and 8.54% of
variation in the data. The first and second components were used as the X and Y axes to plot values from the 16 conditions in this study. Ag10,
Ag20, Ag40, Ag80 and AgN represent the addition of Ag-NPs of 10-, 20-, 40- and 80-nm diameter or AgNO; bulk material, respectively. Ti10, Ti20,
Ti40 and TiO the addition of TiO,-NPs of 10-, 20-, 40-nm diameter and TiO, bulk material. CNT and CNT+ indicate COOH-MWCNTs added to
non-supplemented or ABA-supplemented plants. (B) Box plot of the expression ratios for the 26,184 genes analysed with the AtV4 microarrays.
Boxes represent 10th and 90th percentiles, with the median (Q,) in the middle line of the box. Minimum and maximum values (snapped to
Q;-1.5 x IQR and Qs + 1.5 X IQR, QR = Interquartile Range) are shown by the end of the vertical lines (whiskers) and upper or lower outliers by
red diamonds.

significant wounding-responsive genes were included in
the 351-gene set.

Functional in silico classification of the 351 genes was
achieved via Gene Ontology (GO) analysis. A total of 60
GO terms were significantly (p <0.05) enriched in the
three supercategories of Biological Process, Cellular
Component, and Molecular Function (Additional file 4).
GO terms in Biological Process are shown in Figure 4.
The most represented term in the 351-gene set is re-
sponse to stress, which included 78 genes from the set
(24.5%) and was significantly (p =9.4 x 107°) enriched
with respect to the total of 26,184 genes (16.2%). Add-
itional analyses of some of these functional classes are

presented in the following sections. In Cellular Component,
a significant percentage of the 351 genes corresponded to
extracellular proteins (66 genes, p=3.7 x 10~°), whereas
none of the other sub-cellular compartments were over-
represented (Additional file 4). The most enriched category
within Molecular Function was alkaline phosphatases.

Transcriptional responses to NPs include repression of
pathogen-activated genes and salicylic acid-mediated
pathways

Abr- and Pst-responsive genes in the 141- and 114-gene
subset were generally repressed in all NP treatments
(Figures 3B and C). We focused on genes previously
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Figure 2 Quartile distribution of the expression ratios for the 351 NP-responsive genes. Boxes represent Q; and Qs quartiles and the middle line
of the box is the median (Q2). Whiskers show the minimum and maximum values (snapped to Q;-1.5 x IOR and Qs + 1.5 x IOR) and red diamonds outliers.

associated with stress responses by the GO annotation
and for which more information was available. Hierarch-
ical clustering grouped them into two main branches
(Figure 5) which roughly corresponded to genes that
were up- (branch A) or down-regulated (branch B) by
one or both biotic stresses. Most of the genes in both
branches (branches Al and B) were repressed in all NP-
treated samples (box-plot representation in Additional
file 5) and only 7 genes (branch A2) responded to NP
treatments with log ratios above 0, although overall
these genes were up-regulated more by pathogen chal-
lenge than by NP exposure.

Most pathogen-responsive genes that were activated
during our Abr/Pst challenges are involved in early de-
fence signalling and represent main effectors of the plant
immune response that triggers SAR upon pathogen in-
fection. Such was the case with FRK1 [AT2G19190], an
inducible kinase in the pathway that activates the basal
immune response upon perception bacterial flagellin
[27], and other genes in the enriched GO category of
SAR via SA signalling (Figure 4). These genes were all
significantly repressed by NP exposure (detailed cluster-
ing in Additional file 6). These data suggest that repres-
sion of pathogen-induced genes and SA response is a
common feature of NP exposure.

Exposure to NPs represses expression of phosphate-
starvation and root-development genes

The most regulated genes (with the greatest fold-
changes in expression compared with unexposed plants)

in the set of 351 differentially-expressed genes were re-
lated to the phosphate starvation response (Figure 6).
The enriched GO subset included 19 genes that are also
present in the more general GO categories of cellular re-
sponse to starvation, cellular response to nutrient levels,
and cellular response to extracellular stimulus. Purple-acid
phosphatases (PAP14 [AT2G46880], PAP17 [AT3G17790],
and PAP24 [AT4G24890]) and other genes in the set that
are induced by phosphate starvation (IPS or PS) were
strongly repressed in all NP-treated samples, as confirmed
by RT-qPCR (Additional file 7).

