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Strand-specific RNA sequencing in Plasmodium
falciparummalaria identifies developmentally
regulated long non-coding RNA and circular RNA
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Abstract
Background: The human malaria parasite Plasmodium falciparum has a complex and multi-stage life cycle that requires
extensive and precise gene regulation to allow invasion and hijacking of host cells, transmission, and immune escape.
To date, the regulatory elements orchestrating these critical parasite processes remain largely unknown. Yet it is
becoming increasingly clear that long non-coding RNAs (lncRNAs) could represent a missing regulatory layer
across a broad range of organisms.

Results: To investigate the regulatory capacity of lncRNA in P. falciparum, we harvested fifteen samples from two
time-courses. Our sample set profiled 56 h of P. falciparum blood stage development. We then developed and
validated strand-specific, non-polyA-selected RNA sequencing methods, and pursued the first assembly of P. falciparum
strand-specific transcript structures from RNA sequencing data. This approach enabled the annotation of over
one thousand lncRNA transcript models and their comprehensive global analysis: coding prediction, periodicity,
stage-specificity, correlation, GC content, length, location relative to annotated transcripts, and splicing. We
validated the complete splicing structure of three lncRNAs with compelling properties. Non-polyA-selected deep
sequencing also enabled the prediction of hundreds of intriguing P. falciparum circular RNAs, six of which we
validated experimentally.

Conclusions: We found that a subset of lncRNAs, including all subtelomeric lncRNAs, strongly peaked in expression
during invasion. By contrast, antisense transcript levels significantly dropped during invasion. As compared to neighboring
mRNAs, the expression of antisense-sense pairs was significantly anti-correlated during blood stage development,
indicating transcriptional interference. We also validated that P. falciparum produces circRNAs, which is notable
given the lack of RNA interference in the organism, and discovered that a highly expressed, five-exon antisense
RNA is poised to regulate P. falciparum gametocyte development 1 (PfGDV1), a gene required for early sexual
commitment events.
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Background
Plasmodium falciparum is the most deadly human malaria
parasite, notorious for its immense disease burden, ability
to persist in individuals for months if not longer, and rapid
development of resistance to all currently available
treatments [1–4]. The symptomatic characteristics of acute
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P. falciparum malaria infection correspond to cycles of red
blood cell (RBC) rupture, as merozoite parasites invade
RBCs, asexually replicate into 8–36 new daughter merozo-
ites, egress from the RBCs, and repeat the process every
48 h [5–8]. This process can be readily modeled in the lab,
in contrast to the sexual stage required for transmission,
which takes 8–12 days in human RBCs and then an add-
itional 8–15 days in mosquitoes [9, 10]. Due to the clinical
symptoms associated with the asexual blood stage and the
relative ease of obtaining samples, the vast majority of
current anti-malarial compounds and research programs
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target this stage of the parasite life cycle [11]. However, the
idea of targeting both the symptomatic and transmissible
parasite form is garnering increased public attention,
making research on sexual stage commitment and sexual
development a priority as well [11–13].
The first P. falciparum genome sequence was published

in 2002 [14]. Our understanding of malaria biology has ad-
vanced considerably since this milestone, largely due to
genome-wide studies [15, 16]. Early transcriptome studies
found that key P. falciparum protein-coding genes are typ-
ically transcribed only once per blood stage, ‘just-in-time’
for translation and function [17, 18]. Subsequently, global
ribosome profiling and proteome studies revealed signifi-
cant post-transcriptional regulation and a unique histone
code involving at least 44 histone post-translational
modifications and four novel histone variants [19–22].
Additionally, paired transcriptome-epigenome studies
found dynamic chromatin remodeling and clonally variant
gene expression (CVGE) patterns during blood stage de-
velopment [23–26]. Independent studies have confirmed a
heritable epigenetic layer to monoallelic expression of the
60-member P. falciparum Erythrocyte Membrane Protein
1 (PfEMP1)-encoding var gene family, as well as heritable
epigenetic regulation of genes involved in invasion and
nutrient uptake [27–33].
While it has become increasingly clear over the past dec-

ade that the P. falciparum genome is tightly regulated, the
regulatory elements themselves are still largely uncharac-
terized [34, 35]. For example, it is not mechanistically clear
how the parasite transcriptionally silences, activates, or
switches PfEMP1-encoding var genes to evade the human
immune system, or how the parasite switches from asexual
to sexual development [36, 37]. Few sequence-specific
transcription factors have been identified, and P. falcip-
arum does not encode identifiable microRNAs, microRNA
processing machinery, or RNA-induced silencing complex
(RISC) components [38–40]. With the absence of many
known transcription factors and the canonical RNA inter-
ference pathway, master regulatory elements orchestrating
immune escape, invasion, transmission, and other critical
parasite processes remain to be discovered.
We hypothesized that further study of P. falciparum long

non-coding RNA (lncRNA) may provide missing insights
into P. falciparum transcriptional, post-transcriptional, and
chromatin state control. Encouragingly, previous survey
studies have demonstrated non-coding transcription in
P. falciparum [41–46], and a growing body of evidence
supports the crucial regulatory roles of lncRNAs in
humans and model organisms [47, 48]. For example, it
has been shown that lncRNAs coordinate X chromo-
some inactivation in female mammalian cells, flowering
time in plants, and gametogenesis in budding yeast
[49–54]. A handful of circRNAs have been recently
shown to function as microRNA sponges as well [55, 56].
While prior work has suggested the transcription of inter-
genic, antisense, and even circular RNA (circRNA) in P.
falciparum, lncRNA transcript models have not been de-
fined and transcript properties have not been generalized
on a broad scale [41–45].
In this study, we assemble 660 intergenic lncRNA and

474 antisense transcript structures from strand-specific
P. falciparum RNA sequencing reads (202 antisense loci
are entirely novel), compile a comprehensive catalog of
transcript properties, summarize global trends, and ex-
perimentally validate the splicing structure of three P.
falciparum lncRNAs with exceptional properties. We
also predict the transcription of hundreds of novel P. fal-
ciparum circRNA candidates (6/9 experimental confirm-
ation rate), and search for human microRNA binding
sites across P. falciparum coding sequences. To our
knowledge, the latter analysis has not been reported pre-
viously, nor has a role for human microRNA binding in-
teractions within P. falciparum transcripts. On the other
hand, LaMonte et al. and others have shown that human
microRNAs do indeed translocate from the red blood
cell into P. falciparum [57, 58].
Although many studies, including our own, have pro-

vided insights into the P. falciparum non-coding tran-
scriptome, an in depth strand-specific catalog was
critically needed to accelerate hypothesis generation and
experimental testing [41–44]. As an example of the
novel insights that this work provides, we have identified
that lncRNA and mRNA expression dynamics differ dur-
ing parasite invasion, have found evidence that
antisense-sense transcriptional interference is prevalent
during the blood stage, and have contributed the initial
characterization and structural validation of a highly
expressed, non-coding counterpart to P. falciparum
gametocyte development 1 (PfGDV1).

Results
Strand-specific RNA sequencing of biological replicate
blood stage time courses
To investigate P. falciparum lncRNA transcription, we
harvested fifteen blood stage samples from two biological
replicate time courses [Fig. 1A]. The first time course com-
prised eleven samples harvested over 56 h from a tightly
synchronized P. falciparum 3D7 parasite population: 6, 14,
20, 24, 28, 32, 36, 40, 44, 48, and 56 h post-infection (hpi).
As the asexual blood stage is an approximately 48-hour
cycle, this sample set allowed us to profile gene expression
during the critical process of RBC rupture and parasite in-
vasion. The second time course comprised four samples
harvested in synchronous P. falciparum 3D7 parasites
approximately four hours before and after the ring to
trophozoite and trophozoite to schizont morphological
stage transitions, which occur during the blood stage at
24 hpi and 36 hpi, respectively.
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Fig. 1 Overview of P. falciparum RNA sequencing sample set, computational pipeline, and read alignment metrics. (A) We harvested total RNA
from two independent P. falciparum blood stage time courses, including a 56-hour time course consisting of eleven samples. We combined
samples harvested 4 and 8 hpi at equal ratios (further referred to as T6). Similarly, we combined samples harvested 12 and 16 hpi at equal ratios
(further referred to as T14). We harvested four additional samples from a second time course approximately 4 h before and after gross stage
transitions. Thus these samples correspond to the late ring, early trophozoite, late trophozoite, and early schizont stages, respectively. In total, we
sequenced fifteen strand-specific RNA sequencing (RNA-seq) libraries on an Illumina Hiseq 2000 machine. Illumina sequencing yielded approximately
614 million 101-bp paired-end reads. We analyzed reads using the Tuxedo suite (Bowtie, TopHat, Cufflinks, Cuffmerge, and Cuffdiff) and according to
the circBase circRNA discovery pipeline [85]. Using this approach, we identified 660 intergenic lncRNA (647 unique loci), 474 antisense RNA (467 unique
loci), and 1381 circRNA candidates. Additionally, 3815 genes, 127 transcripts, and 81 promoters reached statistical significance in terms of differential
expression, alternative splicing, and alternative promoter usage, respectively. (B)/(C) Normalized read alignment tracks across a PfEMP1-encoding var
gene [PlasmoDB:Pf3D7_0412700] and the CLAG3.1 gene [PlasmoDB:Pf3D7_0302500] indicated that these challenging loci could generally be (perfectly
and uniquely) mapped. Annotated gene models are shown in dark green and dark blue. Reads from each 56-hour time course sample mapping
to the (−) strand are shown below each horizontal axis in light green, while reads mapping to the (+) strand are shown above each horizontal axis in
light blue. Uniqueness of 100mers is plotted in red as a mappability track, where the baseline represents a score of one, or uniquely mapping.
(D)/(E) Plotting the expression during the 56-hour time course of the dominant PfEMP1-encoding var gene [PlasmoDB:Pf3D7_0412700] and
both the CLAG3.1 [PlasmoDB:Pf3D7_0302500] and CLAG3.2 [PlasmoDB:Pf3D7_0502200] genes showed, respectively, that var gene expression
peaked during the ring stage, whereas CLAG3.1 and CLAG3.2 expression peaked during the schizont stage. Moreover, as CLAG3 genes are
mutually exclusively expressed [27, 28], we found that that the bulk of our parasites transcribed only the CLAG3.1 gene. Expression is plotted
in units of log2(FPKM + 1). (F) The percent of reads in each library mapping to annotated transcripts in the proper orientation (per reads
mapping to annotated transcripts) ranged from 98.92 % to 99.81 %. The average calculated from both reads is reported
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Given the high AT content and dense genic structure of
the P. falciparum genome, we then extensively optimized
RNA sequencing procedures, both experimental and com-
putational, in order to derive a high-quality P. falciparum
transcriptome. In terms of experimental optimization, we
tested numerous variables and pursued technical develop-
ments shown to reduce sequence-based bias in DNA se-
quencing libraries and to improve strand-specificity in
RNA sequencing libraries [59–65]. Subsequently, we
established a library preparation protocol that uses mul-
tiple DNase treatments to remove genomic DNA, Ribo-
Zero beads to remove ribosomal RNA, the dUTP method
with Actinomycin D to preserve strand specificity, and the
KAPA HiFi polymerase to amplify libraries in real-time for
the minimum number of cycles necessary [See Methods,
and Additional files 1 and 2 for further details].
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Fig. 2 Multidimensional scaling and Gene Ontology confirm expected
P. falciparum blood stage expression patterns. The MDS plot of sample
profiles embedded samples around a circle. Traversing the circle, we
found that samples progressed through the approximately 48-hour P.
falciparum blood stage according to their time and morphology
labels as expected. The 56-hour time course samples are labeled in
red, green, and blue, with red corresponding to samples harvested
within the predicted ring stage, green corresponding to samples
harvested within the predicted trophozoite stage, and blue
corresponding to samples harvested within the predicted schizont
stage. The morphology-based labels correspond to the late ring, early
trophozoite, late trophozoite, and early schizont stages, respectively
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After harvesting samples from the two time courses
and developing and validating our strand-specific library
preparation protocol, we prepared libraries from the
fifteen blood stage samples in parallel, and sequenced
libraries on two lanes of an Illumina Hiseq 2000 machine.
Illumina sequencing yielded 614 million 101 base-pair
(bp) paired-end reads in total, with sequencing depth
ranging from 20 to 30 million (perfectly and uniquely)
alignable reads per sample. We noted high base qual-
ity scores and no significant adapter contamination
[Additional files 3, 4 and 5].

Aligning and benchmarking sequences
We took a conservative approach to read alignment, re-
quiring read pairs to map perfectly and uniquely to the
P. falciparum 3D7 reference genome. In support of this,
we determined that 96.53 % of all possible 100mers in
the P. falciparum genome are unique. In addition, we
tested our ability to map read pairs across repeated gene
families, such as the PfEMP1-encoding var gene family
and the two Cytoadherence-Linked Asexual Gene 3
(CLAG3) loci, which we calculated share 96.4 % se-
quence similarity. Specifically, we visualized a lower
bound to mappability across these repeated loci by plot-
ting the uniqueness of 100mers as a mappability track.
Fig. 1B and C show the mappability track (in red) com-
pared to strand-specific read coverage across a PfEMP1-
encoding var gene [PlasmoDB:Pf3D7_0412700] and the
CLAG3.1 gene [PlasmoDB:Pf3D7_0302500], respectively.
Fig. 1C and D plot the expression profiles of these genes,
as well as the CLAG3.2 gene [PlasmoDB:Pf3D7_0302200].
Using this stringent approach and paired-end information,
we were able to uniquely map read pairs to these repeated
loci, including through short stretches of non-unique
sequence.
After conservatively aligning reads using TopHat

[66], we assessed data quality following the RNA se-
quencing benchmarking metrics put forth by DeLuca
et al. and Wang et al. [67, 68]. We calculated the
strand-specificity, coefficient of variation, duplication
rate, gap rate, ribosomal RNA rate, exonic rate, insert size,
and GC content of each aligned set of reads [Additional
file 4]. Importantly, we found that greater than 98.92 %
of reads mapped to the reference strand in the expected
orientation in each sample [Fig. 1F]. This result was on
par with yeast strand-specific sequencing libraries, and
confirmed that our data was highly strand-specific [60].
We also found an average coefficient of variation (CV)
of between 0.23 and 0.33 across the top 2000 expressed
genes (or roughly top 50 % of expressed genes) in each
sample [Additional file 4]. These CV values were lower
than the lowest CV value reported in the benchmarking
study referenced above (0.54), indicating more even
read coverage in our samples [60]. Taken together, the
rigorous examination of our data quality demonstrated
that it was comparable to the state-of-the-art in model
organisms.

Benchmarking time courses
Comparing samples between two independent time
courses is a known challenge in the field, and can be
confounded by experimental factors such as culture con-
ditions [26, 69, 70]. We thus developed a computational
solution that leverages multidimensional scaling (MDS)
to assess stage similarities on a transcriptome-wide scale.
While MDS has not previously been used for P. falcip-
arum sample comparisons, its utility has been demon-
strated in humans and in model organisms such as
yeast, especially when periodicity is expected [71, 72].
MDS analysis using sample profiles from both time
courses revealed the cyclical nature of the P. falciparum
blood stage, with samples progressing in time around an
approximately 48-hour clock [Fig. 2]. This analysis also
confirmed that the four morphology-based samples cor-
responded to the 56-hour, high-resolution time course
samples at expected intervals.
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As a complementary analysis, we classified 1632 ring-
specific, 1378 trophozoite-specific, and 1274 schizont-
specific genes according to their maximal expression
time-point. We then computed GO term enrichment on
these stage-specific gene sets [73]. Ring-, trophozoite-,
and schizont-specific GO terms were specific to host cell
adhesion processes, metabolic processes, and protein
catabolic processes, respectively, with DNA replication
spanning both trophozoite- and schizont-specific GO
terms [Additional files 6 and 7]. These GO terms were
highly consistent with our current understanding of P.
falciparum biology. Taken together, MDS paired with
global GO term enrichment analysis validated the bio-
logical integrity of our time course samples.

Transcript assembly
We next set out to assemble P. falciparum transcript
structures, with or without the assistance of annotated
transcript models, and to assess assembly performance
using either Cufflinks or genome-guided Trinity [74–76]
[Fig. 1A]. Specifically, we were looking for high contigu-
ity (a high rate of annotated transcripts being spanned
by one assembled transcript over at least 90 % of the an-
notated transcript exonic length), low chimerism (a low
rate of assembled transcripts spanning more than one
annotated transcript), and for the final assembly to be
manageable and high-confidence [77, 78]. Importantly,
our calculations conservatively assumed that all of the
chimeric predictions represent assembly artifacts. How-
ever, it is worth noting that some portion may repre-
sent bona fide products of the spliceosome machinery
[Additional file 8].
Based on its performance features, we chose to further

explore the high-confidence Cufflinks transcripts (at least
50 supporting read fragments in at least one sample).
However, it may be possible to filter the genome-guided
Trinity results based on read support or expression level
to yield a more manageable P. falciparum transcriptome
Table 1 Comparative assessment of P. falciparum transcriptome asse

Contiguity Chimerism Total nu

PlasmoDBv10.0 5,777

Cufflinks 81.5 % 6.6 % 7,065

Cufflinks RABT 100 % 4.5 % 9,434

Genome-guided Trinity 57.1 % 1.3 % 43,816

Genome-guided Trinity RABT 100 % 1 % 21,182

We compared the contiguity, chimerism, and feature counts of Cufflinks versus Gen
annotation. Cufflinks incorporating reference annotation based transcriptome assem
Contiguity is the rate of annotated transcripts covered by one assembled transcript
orientation. Chimerism is the rate of assembled transcripts that span more than on
number of intergenic transcripts, and number of antisense transcripts correspond t
transcripts predicted between PlasmoDBv10.0 annotations, and the number of asse
5,777 transcripts are annotated in PlasmoDBv10.0
*RABT = Reference annotation based transcript assembly
assembly [Table 1, Additional file 9]. Using Cufflinks with-
out the assistance of annotation, we found that 81.5 %
of annotated transcripts had assembled transcripts
contiguously spanning them, while only 6.6 % of as-
sembled transcripts were chimeric [Table 1, Additional
file 10]. With the assistance of annotation, the chime-
rism rate dropped to 4.5 % and the contiguity rate nat-
urally rose to 100 % [Table 1, Additional file 11]. For
reference, Lu et al. reported a chimerism rate of 6 %,
14 %, and 22 % in human, mouse, and yeast Cufflinks
assemblies, respectively [77]. We thus considered the
proportion of chimeric transcripts in our Cufflinks as-
semblies to be acceptably low.
To further benchmark Cufflinks assembly performance

in P. falciparum, we compared the expression properties,
GC content, and length of Cufflinks-assembled transcripts
to those of previous annotations. Towards this end, we
paired 5727 and 7736 assembled transcripts with Plas-
moDBv10.0 annotated transcripts in the unassisted and
assisted Cufflinks assemblies, respectively. We then calcu-
lated the correlation between paired expression profiles,
finding a median correlation of 0.98 and 0.99 for un-
assisted and assisted transcripts, respectively. This led us
to conclude that analyzing assembled transcript expres-
sion profiles was essentially interchangeable with analyzing
annotated transcript expression profiles. We did, however,
note a shift towards lower FPKM (fragments per kilobase
of exon per million fragments mapped) expression level
and lower GC content for assembled transcripts. This was
largely because assembled transcripts included unanno-
tated, likely untranslated regions (UTRs) with reduced
read support and GC content as compared to coding re-
gions [Additional files 12 and 13]. We selected the
annotation-assisted Cufflinks transcriptome for further
analyses, unless otherwise noted, as it represented the
most complete P. falciparum transcriptome.
In sum, annotation-assisted Cufflinks assembly pre-

dicted 9434 transcripts, including 660 unannotated
mbly highlights the performance of Cufflinks RABT

mber of transcripts Number of intergenic
transcripts

Number of antisense
transcripts

660 479

660 474

8,260 11,070

5,839 7,234

ome-guided Trinity transcriptome assembly, with or without the assistance of
bly (RABT) provided the optimal P. falciparum transcriptome.
over at least 90 % of the annotated transcript exonic length in the correct
e annotated transcript in the correct orientation. Total number of transcripts,
o the total number of assembled transcripts, the number of assembled
mbled transcripts predicted antisense to PlasmoDBv10.0 annotations. In total,