Transcriptional responses to phosphate starvation
have been widely studied [28-30] and result in important
changes to root morphology by promoting the inhibition
of primary root growth and the formation of lateral
roots, as well as the proliferation of root hairs [31,32].
All these changes increase the capacity of plants to absorb
available phosphate from the soil and constitute a local re-
sponse to external phosphate starvation [33]. Sensing of
low phosphate availability also triggers long distance
signals to systemic tissues that activate phosphate homeo-
stasis mechanisms via increased phosphate transport,
recovery, and recycling by modulating the expressions of
high-affinity transporters, secreted phosphatases, and
phospholipid catabolism enzymes. In NP-exposed plants,
we observed repression of phosphate homeostatic enzymes
as well as genes directly involved in root hair development
from epidermal trichoblasts. Root-hair-specific genes
(RHS12 [AT3G10710], RHS13 [AT4G02270], RHSIS
[AT4G25220], and RHSI9 [AT5G67400]) and 14 other
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Figure 3 Distribution of the expression ratios for the 4 subsets of stress-responsive genes within the 351-gene set. (A) Venn diagrams represent
the 4 subsets of 141 (Abr), 116 (Pst), 34 (NaC) and 16 (Drou) stress-responsive genes that were included in the group of 351 NP-responsive
genes, with the number of overlapping genes in each intersection. (B, C, D and E) Distribution of the expression ratios within each subset. Boxes
and middle line represent Q;-Q; quartiles and the median of the distribution. Whiskers show the minimum and maximum values (snapped to

genes with roles in root hair emergence and differenti-
ation [34-36] constituted the enriched subsets of tricho-
blast/epidermal cell differentiation and root morpho
genesis genes in the 351-gene set (Figure 7). Unlike the
phosphate-starvation genes, root hair genes were re-
pressed, rather than activated, during Abr/Pst stress
(Figures 6C and 7B). Because many of them encode
cell-wall modification enzymes that shape the tricho-
blast, differential expression of this group likely involves

structural changes in the roots of plants exposed to
NPs, which is not necessary implicit in the transcrip-
tional regulation of phosphate homeostatic enzymes.

Exposure to NPs increases bacterial survival in local and
distal leaves of plants infected with Pst

We next tested some predictions of the transcriptional
reprogramming observed upon NP exposure on the
phenotypic response of the plant to biotic stress. A
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lipid metabolism M
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cellular response to stress 33
cellular lipid metabolism 33
lipid biosynthesis 32
response to extracellular stimulus 29
response to nutrient levels 28
cellular response to extracellular/external stimulus® 28
cellular response to nutrient levels 27
cellular response to starvation® 26
glycolipid (galactolipid) biosynthesis/metabolism* 20
cellular response to phosphate starvation 19
trichoblast/root epidermal/epithelial cell differentiation* 18
negative regulation of DNA-dependent transcription* 18
root morphogenesis 18
response to salicylic acid stimulus 18
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SAR, salicylic acid mediated signaling pathway 13
regulation of hydrogen peroxide/ROS metabolism* 12
flavonoid metabolism (biosynthesys)* 11
anthocyanin-containing compound metabolism (biosynthesis)* 8
triterpenoid metabolism 5
cellular response to hypoxia 4

Figure 4 GO enrichment analysis of the 351-gene set. The percentages of genes that are associated to a GO-term are shown in the left bars for
the set of 351 differentially expressed genes and for the total set of 26,184 genes Enrichment scores (P-values) are represented by the bar graph
in the right. The number of genes associated to each GO term is shown in the right column. Only GO-terms in the category of Biological Process
are shown. Some descendant terms (*) that contain the same genes have been merged and represented as a single category bar for simplicity

significant number of NP-repressed genes are activated
upon pathogen infection and are involved in SAR, there-
fore exposure to NPs before pathogen challenge might
compromise a plants ability to respond to infection.
However, if this effect were modulated by SA, exogenous
supplementation with the hormone might compensate
for it and prevent the NP-induced phenotype.

We measured the spread of the hemibiotrophic patho-
gen Pst in the leaves of NP-exposed plants. Rosette
leaves were inoculated with the bacterium 1 day after
addition of NPs to the MS growth medium and com-
pared with NP-unexposed control plants. Another series
of plants were treated with SA before the addition of
NPs. Bacterial growth in local (inoculated) and distal
(systemic) leaves was determined 2 days after inoculation
(Figure 8). The NP exposure was associated with in-
creased bacterial growth, both in local and distal leaves

of infected plants, compared with the control. Control
plants experienced only about half the level of infec-
tion in NP-exposed plants, consistent with an intact
(non-NP-repressed) transcriptional mechanism that
can activate pathogen-resistance genes. Exogenous
supplementation of SA prevented the bacterial growth
increases associated with NP treatment in the distal
leaves, where systemic signalling by SA enhances re-
sistance to infection.