Broadbent et al. BMC Genomics  (2015) 16:454 Page 6 of 22
intergenic transcripts (647 unique loci) and 474 anti-
sense transcripts (467 unique loci; 202 novel loci)
[Figs. 1A and 3A, and Additional files 14, 15, 16 and
17]. The 467 antisense loci overlapped 462 annotated
genes in an approximately 1:1 ratio. This encompassed
transcription of at least 73 % of the P. falciparum genome,
a 13 % increase compared to annotation alone, and
included the prediction of high-confidence antisense tran-
Fig. 3 Characterization of 1134 unannotated P. falciparum lncRNAs reveals
assistance, at least 4707 out of 5777 (81.5 %) annotated transcripts could b
transcripts could not be contiguously assembled, and we excluded 374 sho
rate of known transcripts, it is possible that the 660 intergenic lncRNAs and
transcribed in P. falciparum. (B) Comparative inspection of non-clustering h
in a similar periodic fashion to annotated mRNAs. However, it was also appare
invasion, and that there was a paucity of antisense transcript levels during par
arrows. Transcripts are ordered by their angular position in the MDS plot
Mean-centered expression is in units of log2(FPKM + 1). (C) The distributi
that both intergenic lncRNAs (red) and antisense RNAs (blue) were robus
levels than annotated mRNAs (black). (D) Pearson correlation during the 56-h
compared to 5251 mRNA-neighboring gene pairs (black), 498 intergenic lncRN
(blue). To be consistent, we defined the neighboring gene used in both the m
mRNA. (E) The distribution of GC content for each transcript class indicated th
lower GC content than annotated transcripts (green), though a handful o
(F) The distribution of transcript length for each transcript class showed t
in length to annotated transcripts (green), with the average of each class bein
indicated with a purple arrow. (G) Plotting the normalized distribution of anti
scription from 8 % of annotated genes. Annotation-
assisted Cufflinks assembly also predicted 2134 novel
splice-junctions [Additional file 17]. On the other hand,
Cufflinks assembly without annotation rediscovered 6918
out of 8537 annotated splice-junctions (81 %) and, as
noted above, predicted contiguous transcripts spanning
4707 out of 5777 annotated transcripts (81.5 %) [Fig. 3A,
Additional file 17].
global trends as well as intriguing outliers. (A) Without annotation
e contiguously assembled in our blood stage samples. 696 annotated
rt and/or structural RNAs from assembly. Given this high reassembly
474 antisense RNAs described here represent the majority of lncRNAs

eatmaps showed that predicted lncRNAs were developmentally regulated
nt that a subset of lncRNAs strongly peaked in expression during parasite
asite invasion. The 48 hpi invasion time-point is indicated with purple
of transcript expression profiles, and samples are ordered by time.
on of maximum expression levels for each transcript class suggested
tly expressed, albeit they typically reached lower maximum expression
our time course between 50,000 random mRNA gene pairs (orange) as
A-neighboring gene pairs (red), and 445 antisense-sense gene pairs
RNA and intergenic lncRNA pairings as the more correlated neighboring
at intergenic lncRNAs (red) and antisense RNAs (blue) typically had
f intergenic lncRNAs had unusually high GC content (purple arrow).
hat intergenic lncRNAs (red) and antisense RNAs (blue) were comparable
g longer than 1 kb. Markedly long intergenic lncRNAs (>4 kb) are
sense RNAs relative to annotated gene bodies revealed a 3’ tail-to-tail bias



Table 2 Global properties of P. falciparum lncRNAs include
reduced expression, length, GC content, and splicing as
compared to annotated transcripts

LncRNA Antisense Annotated

Average of maximum FPKMs 56 25 469

Average of average FPKMs 18 8 164

Average Length 1218 1413 2197

Average GC content 15.0 % 21.8 % 25.4 %

Single exon rate 93.5 % 89.5 % 47.8 %

Maximum exon count 3 5 34

We calculated the average of maximum FPKMs and average of average FPKMs
across each transcript class during the 56-hour time course. Average length
and average GC content reflect exonic sequence only. Annotated transcript
properties refer to PlasmoDBv10.0 transcript models
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Coding region identification
To determine the coding potential of the 1134 previ-
ously unannotated transcripts, we used TransDecoder
and found that at least 98.5 % represented bona fide
non-coding RNAs [75]. TransDecoder predicted putative
coding regions in 5213 out of the 5229 (99.7 %) possible
protein-coding transcripts [Additional file 18], but in
just seven out of the 660 intergenic transcripts (1.1 %)
and eleven out of the 474 antisense transcripts (2.3 %)
[Fig. 1A]. These proportions of putative coding regions
in our candidate lncRNA sets did not significantly differ
from the proportions that TransDecoder predicted in
random regions (97 out of 6600 random intergenic re-
gions, Fisher’s exact test, p-value = .493; 57 out of
4740 random antisense regions, Fisher’s exact test,
p-value = .053). Moreover, we did not find precedent
for overlapping genes in P. falciparum [14]. Given this
body of data and the small proportion that the ambiguous
transcripts represented in their respective data sets, we
retained but noted these transcripts for further investiga-
tion [column Q in Additional files 15 and 16].

LncRNA transcript properties
After ensuring data integrity, including validating the non-
coding nature of unannotated transcripts, we set out to
characterize lncRNA transcript properties. Towards this
end, we first compared the expression periodicity of
lncRNA transcripts to that of annotated mRNA tran-
scripts, as stage-specific expression is likely to correlate
with function. Indeed, when we visualized the expression
of each transcript class in a non-clustering heatmap, we
found a similar pattern of developmental regulation for
both lncRNAs and mRNAs [Fig. 3B], although lncRNAs
typically reached lower maximum expression levels than
mRNAs [Table 2, Fig. 3C]. Motif prediction in the putative
promoter regions (1 kb upstream) of both lncRNAs
and mRNAs also returned many motifs in common
[Additional file 19] [79]. Taken together, this global
analysis revealed the remarkable similarity between
lncRNA and mRNA expression cascades during blood
stage development, and suggested stage-specific roles
for P. falciparum lncRNAs.
This visual approach also highlighted two distinct

lncRNA expression profile deviations during RBC rup-
ture and parasite invasion [purple arrows in Fig. 3B].
Upon close inspection of the intergenic lncRNA expres-
sion profiles shown in Fig. 3B, we noted that a subset of
intergenic lncRNAs strongly peaked in expression during
the 48 hpi invasion time-point. We found that this sub-
set included all members of the family of telomere-
associated lncRNA-TAREs that we previously identified
[41]. Second, upon close inspection of the antisense
RNA expression profiles shown in Fig. 3B, we noted a
paucity of antisense transcript levels during parasite
invasion. In fact, we calculated that out of the 35 % of
antisense RNAs (166) increasing in expression between
36–44 hpi, 72 % dropped in expression during parasite
invasion and then increased in expression afterwards. A
similar percentage of annotated mRNA transcripts (27 %
or 1435) increased in expression between 36–44 hpi, but
only 19 % exhibited the invasion-specific expression
drop (Fisher’s exact test, p-value < .0001).
We next investigated the correlation properties of P.