Exposure to NPs inhibits root hair development

Transcriptional repression of the root development
genes predicted an altered root phenotype in plants ex-
posed to NPs. Absorption of NPs in the root cap and ac-
cumulation in the columella has been shown in A. thaliana
plants that were germinated and fed with high concentra-
tions of 40 nm AgNPs [7]. Similarly, we observed the
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Figure 5 Clustering of the stress-annotated, pathogen-responsive genes in the 351-gene-set. Hierarchical clustering was represented for the 43
gene-entities using Euclidean distances and following Ward's Linkage rule. Branch A; includes genes that are activated upon pathogen challenge
and repressed in NP-exposed plants. This branch contains most SAR-responsive genes. Branch A, corresponds to genes activated by pathogen
challenge and also, but to a lesser extent, by NP exposure. Branch B is formed by the genes repressed both by pathogen and NP-exposure
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accumulation of COOH-MWCNTs around the root
caps of plants growing under our hydroponic condi-
tions (Figure 9A). Shortening of the root tips and
other alterations to root morphology have been de-
scribed in A. thaliana and other plants exposed to
some types of NPs [23,37]. However our transcrip-
tome analysis pointed to a specific effect of NPs on
the epidermal cells that originate root hairs and indi-
cated that RHS genes were repressed by all types of
NPs tested in our experiments. Root hairs substan-
tially increase the root surface area in contact with
the soil, and most of the water and nutrients that
enter the plant are absorbed through them. Thus,
their development is significantly affected by environ-
ment stimuli and stress signals [38,39].

We performed detailed microscopic observations to
quantify the effects of NPs on root morphology under

our plant growth conditions. Superficially, NP-treated roots
resembled some “hair-less” mutants [34,40] (Figure 9B).
Quantification confirmed that NP-exposure signifi-
cantly decreased root hair density regardless of the
size or type of NP (Figure 9C). Because hormonal
balance regulates root development, and ABA has
been shown to be locally involved in the readjustment
of root morphology under abiotic stress conditions
[41,42], we tested the effects of exogenous supple-
mentation with different hormones (SA, ABA, and
methyl jasmonate (M])) before the addition of NPs.
Supplementation with SA prevented the reduction in
root hair density caused by NP exposure (Figure 9D).
Further assays with TiO, NPs and COOH-MWCNTs
confirmed that supplementation with SA could rescue
the phenotypic effects of all types of NPs on root hair
development (Figure 9E).
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Discussion

Nanoparticle exposure had less of an impact on the
plant transcriptome than the other stress conditions
assayed in this work (Figure 1). As measured by genome
expression changes, biotic stress represented the major
challenge for these plants, whereas saline or drought
stresses have lesser effects, although still greater than that
of NP exposure. The plant—pathogen system or abiotic
stresses used here may represent harsher environmental
conditions than NP exposure. However none of the
stresses assayed here posed severe challenges to plant sur-
vival, because our seedlings (including the NP-exposed
plants) completed their vegetative life cycles, bolted, and
eventually flowered 1-2 weeks after exposure. Exposure to
NPs under these conditions induced significant changes in
gene expression as well as measurable phenotypic differ-
ences (Figures 2, 4, and 9), so their effects at these doses
cannot be considered negligible. Therefore, compared with
other environmental challenges, A. thaliana has the gen-
etic resources to withstand NP-induced stress, although to
a great extent the response will depend on the concentra-
tions and activities of the nanomaterials in the plant

environment [1]. More interestingly, in our analysis, all
tested types and sizes of nanoparticles plotted in the same
area in the PCA, supporting the idea of common regula-
tory mechanisms in the Arabidopsis response to NPs that
could be exploited to prevent negative effects on plant
development.

Down-regulation of gene expression was an overall re-
sponse to NPs. The Qs values for the 351 differentially-
expressed genes were below zero in all the NP-treated
samples (Figure 2). Overall, this down-regulation af-
fected all the gene subsets in the GO categories repre-
sented in the Figure 4, except for cellular response to
hypoxia (Additional file 8). The subsets of 141, 114, and
34 genes that responded to biotic or saline stress were
also down-regulated in the NP samples (Figure 3B, C,
and D), and only the 16 drought-responsive genes
responded to NPs with increased expressions.