falciparum lncRNAs and annotated mRNAs, as positive
or negative correlation between lncRNAs and neighboring
genes may indicate a regulatory relationship [51, 80, 81].
Specifically, we compared the expression correlation
between randomly sampled mRNAs (location-independ-
ent null) to that of the following location-dependent gene
pairs: (1) annotated mRNAs and their more correlated
neighboring mRNA, (2) intergenic lncRNAs and their more
correlated neighboring mRNA, and (3) sense-antisense
partners. We observed significantly more positively corre-
lated intergenic lncRNA-neighbor pairs and mRNA-
neighbor pairs than random mRNA pairs (Wilcoxon rank
sum p-value < 2.2e-16 in both cases) [Fig. 3D]. On the other
hand, we found that sense-antisense partners exhibited an
entirely different expression correlation trend. Namely, we
observed significantly more negatively (or anti-) correlated
sense-antisense pairs than random mRNA pairs (Wilcoxon
rank sum p-value = 3.834e-11) [Fig. 3D].
Interestingly, we found that intergenic lncRNA-

neighbor pairs were significantly more positively corre-
lated than mRNA-neighbor pairs (Wilcoxon rank sum
p-value < 2.2e-16) [Fig. 3D]. Given this feature, we pursued
numerous additional analyses of intergenic lncRNA-
neighbors and mRNA-neighbors to explore whether posi-
tive correlation may be dependent on orientation and/or
genomic distance between neighboring loci. In brief, we
found that both lncRNAs and mRNAs had a significantly
more correlated neighbor (Wilcoxon signed-rank test
p-value < 2.2e-16 for both lncRNAs and mRNAs), that the
distance between intergenic lncRNA-neighbor pairs was
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not particularly indicative of higher correlation (ρ = −.25),
and that lncRNAs and mRNAs were located at compar-
able distances from other annotated mRNAs (1576 bp ver-
sus 1585 bp, respectively) [Additional file 20]. In terms of
orientation, we found that expression correlation was
equally distributed for tandem (− −> / − −>) and divergent
(<− − / − −>) intergenic lncRNA-neighbor pairs, although
the expression correlation of convergent (− −> / <− −)
pairs was similar to background correlation rates of
mRNA-neighbor pairs (Wilcoxon rank sum p-value =
0.3607) [Additional file 20]. Taken together, our results in-
dicated that mRNAs, intergenic lncRNAs, and antisense
RNAs each have significantly different expression correl-
ation properties with neighboring loci.
We next considered the GC content and length of

lncRNA transcripts. The GC content of intergenic
lncRNAs was generally lower than that of antisense
RNAs, which was lower than that of annotated tran-
scripts [Table 2, Fig. 3E]. This was not surprising given
the higher GC content of coding sequences, ribosomal
RNA, and transfer RNA in the P. falciparum genome
[14]. In terms of transcript length, both lncRNA classes
were quite long, with the average length of intergenic
lncRNAs, antisense RNAs, and annotated transcripts be-
ing 1218 bp, 1413 bp, and 2197 bp, respectively [Table 2,
Fig. 3F]. The small subset of relatively GC-rich (>29 %)
intergenic lncRNAs generally corresponded to the subset
of relatively long intergenic lncRNAs (>4 kb), and in-
cluded all members of the telomere-associated lncRNA-
TARE family, whose high GC content and length we
previously characterized [arrows in Fig. 3E and F] [41].
The only two unannotated transcripts with greater than
40 % GC content shared 82 % pairwise sequence iden-
tity, and they were both situated between var pseudo-
genes and PHISTB genes. TransDecoder predicted a
coding region in one of these transcripts, and given their
high GC content and sequence similarity, we reasoned
that both of these transcripts likely represented unanno-
tated pseudogenes.
We further considered the relative location of anti-

sense RNAs within annotated gene bodies and the spli-
cing properties of lncRNAs. This revealed that P.
falciparum antisense RNAs largely overlapped tail-to-tail
with annotated genes, a property that has been described
in previous viral, prokaryotic, and lower eukaryotic
genome-wide studies [Fig. 3G] [82]. Specifically, the vast
majority of P. falciparum antisense RNAs initiated tran-
scription downstream of annotated gene bodies and
tended to terminate transcription towards the 3’ end of
gene bodies as well [Additional file 21]. In terms of spli-
cing, we found that 93.5 % and 89.5 % of predicted inter-
genic lncRNAs and antisense RNAs were single exon,
respectively, versus 47.8 % of annotated transcripts
[Table 2].
Notable LncRNAs
Based on the diverse characteristics examined above, we
searched for transcripts with exceptional properties. For
example, we found that a putative Apicoplast RNA
methyltransferase precursor [PlasmoDB:Pf3D7_0218300]
and an Early Transcribed Membrane Protein [ETRAMP;
PlasmoDB:Pf3D7_0936100] transcribe multi-exonic anti-
sense RNAs across their full gene bodies [Fig. 4A and B].
Expression of the Apicoplast RNA methyltransferase pre-
cursor sense-antisense pair was not particularly correlated
(ρ = .20), while expression of the ETRAMP sense-antisense
pair was moderately anti-correlated (ρ = −.50) [Fig. 4C
and D]. Interestingly, ETRAMP antisense transcription
was substantially higher than ETRAMP sense transcrip-
tion, reaching a maximum FPKM of 550 in early stages.
This was the highest expression level observed for pre-
dicted P. falciparum antisense RNAs at any stage. Both
the Apicoplast RNA methyltransferase precursor and
ETRAMP antisense RNAs also demonstrated the 48 hpi
expression drop phenomenon, though their sense partners
did not exhibit this pattern.
Remarkably, we also found that a region on chromosome

nine required for early sexual development [83] harbors a
highly expressed, developmentally regulated, five-exon
antisense transcript to P. falciparum Gametocyte Develop-
ment Protein 1 [PfGDV1; PlasmoDB:Pf3D7_0935400], as
well as two intergenic lncRNAs downstream of PfGDV1
[Fig. 4E]. Correlation during the 56-hour blood stage time
course between PfGDV1 sense and antisense transcript
levels was the highest of any predicted P. falciparum
sense-antisense pair (ρ = 0.96), with PfGDV1 antisense
transcript levels typically exceeding PfGDV1 sense tran-
script levels [Fig. 4F]. This was in sharp contrast to the ma-
jority of P. falciparum sense-antisense pairs, which
displayed a trend towards anti-correlated expression.
Notably, while the expression correlation was again
high between PfGDV1 sense-antisense transcript levels
in the four biological replicate samples (ρ = 0.85), the
difference between transcript levels was greater, with the
PfGDV1 antisense transcript reaching a maximum FPKM
of 255 [Additional file 22]. The nearby, multi-exonic,
intergenic lncRNA exhibited moderately correlated ex-
pression to GEXP22 [PlasmoDB:Pf3D7_0935500] and evi-
dence of alternative splicing (ρ = 0.46) [Fig. 4G]. In
summary, the PfGDV1 antisense transcript’s expression
properties, multi-exonic structure, and position relative to
other genes made it a clear outlier in the genome.
While we have previously detected and characterized

telomere-associated lncRNA-TAREs, the properties of
this yet to be annotated lncRNA family again stood out
in our analyses [41]. Our results confirmed that
lncRNA-TAREs were long, high-GC, and transcribed to-
wards the telomere [Arrows in Fig. 3E and F, Fig. 4H].
We also confirmed that lncRNA-TARE transcription was
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Fig. 4 Notable lncRNAs include multi-exonic and telomere-associated transcripts. (A)/(B) Multi-exonic antisense transcripts span an apicoplast
RNA methyltransferase precursor [PlasmoDB:Pf3D7_0218300] and an ETRAMP [PlasmoDB:Pf3D7_0936100] gene, respectively. Annotated gene
models are shown in dark green and dark blue, and assembled transcript models are shown in light green and light blue. Reads from each
56-hour time course sample mapping to the (−) strand are shown below each horizontal axis in light green, while reads mapping to the (+)
strand are shown above each horizontal axis in light blue. Intron reads are shown in purple. Uniqueness of 100mers is plotted in red as a
mappability track. (C)/(D) Pearson correlation between the Pf3D7_0218300 sense-antisense pair and ETRAMP sense-antisense pair during the
56-hour time course was 0.20 and −0.50, respectively. Notably, Pf3D7_0218300 and ETRAMP antisense transcript levels dropped during parasite
invasion, while sense transcript levels did not. Expression is plotted in units of log2(FPKM + 1). (E) Multi-exonic lncRNAs are encoded in the
PfGDV1 region on chromosome nine, antisense to PfGDV1 and between PfGDV1 and GEXP22. Refer to (A)/(B) for a description of tracks. (F)/(G) Pearson
correlation between the PfGDV1 sense-antisense pair was 0.96, while Pearson correlation between the divergent intergenic lncRNA and GEXP22 pair
was 0.46 during the 56-hour time course. Expression is plotted in units of log2(FPKM+ 1). (H) As we have previously described, the telomere-associated
repetitive element (TARE) 2–3 region transcribes a family of lncRNA-TAREs, with transcription always proceeding towards the telomere [41].
For example, lncRNA-TARE-2 L is transcribed on the left arm of chromosome two. Pf3D7_0200100 is a subtelomeric upsB-type PfEMP1-encoding var
gene. Boundaries of the telomere, TAREs 1–5, and Rep20 are shown in purple. See (A)/(B) for a further description of tracks. (I) Plotting the expression
level of 22 lncRNA-TARE family members showed that lncRNA-TARE expression was co-regulated, with maximal firing coinciding with parasite invasion.
Expression is plotted in units of log2(FPKM + 1). (J) Pearson correlation between lncRNA-TARE-2 L and the neighboring PfEMP1-encoding var gene
was −0.09 during the 56-hour time course. Expression is plotted in units of log2(FPKM+ 1)

Broadbent et al. BMC Genomics  (2015) 16:454 Page 10 of 22
generally restricted to the expected TARE 2–3 region,
although we did find that in one case the entire TARE
1–6 region was transcribed [Additional file 23]. To build
on our previous results, long, paired-end, uniquely
mapped sequencing reads showed that lncRNA-TARE
transcripts likely originated from 22 chromosome ends
in our parasite populations. Moreover, the increased
time resolution and scope of our samples showed that
lncRNA-TARE transcript levels coordinately peaked
during parasite invasion [Fig. 4I]. Interestingly, we
found that sterile var transcript levels peaked during
parasite invasion as well, but that not all var genes pro-
duced these non-coding transcripts [Additional file 24]
[84]. For example, the subtelomeric var gene [Plas-
moDB:Pf3D7_0200100] neighboring lncRNA-TARE-2L
was lowly expressed during the ring stage and did not
produce appreciable sterile transcripts [Fig. 4H and I].
Collectively, these findings suggested co-regulated firing
and coordinated function of lncRNA-TARE and sterile var
transcripts during parasite invasion.