Transcriptional repression is suspected to be an im-
portant mechanism to keep stress responses under tight
control [43-45]; early response to NPs might involve
preventive repression of gene expression to allow genetic
checkpoints to be readjusted before further responses
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are triggered. Alternatively, other mechanisms different
from transcriptional repression could be mediating the
down-regulation of NP-responsive genes. Interestingly,
TiO,-NPs induced the expression of microRNAs in to-
bacco [23]; these molecules are important repressors of
mRNA processing that function in plant responses to
environmental stress [46,47].

A significant number of NP-responsive genes were in-
volved in the biotic stress response in our study, in
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Figure 8 Bacterial growth upon Pst infection of NP-exposed and
non-exposed plants. Mayor rossete leaves of plants were inoculated
with a suspension containing 10* colony forming units (cfu) of the
Pst strain or with a mock solution (control) 24 h after exposure to
NPs.cfu were counted in inoculated and distal leaves 2 days after
inoculation. The effect of supplementation with SA 12 h before NP
addition was measured in another series of plants. Bacterial growth
in distal leaves of NP-treated plants was significantly increased

respect to the control plants.

agreement with data from other authors that identified
differentially-expressed genes upon long-term exposure to
some types of NPs [17,18]. We assayed NPs of different
materials and sizes and look for common patterns in the
transcriptional response to NP exposure. NPs induced
early differential expression of 181 genes that, under simi-
lar growth and developmental conditions, were also regu-
lated by pathogen challenge (Figure 3), and we show that
the genes up-regulated by pathogens were down-regulated
by NPs (Figure 5). In particular, down-regulation affected
a significant proportion of genes that are key components
of the pathogen-detection pathways that activate SAR and
SA signalling, like FRKI (Figure 5 and Additional file 6).
The repression of the SAR response that we observed
2 days upon NP exposure has been corroborated in exper-
iments with Arabidopsis exposed for 10 days to Ag-NPs
[18]. The long-term repression of these genes would have
important consequences for the plant’s capacity to with-
stand biotic stress under environmental conditions. In a
phenotypic analysis, we showed that exposure to NPs and
subsequent infection with phytopathogenic bacteria re-
sulted in increased bacterial colonization of the plant that
could be prevented by exogenous application of SA
(Figure 8). In agreement, exogenous SA can prevent
transcriptional repression of FRKI by NPs and up-
regulates this gene to the levels of infected plants
(Additional file 7).

The GO classification showed that phosphate-starvation
genes were significantly over-represented (P =1.3 x 10
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Figure 9 Inhibition of root hair production upon NP exposure and effect of SA pre-treatment. (A) Accumulation of NPs in the root cap. Microscope
photographs of the roots of plants exposed to COOH-MWCNTs 4 days upon addition of the NPs to the growth medium: black aggregates appear

around the root cap. (B) Microphotographs of the lateral roots of plants exposed to Ag-NPs (20 nm); NP-exposed roots show a “hairless” phenotype.
(C). Number of root hairs per cm of root in plants exposed to Ag-NPs, TiO,-NPs, and COOH-MWCNTs, compared to control (non NP-exposed) plants.

A significant decrease is observed in all the plants treated with NPs. (D) Effect of the pre-treatment with ABA, Methyl Jasmonate (MJ) and SA
phytohormones before exposure to 20 nm Ag-NPs; only the addition of SA can prevent the decrease in the number of root hairs/cm observed
upon exposure to NPs. (E) Pre-treatment with SA prevents the reduction in root hair density upon treatment with TiO,-NPs and COOH-MWCNTs.

in the set of NP-responsive genes (Figures 4 and 6).
Genes in this category were the most strongly re-
pressed by treatment with all types of NPs and included
genes encoding enzymes like PAP phosphatases, as well as
non-protein-coding genes such as IPSI [AT3G09922],
that is involved in the complex regulation of phosphate-
starvation responses through microRNA production
[32,48]. Consistent with this finding, other non-overlapping
genes in the GO categories of NP-regulated genes were
physiologically connected to the phosphate-starvation
response. This was the case not only for the genes re-
lated to root hair development but also the over-
represented categories of anthocyanin and flavonoid
biosynthesis (Additional file 4). Anthocyanins accumu-
late in the roots of phosphate-starved plants and are
often used as metabolic markers of phosphate starva-
tion, whereas low nitrogen induces roots to accumulate
their precursors, flavonoids [29,49].