LncRNA structural validation
To facilitate the future study of lncRNAs, we sought to ex-
perimentally confirm novel lncRNA transcript structures
using PCR and Sanger Sequencing. Towards this end, we
amplified and sequenced across splice junctions predicted
within the five-exon Apicoplast RNA methyltransferase
precursor antisense transcript, three-exon ETRAMP anti-
sense transcript, and five-exon PfGDV1 antisense tran-
script. In total, Sanger sequencing results confirmed nine
lncRNA junctions [Additional files 25 and 26].

Discovery and validation of CircRNAs in P. falciparum
To globally investigate RNA circularization in P. falcip-
arum, we used the analysis pipeline and criterion published
by Memczak et al. [55]. This approach identified 1381 pu-
tative P. falciparum circRNAs with at least two unique
reads spanning their splice junction (between 0.1 and
10 kb long) [Fig. 1A, Additional file 27] [55, 85]. Of
these, 273 had five or more unique reads of support
(the gold standard being 2 reads). As compared to the
transcriptome-wide results reported in Table 2, we
found that P. falciparum transcripts with predicted cir-
cRNAs were more highly expressed on average (set
metrics: average of maximum FPKMs 2646; average of
average FPKMs 791). Indeed, the circRNA-producing
gene set was enriched for ribosome-related compo-
nents; ribosomal proteins are typically highly expressed
[Additional file 28].
In contrast to human circRNAs, P. falciparum circRNAs

were generally predicted to be short, with the majority be-
ing less than 200 bp [56]. Only 509 out of 1381 predicted
circRNAs with at least two unique supporting reads were
predicted to be 200 bp or longer. In the more stringent set
of 273 circRNA candidates with at least five unique sup-
porting reads, only 72 were predicted to be 200 bp or lon-
ger. We defined circRNA size as the genomic distance
between predicted donor site and acceptor site, inclusive
of the donor and acceptor site. Thus, this should be read
as a maximum size, as circRNAs can span introns, which
may be spliced out of the circRNA sequence. In summary,
short circRNAs appeared to outnumber longer circRNAs
in P. falciparum and deserve further attention.
We predicted an intriguing top P. falciparum circRNA

candidate within the apoptosis-related protein [ARP; Plas-
moDB:Pf3D7_0909300], termed ARP_circRNA [Fig. 5A].
56 unique reads spanned the predicted splice junction be-
tween ARP’s exon-4 donor site (GT) and upstream exon-3
acceptor site (AG) [Fig. 5B]. To validate that this non-
canonical splice junction was not the result of a library
preparation or sequencing artifact, we reverse-transcribed
total RNA and amplified the predicted ARP_circRNA
junction from the resulting complementary DNA (cDNA)
using PCR and divergent primer pairs. We designed



Fig. 5 Divergent primers and Sanger sequencing validate circRNA splicing in P. falciparum. (A) The apoptosis-related protein (ARP) encodes a
predicted circRNA, termed ARP_circRNA, consisting of ARP exon-3 and exon-4 sequence. (B) To validate the non-canonical exon-4 donor (GT)/exon-3
acceptor (AG) splice junction in ARP_circRNA, we designed a divergent PCR primer pair. The primer pair is considered to be divergent, rather than
convergent, because the reverse primer binds upstream of the forward primer. (C) PCR using divergent primers amplified a product of the expected
size (161 bp, indicated with an arrow) when the template was cDNA from either time course, but not water or gDNA. The larger products in the
divergent cDNA reactions may represent non-specific or rolling-circle reverse transcription products [45]. On the other hand, PCR using convergent primers
amplified products of the expected size when the template was cDNA from either time course or gDNA. We confirmed that the smaller product size in
the case of convergent cDNA reactions corresponded to intron removal. (D) Sanger sequencing of divergent amplicons of the expected size confirmed
the ARP_circRNA junction in both time courses. The extra GTAG in the predicted sequence marks the non-canonical ARP_circRNA splice junction
(highlighted in red in the consensus sequence)
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divergent ARP_circRNA primer pairs, as is depicted in
Fig. 5B, such that primer pairs could not amplify gen-
omic DNA (gDNA) or cDNA in the absence of the
predicted ARP_circRNA splice junction.
Our results confirmed the non-canonical ARP_circRNA

splice junction in cDNA preparations from either biological
replicate time course. Specifically, the ARP_circRNA diver-
gent primer pair produced amplicons of the expected size
when the template was cDNA, and did not produce specific
amplicons with gDNA or water as the template. On the
other hand, the ARP_circRNA convergent primer pair
amplified both cDNA and gDNA, with the smaller product
size in the cDNA reactions corresponding to intron re-
moval [Fig. 5C]. We further confirmed the identity of
the ARP_circRNA divergent and convergent amplicons
by Sanger sequencing. Sequence confirmation for the
ARP_circRNA divergent amplicon is shown in Fig. 5D,
where the GTAG splice donor-acceptor tag is included
in the predicted sequence as a marker for the circRNA
splice junction.
We used the same experimental strategy of divergent

PCR followed by Sanger sequencing to validate additional
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P. falciparum circRNA candidates. In total, we were able
to validate six out of nine tested candidates [Additional
files 29 and 30]. We selected the nine tested candidates ac-
cording to certain criterion: read support, a donor or ac-
ceptor site in common with an annotated transcript,
predicted size of at least 200 bp (genomic distance), and
not within a ribosomal gene. Two of the additional
validated P. falciparum circRNAs were associated with
genes of unknown function, two were predicted within
rhoptry-related genes, and the final validated candidate
was within metacaspase-like protein (MCA2), which is
another gene involved in apoptosis. As has been suggested
across other organisms, temporal expression of vali-
dated circRNAs was moderately correlated with that of
their linear counterparts [Column Q in Additional file 27]
[86, 87].
Interestingly, using the recently described PACCMIT-

cds algorithm, we found that our experimentally validated
circRNA candidates each contained predicted human
microRNA binding sites [Additional file 31] [88]. More-
over, when we broadly searched PlasmoDBv10.0 tran-
scripts for human microRNA binding sites, we found
thousands of significant hits and that 61 transcripts har-
bored at least 100 predicted binding sites for a given hu-
man microRNA (p-value < 0.05) [Additional file 32]. At the
highest stringency level (p-value < 1.0e-6), the gametocyte-
specific transcript Pf11-1 [PlasmoDB:Pf3D7_1038400]
harbored an impressive 1569 predicted human micro-
RNA binding sites. Taken together, we have predicted
an unexpectedly widespread capacity for P. falciparum
transcripts to form stable circular structures, as well as
to bind human microRNAs.

Discussion
The mechanisms underpinning gene regulation in P. fal-
ciparum malaria remain largely uncharacterized [34, 35].
However, long non-coding RNAs (lncRNAs) have been
found to initiate and guide the transcriptional, post-
transcriptional, and epigenetic status of specific loci
across a broad range of organisms [47, 48]. Encouraged by
these features and our previous discovery of an intriguing
family of telomere-associated lncRNAs in P. falciparum,
we have developed strand-specific P. falciparum RNA
sequencing methods, deeply sequenced fifteen blood
stage samples, and compiled a comprehensive catalog
of P. falciparum lncRNA transcript properties.
Our results have several implications for parasite biol-

ogy. For example, we observed numerous negatively corre-
lated, tail-to-tail overlapping sense-antisense transcript
pairs. This is consistent with a potential role for many P.
falciparum antisense RNAs in transcriptional and/or post-
transcriptional regulation of their sense mRNA partners
[48]. For example, a subset of P. falciparum antisense
RNAs may function through transcriptional interference,
as has been extensively studied in Saccharomyces cerevi-
siae [82, 89–91]. In the transcriptional interference model,
antisense transcription interferes with sense transcription
through either polymerase collisions or alternative mecha-
nisms. As an alternative or additional model, antisense-
mediated transcriptional suppression is also possible and
has been described in human studies [92–94]. In antisense-
mediated transcriptional suppression, antisense RNAs act
as epigenetic silencers, catalyzing local heterochromatin
formation.
We also observed rapid depletion of antisense transcript

levels (and some mRNA transcript levels) during invasion.
This pattern is intriguing and suggests that a specific sub-
set of transcripts may be targeted for degradation during
this critical timeframe. Notably, we were not able to iden-
tify evidence of degraded transcripts in our dataset,
though the size selections imposed during library prepar-
ation would likely eliminate such fragments.
Searching our catalog for P. falciparum lncRNAs with

unique properties revealed that an essential protein in
early gametocyte development, PfGDV1, has a highly and
coordinately expressed, multi-exonic antisense counter-
part, as well as multiple neighboring intergenic lncRNAs.
Though the regulation and mechanism of early gameto-
cyte development events remain largely unknown, Eksi
et al. have shown that PfGDV1 complementation restores
gametocytogenesis in PfGDV1-null parasites, and that epi-
somal PfGDV1 over-expression increases gametocytemia
in wild-type parasites [83]. This suggests that endogenous
PfGDV1 expression levels likely correlate with gametocy-
temia, and that silencing the endogenous PfGDV1 locus
could disrupt transmission. Notably, Kafsack et al. have
also shown that a member of the ApiAP2 transcription
factor family is involved in early gametocyte development
[36]. However, loss of this factor did not affect PfGDV1
transcript levels [36], suggesting that the PfGDV1 locus
may integrate different or additional regulatory signals.
In light of these recent findings, and given that future