Phosphate starvation and other stress signals shape the
plant root and can induce root hairs to proliferate to in-
crease nutrient and water absorption. Root hairs are
formed by the differentiation of old epidermal cells that
originate from the apical meristematic region. These epi-
dermal cells become either root hair cells or non-hair
cells depending on whether they are located over the
intercellular space between two underlying cortical cells
or over a single cell. Transcriptomic studies have re-
vealed the temporal patterns of gene expression during
the development of hair and not-hair cell lines and dis-
sected the complex regulatory network involved in epi-
dermis cell differentiation [34]. These studies define a
group of 154 hair-cell genes and 54 non-hair-cell genes
within the “core” of 208 root epidermal genes that were
regulated in opposite directions in “hairy” and “hair-less”
phenotypic mutants. We observed consistent, NP-
induced, down-regulation of 18 of the 19 “core” root
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epidermal genes in the group of 351 differentially-
expressed genes, and all were hair-cell genes. Moreover,
Q3 values in the box-plot representations of the 155 hair
and 54 non-hair genes show that down-regulation was spe-
cific of hair-cell genes (Additional file 9). Our phenotypic
observations demonstrated a significant decrease in root
hair densities with all the NP types assayed (Figure 9C).
Other works have shown that exposure to NPs affects root
development, although the transcriptional mechanisms in-
volved were not elucidated. Ultrasmall TiO5-NPs accumu-
late in the roots, but not shoots, of Arabidopsis seedlings
[50] and cause isotropic growth of root epidermal cells and
swelling of root tips as soon as 36 h after NP addition [51].
This effect has been attributed to the disruption of microtu-
bular networks by NPs, thus increasing the 26S proteasome
workload to degrade the depolymerised tubulin. However,
our transcriptome analysis did not suggest proteasome
alterations.

Similar to the increased sensibility of leaves to Pst in-
fection, the hairless-like root phenotype induced by NPs
could be prevented by supplementation with SA but not
other hormones like ABA or MJ] (Figure 9D). Pre-
treatment or “priming” of plants with hormones may im-
prove resistance to future exposure to environmental
stress [52,53] and, under our conditions of NP-induced
stress, SA seemed to have a priming effect to reduce
pathogen proliferation and the root hair-less phenotype.

Genes up-regulated by NP exposure are included in the
GO category of cellular response to hypoxia and in the
subset of drought-responsive genes (clustered in Additional
file 10). The first group includes two peroxidase superfam-
ily proteins expressed in root tissues ([AT1G14550] and
[AT1G4540]) and CYP82C2 [AT4G31970], which modu-
lates jasmonate-induced root growth inhibition and defence
gene expression [54]. Early induction of peroxidase and
superoxide-dismutase genes has been reported both in
plant protoplasts and in leaves upon injection of COOH-
MWCNTs [55] and was connected to programmed cell
death of protoplasts. Drought stress in our study affected a
number of NP-induced genes with previously unknown
functions as well as the better characterized MYBL2
[AT1G71030] and COL5 [AT5G57660] transcription fac-
tors. MYBL2 is a proto-oncogene homologue involved in
BESI co-repression in the brassinosteroid signalling path-
way [56] and was more recently identified as a dehydration
stress memory gene regulated by multiple signalling path-
ways, including the ABA, jasmonic acid, and SA pathways
[57]. COLS is a member of the CONSTANS-LIKE family of
flowering regulators involved in the response to water
deprivation [58]. Interestingly, pre-treatment with ABA, as
well as with MJ or SA, can decrease the transcriptional in-
duction of these genes by COOH-MWCNTs, and in par-
ticular, SA can by-pass NP-induced activation and regulate
their expressions down to the levels of Abr infection
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(Additional file 7). MYBL2 and COLS also respond to Abr/
Pst pathogen challenge and, as members of very complex
families of transcription factors, might play important roles
in integrating hormonal signalling in the plant response to
NP-induced stress.

Conclusions

We evaluated the transcriptome changes of Arabidopsis
after brief exposure to NPs and compared them with
those under biotic or abiotic stresses that represent com-
mon environmental challenges for plants. Principal
Component Analysis clusters together transcriptomes of
plants exposed to NPs of different materials and sizes in
the nano-scale. The study of transcriptomic patterns
could distinguish the impacts of all tested NPs from
those of other stressors and defined a set of NP-
responsive, differentially expressed genes. NP exposure
repressed a significant number of genes involved in the
response to pathogen challenge and increased bacterial
survival during an experimental infection with Pst. The
mechanism involved in SAR via SA signalling could by-
pass NP-induced repression and reduce bacterial
colonization. In addition, NP-induced repression largely
involved genes activated by phosphate-starvation and
other conditions that promote root hair development,
but supplementation with SA could remediate the result-
ing root hair-less phenotype. Overall, the basic molecu-
lar mechanisms of the early response of Arabidopsis to
NPs were based on transcriptional repression and had a
common pattern regardless of the composition of the
different NPs.

Methods

Plant growth conditions

Arabidopsis thaliana accession Columbia-0 (Col-0) was
the genetic background used in this study. Seeds were
surface-sterilized in a 20% bleach/0.05% Tween-20 solu-
tion, rinsed five times in sterile deionised water, and
then sown on Petri dishes containing % Murashige and
Skoog medium (Y2 MS basal salts, 2% glucose, 0.6% agar,
pH 5.7). Plates were sealed and stored for 3 days at 4°C
in darkness before incubation in a controlled environ-
ment growth chamber at 22°C, 70% relative humidity,
and 200 pM x m*/s of cool white fluorescence illumin-
ation (12 h light/12 h dark). Seven-to-ten-day-old seed-
lings with at least 1-cm-long roots were selected and
individually transferred to test tubes containing 5 mL of
liquid % MS and incubated for 1-2 additional weeks
with continuous shaking at 50 rpm. Plants were incu-
bated until roots had grown to fit within the liquid vol-
ume of the culture and plants stop floating (about
3 weeks after seeding). Plants with developed aerial ro-
settes (8—12-leaf stage) were then selected for further
treatment with NPs, microbial pathogens, or abiotic
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stress. For each biological replicate, eight plants were in-
dividually grown in test tubes and treated with NPs or
other stressors before RNA extraction. Unexposed plants
used as the controls were treated similarly except for the
lack of NPs in the media.

Treatment of plants with nanoparticles

All NPs used in this study were obtained from commer-
cial manufacturers who performed detailed characterisa-
tion of the diameter, mass concentration, spectral
properties, and Z-potential. Ag-NPs were provided as a
0.02-mg/mL suspension in aqueous citrate buffer by ei-
ther Ted Pella Inc. (20, 40 and 80 nm; Redding, CA,
USA) or Sigma—Aldrich (10 nm; St. Louis, MO, USA).
TiO, anastase-NPs (10, 20, and 40 nm) were purchased
from Nanograde LLC (Stifa, Switzerland). COOH-
functionalized, multi-walled PELCO® Carbon Nanotubes
of 4-12 nm diameter and 5—15 um length were obtained
from Ted Pella Inc. The introduction of carboxylic func-
tional groups onto the surface of these hydrophobic
nanostructures enhances their water dispersion and cre-
ates more homogenous solutions, and it has been shown
by other authors that carbonaceous NPs solubilised in
this way can be up taken from MS medium and trans-
ported to the areal tissues of the plant [16]. PELCO®
COOH-MWCNTs were added to sterile water to make a
1.25 mg/mL stock solution and vortexed for 1 min. im-
mediately before their addition to the MS medium. NPs
were added to MS solutions of 3-week-old plants at the
end of a light period and to a final concentration of
0.2 pg/mL for Ag-NPs, 20 pg/mL for TiO,-NPs, or
25 pg/mL for COOH-MWCNTs. Plants were grown for
two additional days in the presence of NPs in climate
chamber and with continuous shaking, then collected
for RNA extraction. Under these conditions, plants that
were not collected for RNA extraction and remained in
the climate chamber were able to complete their vegeta-
tive cycles and initiate bolting within 2 weeks of expos-
ure, although the timing was variable. Fresh weights of
plants were determined 7 days after NP addition and
average were lower than those of the unexposed control
plants, but never less than 84% of the control weight.
Bulk materials (AgNOj3 or anastase TiO,) were provided
by Sigma—Aldrich and added to the same concentration
as the corresponding NPs.

Infection with microbial phytopathogens

Alternaria brassicicola DSM-62008 strain was purchased
from the DSMZ-German Collection of Microorganisms
(Braunschweig, Germany) and cultivated following their
recommendations. Conidia from freshly-grown cultures
on agar plates were collected and resuspended in sterile
milli-Q water (Millipore, Billerica, MA, USA) to 10°
spores/mL. Five microliters of this suspension were used
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to inoculate the largest leaf of 3-week-old plants; leaves
were collected 2-3 days after infection, depending on
macroscopic symptoms of disease. Symptoms mostly
consisted of yellowing around the inoculation area and
occasional black spots. Under the microscope, dead cells
appeared at the borders of the wound, with fungal myce-
lia invading the surrounding areas.