strategies to block malaria transmission largely hinge on
blocking the development of transmissible P. falciparum
sexual stages, we highlight here the need for further
study of the PfGDV1-associated lncRNAs [11–13]. Spe-
cifically, we propose that single-cell experiments and
dissection of the PfGDV1 locus using genome editing
techniques may reveal a regulatory role for P. falciparum
lncRNAs in early gametocyte commitment events, per-
haps similar to S. cerevisiae lncRNA-mediated entry into
meiosis [51, 52]. In this system, lncRNA transcription
through the S. cerevisiae Inducer of Meiosis IME1 pro-
moter region and IME4 antisense transcription are in-
compatible with IME1/IME4 sense transcription.
We have previously described and hypothesized that a

family of telomere-associated lncRNA-TARE transcripts
is involved in telomere maintenance and/or subtelomeric
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var gene regulation [41, 95]. Supporting such nuclear
roles, Siegel et al. then reported significant enrichment
of telomere-associated P. falciparum lncRNAs in the nu-
clear, as opposed to total and cytoplasmic, P. falciparum
RNA fractions [44]. Adding to the lncRNA-TARE family
profile, we have now shown that lncRNA-TARE tran-
scripts are maximally expressed during parasite invasion,
along with the sterile, non-coding var transcripts tran-
scribed from bidirectional var intron promoters [84].
When parasites invade RBCs pre-loaded with episomal
PfEMP1-encoding var genes, these episomal var genes
are not silenced during the first ring stage. Var gene si-
lencing is, however, somehow established by the subse-
quent ring stage and then remains the default status
[96]. While it has been hypothesized that passage
through S-phase is the critical requirement for var gene
silencing, we suggest that expression of non-coding tran-
scripts during parasite invasion may play an important
regulatory role as well [97, 98]. High-resolution studies
of chromatin mark dynamics over episomal and en-
dogenous var loci during parasite invasion may help to
resolve these models.
This work represents the validation of six P. falciparum

circRNAs, as well as the prediction of hundreds more. We
stress, however, that further curation of our circRNA pre-
dictions will be required, as in silico prediction algorithms
may yield false positives and PCR failures may yield false
negatives for low copy number targets or otherwise.
With this said, a more focused sequencing effort using
circRNA-specific protocol adjustments may reveal even
more abundance of this intriguing class of non-coding
RNA. In support of this notion, most of our predicted
P. falciparum circRNAs were shorter than the average
library fragment size, and thus could be selected against
during library preparation. Moreover, Wang et al. recently
mined the Siegel et al. RNA sequencing data set and vali-
dated two low-abundance P. falciparum circRNAs [44,
45]. As we did not find evidence for either of these candi-
dates in our study, this further hints that library prepar-
ation and/or bioinformatic processing may be tunable to
capture additional P. falciparum circRNAs. Alternatively,
as our sample sets differed, these circRNAs may be highly
linked to the phenotypic state of the parasite.
Notably, Memczak et al. and others have hypothesized

that circRNAs may function as microRNA sponges, and
have demonstrated a handful of supporting examples
[55, 56]. In this model, the circRNAs behave as competi-
tive inhibitors, sponging up microRNAs to reduce the
microRNA pool available to bind messenger RNA tar-
gets. Given that the lack of P. falciparum-encoded
microRNAs and microRNA processing machinery has
been extensively established, we did not anticipate
microRNA sponge roles for P. falciparum circRNAs [39,
40, 58]. Moreover, the only reported function for human
microRNAs in P. falciparum involves microRNA integra-
tion into parasite transcripts rather than binding interac-
tions [40, 57]. Nonetheless, we were curious to investigate
the capacity for human microRNAs to bind within our set
of validated circRNA transcripts and within P. falciparum
transcripts more generally. Challenging our a priori expec-
tations, we predicted human microRNA binding sites
within each validated circRNA, as well as across thousands
of P. falciparum transcripts. Taken together, our results
may point to additional functions for circRNAs across eu-
karyotes and/or to undiscovered functions for human
microRNAs in P. falciparum gene regulation.

Conclusions
In this work we develop strand-specific non-polyA-
selected next generation sequencing methods sensitive
to the extreme AT content of P. falciparum. We then
apply these methods to the transcriptome-wide assembly
and characterization of P. falciparum intergenic lncRNA
and antisense RNA properties. Our results support the
conserved regulatory capacity of non-coding elements in
P. falciparum, with different transcripts demonstrating
distinct regulatory signatures, such as stage-specific ex-
pression, rapid firing, rapid destabilization, transcrip-
tional interference, and circularization. In addition to a
highly curated lncRNA transcript catalog, we provide
structural validation of three exceptional multi-exonic
lncRNAs and six circRNAs. This work coupled with re-
cent advancements in P. falciparum genome editing will
greatly facilitate further insights into the function of
these lncRNAs in P. falciparum [99, 100].

Methods
Ethics statement
The Harvard University Human Subjects Committee
deemed this research to be exempt from continuing re-
view (Application Number: F19615-102), as samples
were sourced from publicly available, preexisting, de-
identified repositories.

Parasite culture and sample harvesting
We harvested a total of fifteen samples from two inde-
pendent P. falciparum blood-stage time courses. In each
experiment, we cultured a freshly thawed P. falciparum
strain 3D7 clone (ATTC) in human RBCs from healthy
anonymous donors (Research Blood Components, Boston,
MA) using standard methods [10]. We maintained
cultures at 4 % hematocrit and supplemented RPMI-
HEPES medium with 5 % human serum (O+) and 5 %
Albumax II (Gibco). We synchronized cultures using
multiple 5 % sorbitol solution treatments [101], and ex-
panded cultures to accommodate harvesting of at least
50 mL of culture at each planned time-point (time
course 1: every ~4 h for 56 h; time course 2: ~4 h before
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and after the ring to trophozoite and trophozoite to
schizont morphological stage transitions). We centri-
fuged 50 mL aliquots of harvested culture at 2400 rpm
in a Sorval RT6000B to obtain at least 2 mL of packed
RBCs per time-point. For time course 1, we stored
packed RBCs in 15 mL of Buffer RLT (with BME added)
at −80 °C prior to RNA extraction. For time course 2,
we lysed packed RBCs using a .05 % saponin solution,
washed liberated parasites using phosphate-buffered
saline (pH 7.4), pelleted parasites at 13.2 RPM in a
micro-centrifuge, and stored parasites in 1 mL of TRI-
ZOL reagent at −80 °C prior to RNA extraction.

Total RNA extraction
For time course 1, we thawed RBC samples stored in
Buffer RLT, added one volume of 70 % ethanol, and
immediately loaded the mixture onto RNeasy Midi
columns (Qiagen). For time course 2, we thawed para-
site samples stored in TRIZOL reagent, performed
TRIZOL-chloroform extraction, and immediately applied
the aqueous layer to RNeasy Mini columns (Qiagen).
During both RNeasy Midi and Mini RNA extraction
procedures, we performed the optional on-column
DNase I digestion for thirty minutes to remove genomic
DNA. We stored isolated total RNA aliquots at −80 °C
with 1 unit/uL RNaseOUT (Invitrogen), and validated
RNA quality using an Agilent Bioanalyzer RNA 6000
Pico Kit.

Strand-specific, Non-polyA-selected, library preparation
and sequencing
We began library preparation with a second DNase
treatment (Ambion TURBO DNase) using 20 units of
SUPERase-In (Ambion) and 40 units of RNaseOUT
(Invitrogen) to protect RNA from degradation. Each
DNase reaction was incubated at 25 °C for 30 min
followed by 1.8X RNAclean SPRI bead purification
(Agencourt). Second, we used a Human/Mouse/Rat
Ribo-Zero Magnetic Kit (Epicentre) to deplete 18S and
28S rRNA from DNase-treated total RNA. We used 3.5-
5 ug of DNase-treated total RNA for all samples except
T6, T14, and TT8. In these cases, we used .4 ug, 1 ug,
and .7 ug of DNase-treated total RNA, respectively. Fur-
thermore, for T6 we mixed 4 and 8 hpi total RNA 1:1,
and for T14 we mixed 12 and 16 hpi total RNA 1:1.
Third, we fragmented rRNA-depleted RNA at 85 °C for
8 min using Mg2+ Fragmentation Buffer (New England
Biolabs), followed by 1.8X RNAclean SPRI bead purifica-
tion (Agencourt). Fourth, we reverse-transcribed the
fragmented RNA using SuperScript III (Invitrogen),
200 ng/uL of freshly prepared Actinomycin D (Sigma-
Aldrich), 3 ug of 76 % AT-biased random hexamers
(Integrated DNA Technologies), and a gradually ramping-
up thermocycler program. Specifically, we set the ramp
speed of a PTC-225 DNA Engine Tetrad (MJ Research)
to .1 °C/sec and used the following program: 5 °C, 10 °C,
15 °C, 20 °C, 25 °C, 30 °C, 35 °C for 5 min each, 42 °C for
30 min, 45 °C, 50 °C, 55 °C for 10 min each. We cleaned
up first strand synthesis (FSS) reactions using both Micro
Bio-Spin P-30 RNase-free columns (Bio-Rad) and 1.8X
RNAclean SPRI bead purification (Agencourt). Fourth, we
performed second strand synthesis (SSS) using a biased
dACG-TP/dU-TP mix (Fermentas), 10 units of E. coli
DNA ligase (Invitrogen), 160 units of E. coli DNA polymer-
ase (Invitrogen), and 2 units of E. coli RNase H (Invitro-
gen), followed by 1.8X AmpureXP SPRI bead purification
(Agencourt). Fifth, we used an Illumina series KAPA
Library Preparation Kit (Kapa Biosystems) and bar-
coded Y-adapters developed by the Broad Institute
[Additional file 25] to end repair, A-tail, and ligate
adapters to each library. We added adapters in approxi-
mately 15-fold excess of library targets, and removed
un-ligated adapters and adapter-dimers using 1.0X
AmpureXP SPRI bead purification (Agencourt). Sixth,
we digested the dUTP-marked second strand at 37 °C
for 30 min, followed by 25 °C for 15 min, using Uracil-
Specific Excision Reagent (USER) enzyme (New England
Biolabs). Seventh, we amplified libraries for as few cycles
as necessary using a KAPA Real-Time PCR Library Ampli-
fication Kit (Kapa Biosystems) and PCR primers developed
by the Broad Institute [Additional file 25]. Each library ex-
cept for T6, T14, and TT8 required only four PCR cycles,
while T14 and TT8 required eight PCR cycles, and T6 re-
quired twelve PCR cycles. Following a 2 min denaturation
step at 98 °C, we cycled libraries using an ABI 7900
Real-Time PCR machine and the following 2-step program:
(1) denaturation at 98 °C for 20 sec, (2) annealing and
extension at 55 °C for 190 sec.
Finally, we quantified libraries using a KAPA Library