Pseudomonas syringae pathovar tomato DC3000 strain
(wild-type, Rif) [59] was a generous gift from Dr Jens
Boch (Martin Luther Universitat, Halle, Germany) and
was cultured and inoculated into plant leaves as previ-
ously performed in a plant-pathosystem model to study
immune response [60]. Collection of plants for RNA ex-
traction was as described for A. brassicicola.

Abiotic stress conditions and hormone treatments

Exposure to abiotic stress was performed according to
previous works on the transcriptional regulation of typ-
ical stress-responsive genes [61,62]. Hypersaline condi-
tions were reproduced by adding 100 pL of a 5-M sterile
NaCl solution to the 5 mL of liquid MS medium. For
drought-stressed plants were removed from their test
tubes and exposed to air on a 3MM Whatman paper
(GE Healthcare, Little Chalfont, UK) for 2.5 h. Mechan-
ical wounding was produced by crushing rosette leaves
several times with plastic forceps [63]. Except for the
drought-stress condition, all plants were collected 2 days
post-treatment for RNA extraction. Hormone treatments
were performed 12 h before the addition of NPs on 3-
week-old plants grown as described above. ABA was
added to the 5-mL culture to a final concentration of 3 uM
from a freshly-prepared, 3-mM stock solution [64]. SA was
added to 0.1 mM from a solution containing 10 mM SA
and 0.01% Silwet L-77 [65]. M] treatment involved drop-
ping 0.4 pL of a 0.5% solution in ethanol onto the cellulose
cap of the test tube containing the plant; test tubes were
sealed with Parafilm (Bemis, Neenah, W1, USA) and intro-
duced into an hermetic 20-L container that was shaken in
the climate chamber. Control plants were treated similarly,
except for the absence of phytohormones in their solutions.

Microarray hybridisation and transcriptomic analysis

To allow significant transcriptome measurements, all
treatments were performed in quadruplicate for each
series of eight plantlets. Plants were collected from the
test tubes and put on 3MM Whatman paper to remove
excess MS and then frozen in liquid nitrogen prior to
homogenization, as described before [60]. Total RNA
was extracted with TriPure Isolation Reagent (Roche,
Penzberg, Germany) and quantified using a NanoDrop
ND-1000 UV-VIS spectrophotometer (Wilmington, DE,
USA). RNA quality and integrity were assayed by Lab-chip
technology on an Agilent 2100 Bioanalyzer with Agilent
RNA 6000 Nano Chips (Santa Clara, CA, USA. A total of
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100 ng of nucleic acid from each replicate were retro-
transcribed (first strand synthesis) and labelled using a
Low Input Quick Amp Labeling kit (Agilent) following
manufacturer protocols for two-colour, microarray-
based, gene expression analysis. Arabidopsis (V4) gene ex-
pression microarrays covering 4 x 44 K probes (Agilent
microarray design ID 021169, P/N G2519F-021169) were
used for subsequent hybridisations in a quadruplicate de-
sign in which each exposure condition was labelled in one
colour and compared with the unexposed control in the
other colour. Hybridised microarrays were scanned on a
G2565CA DNA scanner (Agilent). Microarray hybridisa-
tion and feature extraction, as well as RNA quality report
and labelling, were performed according to Agilent stand-
ard procedures and software using the Gene Expression
Unit of the Genomics and Proteomics Facility in the UPV/
EHU (SGlker platforms; Leioa, Spain). Feature-Extraction-
generated files were the input .txt files used to produce
normalized signals in GeneSpring GX V12.6 software
(GeneLevel_TwoColor_21169_577087196; Agilent).

Normalised microarray data from the 43,663 oligo
probes that produced detectable signals were reduced to
26,184 gene entities representing the Gene Level experi-
ment that was studied with GeneSpring GX. Two experi-
mental interpretations were created to analyse data. In the
Treatment interpretation, 16 conditions were created cor-
responding to each of the samples exposed to NPs
(AgNP10, AgNP20, AgNP40, AgNP80, TiO,NP10,
TiO,NP 20, TiO,NP40, and COOH-MWCNT), bulk
materials (AgNOj3 and TiQO,), biotic (Pst or Abr) or abi-
otic (NaC, Drou and Wou) stresses, and ABA treatment
(COOH-MWCNT+). PCA, GO, and clustering analysis
were performed under this interpretation. To identify the
set of 351 NP-responsive genes, the eight NP-exposed
samples were grouped together into one experimental
condition for the second interpretation (NP addition:
Yes vs. No) and analysed with the Statistical Analysis
tool (Agilent) using a t-test against zero and the
Benjamini-Hochberg false discovery rate (FDR) mul-
tiple testing correction. The significance threshold for
fold-change expression was set to fold change>2 and
FDR < 0.05. For the subsets of 141, 114, 34, 16, and 0
genes responding to Abr, Pst, NaC, Drou, and Wou
stresses, independent ¢-tests were performed for each con-
dition under the Treatment interpretation. This produced
five independent sets of stress-responsive genes from the
total of 26,184 entities; Venn diagrams were then used to
obtain the five subsets within the group of 351 NP-
responsive genes. GO analysis was performed as imple-
mented in GeneSpring with a cut-off p-value <0.05.
Supplemental data were exported from GeneSpring under
the corresponding interpretation as .txt files. Box-plots
were represented from exported values using Excel
(Microsoft, Redmond, WA, USA).
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RT-qPCR

Primers for RT-qPCR (Additional file 7) were validated in a
7900HT Fast Real Time System (Applied Biosystems,
Foster City, CA, USA). Total RNA from plants was ob-
tained as in the microarray experiments, and 100 ng were
treated with DNAse I (Invitrogen, Carlsbad, CA, USA),
retrotranscribed using the qScript ¢cDNA synthesis kit
(QUANTA BioSciences, Gaithersburg, MD, USA) and pre-
amplified with QIAGEN® Multiplex PCR Kit (Venlo,
Netherlands). Fast Gene Expression Analysis was
performed by the SGlker platform using EvaGreen dye
(Bio-Rad, Hercules, CA, USA) on a BioMark HD nanoflui-
dic qPCR system (Fluidigm, South San Francisco, CA,
USA) following the manufacturer recommendations. Data
from quadruplicate runs were analysed with Fluidigm
Real-Time PCR Analysis Software V3.1.3 and GenEx V5.4
(MultiD). The average signals of target genes were normal-
ised with respect to the geometric mean from three en-
dogenous control genes (ACTS, TPK2, and ADK2) and
relative expression (log scale) for each gene was calculated
as the ACt between untreated and treated plants. Data pre-
sented in figures are average relative expressions and stand-
ard errors of the mean (SEM) from three biological
replicates.

Pst infection and titering in leaves of NP-exposed plants
Series of eight plants were infected with the Pst strain
24 h after exposure to TiO,NPs (20 nm size). Infection
was performed by inoculating 10 ODs from a
stationary-stage culture or a 10 mM MgSO, mock solu-
tion into the major leaf of each plant. Infected plants
were collected 2 days later, and the major leaf and its op-
posite (distal) leaf were cut with a sterile scalpel and in-
troduced into small Petri dishes to quantify the leaf
surface under a Zeiss Stemi 2000-C stereo microscope
(Jena, Germany). Leaves were homogenized in 400 pL of
PBS and 200 pL of ballotini (Sigma—Aldrich) with a
small pestle, and serial dilutions of the supernatant were
plated on selective KB medium (2% protease peptone,
0.15% MgSO4-7H,0O, 0.2% KHyPO,4 1% glycerol, 1.2%
agar, 25 pg/pL Rifampicin). Plates were incubated at 22°C
for 24 h, then Pst colony-forming units were counted in
triplicate plates. A control experiment to determine the ef-
fect of NPs on bacterial growth was performed by inocu-
lating bacteria in NP-added or non-added MS medium in
the absence of the plant. In this experiment, treatment
with 20 nm TiO,NPs did not affect bacterial titre.

Root hair quantification

To quantify the number of root hairs, series of eight
plants per treatment were fixed in a H,O/ethanol/acetic
acid (4:3:1) plus 0.005% Tween 20 solution 4 days after
NP treatment. Lateral roots were dissected under a Zeiss
stereomicroscope and mounted on microscope slides in
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a 10% glycerol solution. Slides were observed under the
4x objective of a Nikon Eclipse E 400 microscope
(Tokyo, Japan) under transmitted light. Pictures of at
least 2 cm of root length and of five apical root segments
per plant were taken with a digital AxioCam ERc-5 s
(Carl Zeiss, Germany), and the numbers of hairs in the
differentiation zones were counted using Zeiss ZEN
2012 software.
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