Quantification Kit (Kapa Biosystems) and an Agilent Bioa-
nalyzer High Sensitivity DNA Kit. We combined barcoded
libraries into two pools, and sequenced each pool on an
Illumina Hiseq 2000 machine (one lane per pool) using
101-bp, paired-end read technology. We prepared the
fifteen libraries used in this study in parallel (except for
real-time amplification). We used the FASTX-Toolkit
v0.0.13 to assess raw read quality. See Additional files 1
and 2 for a library preparation flowchart and a detailed
library preparation protocol, respectively.

Read processing, TopHat read alignment, and aligned
read benchmarking
We trimmed the last base from reads passing Illumina
filtering (PF) using Picard release 1.94 (SamToFastq).
We then aligned reads from each sample to the Plas-
moDBv10.0 reference genome using TopHat v2.0.9 and
the following parameters: −r 300 –mate-std-dev 100 –li-
brary-type fr-firststrand –i 70 –I 5000 –read-mismatches
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0 –segment-mismatches 0 –max-segment-intron 5000 –
max-coverage-intron 5000 –b2-very-sensitive –read-gap-
length 0 –read-edit-dist 0 –read-realign-edit-dist 0 –max-
deletion-length 0 –max-insertion-length 0 –max-multihits
2 –no-mixed –no-discordant [66]. These parameters spe-
cified an average fragment size of 300 bp with a standard
deviation of 100 bp, strand-specific reads prepared using
the dUTP method, and an expected intron size of 70–
5,000 bp. Also, to allow only perfect read pair mapping in
the expected orientation, and to report only two align-
ments for non-unique read pairs.
To remove non-unique reads, we then used SAMtools

v0.1.19 (view –q 10) to remove read pairs with a map-
ping quality of 10 or less, meaning at least a 10 % chance
that the read pair truly came from somewhere else in
the genome. We used SAMtools v0.1.19 (flagstat) to
compile the unique read alignment rate per sample. Sub-
sequently, we used RNA-SeQC hosted by Genepattern
to calculate the strand-specificity, exonic rate, intronic
rate, intergenic rate, gap rate, and coefficient of variation
of the top 1000, 2000, and 4000 expressed genes for each
set of aligned reads [67, 102]. We also used RSeQC to
calculate the rRNA rate and insert size of aligned reads,
and the GC content of rRNA-filtered, aligned reads [68].
We used the FASTX-Toolkit v0.0.13 to assess aligned
read quality.
We generated the mappability track displayed (in red) in

the Array Studio version 7.0 Genome Browser (OmicSoft
Corporation) screen shots using the following procedure:
(1) We shredded the PlasmoDBv10.0 genome (excluding
mitochondrial and apicoplast contributions) into every
possible 100mer sequence. (2) We used the R-project
Biostrings package to search for each 100mer sequence
in the PlasmoDBv10.0 genome. (3) We scored the
mappability of each 100mer by tallying the number of
exact matches possible. (4) Lastly, we viewed the mini-
mum mappability score of 100mers along the genome,
such that deviations above the baseline (score of one)
indicated regions where 100-bp single-end reads could
not uniquely align [Additional file 33]. We calculated
that 96.53 % of all possible 100mers in the Plas-
moDBv10.0 genome are unique. We used MUSCLE to
compute the pairwise sequence identity between
CLAG3.1 and CLAG3.2 coding regions (96.4 %) [103].

Cufflinks assembly
We used Cufflinks v2.1.1 to assemble aligned reads from
each sample into transfrags using the following parame-
ters: −library-type fr-firststrand –max-intron-length
5000 –overlap-radius 1 –min-isoform-fraction .25 –pre-
mrna-fraction .25 –min-frags-per-transfrag 50 –trim-3-
dropoff-frac .2 –frag-bias-correct [76]. These parameters
specified strand-specific reads prepared using the dUTP
method and a maximum intron size of 5,000 bp. Also, to
not merge transfrags, to filter minor isoforms less than
25 % as abundant as the major isoform, to ignore in-
tronic alignments if not as abundant as specified, to re-
quire at least 50 aligned read fragments per assembled
transfrag, to trim the 3’ end of assembled transfrags at
20 % of average coverage, and to run the built-in bias
correction algorithm prior to estimating transcript abun-
dance. We also specified a set of 374 short (<300 bp)
and/or structural RNAs (all PlasmoDBv9.3 transcripts
with class code: tRNA, rRNA, or snoRNA) to exclude
from assembly (and abundance estimation), such that
analyses relying on expression profiles correspond to
mRNAs [Additional file 34]. We used Cuffmerge to
parsimoniously merge assembled transfrags from each
sample into a final transcriptome assembly, with or
without incorporating PlasmoDBv10.0 annotated tran-
script models (RABT) [74].

Genome-guided trinity assembly
We merged all trimmed reads passing Illumina filtering
(PF), aligned merged reads to the PlasmoDBv10.0 gen-
ome using GSNAP release 2013-11-27, and then used
scripts from Trinity release 2013-11-10 to assemble a
genome-guided P.falciparum transcriptome (PASA re-
lease 2013-09-07, GMAP release 2013-11-27, Blat v34)
[75]. We specified a maximum intron size of 5,000 bp
and strand-specific reads prepared using the dUTP
method where appropriate. We also parsimoniously
merged the genome-guided Trinity assembly with
PlasmoDBv10.0 annotated transcript models (using
Cuffmerge [74]) to yield a Genome-guided Trinity
RABT assembly.

Assembly performance assessment
To assess Cufflinks and genome-guided Trinity assembly
performance, we used Cuffcompare to calculate the total
number of assembled transcripts, the number of inter-
genic transcripts, and the number of antisense tran-
scripts [74]. We also transformed assembly GTF files
into BED12 files, and used BEDTools v2.18.2 to investi-
gate assembly contiguity and chimerism [104]. We de-
fined contiguity as the rate of PlasmoDBv10.0 annotated
transcripts covered by one assembled transcript over at
least 90 % of the annotated transcript exonic length in
the correct orientation. We defined chimerism as the
rate of assembled transcripts that span more than one
PlasmoDBv10.0 annotated locus in the correct orienta-
tion. For contiguity rate, we used the following BED-
Tools command: < bedtools intersect –split –s –f .90 –
wa –wb –a PlasmoDBv10.0.bed12 –b Assembly.bed12 >.
For chimerism we used the following BEDTools com-
mand: < bedtools intersect –split –c –s –a Assem-
bly.bed12 –b PlasmoDBv10.0.bed12 >, followed by brief
post-processing.
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We next paired 5727 and 7736 assembled transcripts
from the Cufflinks and Cufflinks RABT transcriptomes,
respectively, with PlasmoDBv10.0 annotated transcripts,
and computed the Pearson correlation between paired
expression profiles. Previously unannotated assembled
transcripts (including antisense) were naturally excluded
from pairings. We calculated a median correlation of .98
and .99 for Cufflinks and Cufflinks RABT paired expres-
sion profiles, respectively. We also compared the follow-
ing properties of paired Cufflinks transcripts, paired
Cufflinks RABT transcripts, and PlasmoDBv10.0 anno-
tated transcripts: average of maximum FPKMs, average
of average FPKMs, average length, average GC content,
single exon rate, and maximum exon count. We only
considered exonic sequence in transcript length and GC
content calculations [Additional files 12 and 13].

Coding region prediction
We used TransDecoder release 2013-11-17 to predict
coding regions in the Cufflinks RABT transcriptome
[75]. TransDecoder identifies regions in spliced tran-
script models that likely encode peptides greater than
100 amino acids based on (1) a match to a Pfam domain
above the noise threshold or (2) a log-likelihood score of
a Markov model for coding DNA that is greater than
zero and greatest when calculated in the predicted open
reading frame. Using this approach, we predicted coding
regions in 5213 out of 5229 assembled protein-coding
transcripts at least 100 amino acids long (99.7 %), versus
just 7 out of 660 intergenic transcripts (1.1 %) and 11
out of 474 antisense transcripts (2.3 %).
To estimate the background rate of coding potential

detected by TransDecoder, we used BEDTools v2.18.2
(shuffle) to randomly generate 6600 size-matched inter-
genic intervals and 4740 size-matched antisense intervals
[75, 104]. Following minor post-processing, we paired
the shuffled regions with PlasmoDBv10.0 transcript
models (to train TransDecoder) and assessed coding
potential prediction. TransDecoder predicted coding
regions in 97 out of the 6600 random intergenic re-
gions (1.5 %) and 57 out of the 4740 random antisense
regions (1.2 %). We concluded from this analysis that
the rate of coding potential in the lncRNA transcript
sets was not significantly different from the background
rate in size-matched shuffled regions (Fisher’s exact
test, p-value = .493 for intergenic regions; Fisher’s exact
test, p-value = .053 for antisense regions).

Differential expression and regulation
To assess differential expression and regulation of both the
PlasmoDBv10.0 and the Cufflinks RABT transcriptomes,
we used Cuffdiff v2.1.1 and the following parameters: −li-
brary-type fr-firststrand –time-series –min-reps-for-js-test
1. These parameters specified strand-specific reads prepared
using the dUTP method, time course samples, and to not
require replication of all conditions. We again specified
a set of 374 short (<300 bp) and/or structural RNAs
(all PlasmoDBv9.3 transcripts with class code: tRNA,
rRNA, or snoRNA) to exclude from abundance estima-
tion, such that analyses relying on expression profiles
correspond to mRNAs [Dataset 32].
We instructed Cuffdiff to compare samples from the

56-hour time course harvested approximately 8 h apart
(T6 vs. T14, T14 vs. T24, T20 vs. T28, T24 vs. T32, T28
vs. T36, T32 vs. T40, T36 vs. T44, T40 vs. T48, T48 vs.
TT8) and to estimate biological variation across the
blood stage using the four replicated conditions [74].
Specifically, we considered the correlation matrix be-
tween sample profiles and paired R with T14 and T20,
ET with T28, LT with T32, and S with T40. We then
supplied these replicated conditions to Cuffdiff as samples
in addition to specifying the desired sample comparisons
described above. Finally, we used the Benjamini and
Hochberg method and a FDR cut-off of 5 % to threshold
significance [105].
After removing chimeric results, our analysis of the Cuf-

flinks RABT transcriptome predicted 3815 differentially
expressed genes, 127 alternative splicing events, and 81
cases of alternative promoter usage [Additional files 35, 36
and 37]. This included 354 significant intergenic lncRNA
loci (out of 647) and 69 significant antisense loci (out of
467). We noted an absence of strong correlation between
maximum sense and antisense partner expression [ρ = .19,
Additional file 38], which reiterated the strand-specificity
of our sequencing reads and the integrity of the antisense
signal. Analyzing the PlasmoDBv10.0 annotated transcrip-
tome alone predicted 4284 differentially expressed mRNA
genes.

GO term enrichment
We defined 1632 ring-specific genes as differentially
expressed, annotated genes with maximum expression
between 6–20 hpi during the 56-hour time course. Simi-
larly, we defined 1378 trophozoite-specific genes (24–36
hpi maximum expression) and 1274 schizont-specific
genes (40–48 hpi maximum expression). We converted
PlasmoDBv10.0 gene annotations to SangerDB P. falcip-
arum gene annotations, and then used GOstat and a
FDR cut-off of 1 % to search for biological process GO
terms significantly over-represented in the ring-specific,
trophozoite-specific, and schizont-specific gene sets [73].
See Additional file 7 for stage-specific gene sets and
results.
We intersected the 1381 predicted circRNA loci with

PlasmoDBv10.0 gene annotations to yield a circRNA-
producing gene set, and used an analogous approach to
search for significantly over-represented GO terms. In
the circRNA GO term analysis, we included biological
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process, molecular function, and cellular component re-
sults [Additional file 28].

Sample staging and expression profile visualizations
To visualize sample similarities on a transcriptome-wide
scale, we first constructed a distance matrix of sample
expression profiles as follows: (1) we only considered
contributions from the 5077 annotated mRNAs with an
FPKM rising above one during the 56-hour time course,
(2) we transformed FPKM values as log2(FPKM+ 1), (3)
we computed the Pearson correlation (ρ) matrix between
sample expression profiles, and (4) we transformed this
matrix as (1- ρ)/2. We then used MDS as implemented by
the R-project cmdscale function to visualize sample ex-
pression profile similarities in two dimensions.
To visualize differentially expressed, annotated mRNA

expression profile dynamics during the 56-hour time
course, we followed steps 1–2 as above using the 4284
differentially expressed mRNA genes, and then used the
circularmap function distributed in the R-project Neat-
Map package [Additional file 39] [71]. The NeatMap
package implements the non-metric MDS algorithm
previously proposed by Taguchi and Oono [71, 106]. We
used the more traditional make.heatmap1 function dis-
tributed in the R-project NeatMap package to compare
the expression profiles of lncRNAs and annotated
mRNAs (FPKM >0) during the 56-hour time course.

Upstream motif prediction
To search for regulatory motifs amongst co-expressed
transcripts, we extracted the 1 kb of (+) strand sequence
upstream from both assembled mRNA and lncRNA
transcripts (excluding chimeras). We then searched both
strands using a standalone installation of the RED2 motif
prediction algorithm [79]. We selected RED2, as this
clustering-free approach has both recently been applied
to P. falciparum and shown to detect motifs that cluster-
ing based approaches did not. We specified the mutual
information scoring function, a maximum motif size of
15, to perform profile normalization, and to use 100 ran-
dom replicates in estimating the global FDR. This analysis
returned 66 significant motifs (FDR 0.001), many shared
between mRNAs and lncRNAs. Our results are included
in Additional file 19.

Stage specificity score
To summarize transcript stage specificity in a single
quantitative metric, we calculated a maximum transcript
specificity score that is based on the Jensen-Shannon
(JS) divergence. This metric has been fully described by
Cabili et al. and was used by this group to annotate the
tissue specificity of human intergenic lncRNA tran-
scripts [107]. Specifically, we calculated specificity scores
for each transcript, inspected the top 5 % most stage-
specific transcripts, and compared transcript specificity
scores by transcript class. We normalized transcript
expression levels as in Cabili et al. and used the shan-
non.entropy, JSdistVec, and JSdistFromP functions im-
plemented in the R-project CummeRbund package,
except that we used a logarithmic base of two in the
Shannon entropy calculation to match the Cabili et al.
methods [74, 107]. We also performed this analysis on
the set of 1619 annotated mRNAs with an average
FPKM of less than 20 (set metrics: average of average
FPKMs 1.95; average of maximum FPKMs 4.3).
Corroborating our visual observations, each telomere-

associated lncRNA-TARE transcript was in the set of top
stage-specific transcripts [column R in Additional files
15 and 16]. However, global comparisons of lncRNA
specificity scores and mRNA specificity scores were less
conclusive; lncRNAs appeared to be more stage-specific
than the full set of annotated mRNAs, but this difference
was not clear when we compared lncRNAs to only lowly
expressed mRNAs [Additional file 40]. Thus, while the
specificity metric accurately summarized the increased
stage specificity of certain transcripts, such as the
telomere-associated lncRNA-TAREs, further compari-
sons will be necessary to make any global conclusions as
to the increased or equivalent specificity of P. falciparum
lncRNAs versus mRNAs.

Expression correlation
To generate a null distribution of location-independent
gene pair correlation, we investigated the Pearson correl-
ation during the 56-hour time course between 50,000
random PlasmoDBv10.0 mRNA gene pairs. We then
computed the Pearson correlation between 5251
mRNA-neighboring gene pairs, 498 intergenic lncRNA-
neighboring gene pairs, and 445 sense-antisense gene
pairs, and compared these distributions to the null dis-
tribution of location-independent gene pair correlation.
To be consistent, we defined the neighboring gene of both
mRNAs and intergenic lncRNAs as their more correlated
neighboring mRNA (unless otherwise specified). We ex-
cluded gene pairs from analysis when one of the genes
was a short and/or structural RNA [Additional file 34], or
otherwise had a FPKM of zero during the 56-hour time
course. Also, we excluded the result if the more or less
correlated neighbor of an intergenic lncRNA was another
intergenic lncRNA.
Using this approach, we found a significant shift to-

wards positive correlation in the case of both mRNA-
neighboring genes and intergenic lncRNA-neighboring
genes (Wilcoxon rank sum p-value < 2.2e-16 in both
cases), and a significant shift towards negative correl-
ation in the case of sense-antisense genes (Wilcoxon
rank sum p-value = 3.834e-11). Our results also indicated
that lncRNA-neighboring gene pairs were significantly
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more highly correlated than mRNA-neighboring gene
pairs (Wilcoxon rank sum p-value < 2.2e-16). We pur-
sued this result further. See Additional file 20 for details.

LncRNA length, GC content, and antisense relative
location
We only considered exonic sequence in lncRNA transcript
length and GC content calculations. However, we included
both intronic and exonic sequence in the antisense
transcript location and annotated gene body length
normalizations.

LncRNA primer design
We designed PCR primers using AlleleID v7.6 software
(Premier Biosoft International) to validate the exon
structure of the five-exon Apicoplast RNA methyl-
transferase precursor antisense transcript, three-exon
ETRAMP antisense transcript, and five-exon PfGDV1
antisense transcript shown in Fig. 4. Except when noted
in Additional file 25, we added a tail consisting of the T7
promoter sequence 5’-TAA TAC GAC TCA CTA TAG
GG-3’ and 5’-TAG TAG TAG TAG-3’ to reverse
primers, and a tail consisting of the M13F(−47) sequence
5’-CGC CAG GGT TTT CCC AGT CAC GAC-3’ and
5’-TAG TAG TAG TAG-3’ to forward primers. This
allowed us to directly sequence PCR amplicons using uni-
versal T7 or M13F(−47) primers. Primer and expected
amplicon sequences are listed in Additional file 25.

LncRNA PCR and Sanger sequencing
We reverse transcribed 50 ng of total RNA from time
course 2 time-points using SuperScript III (Invitrogen)
and random hexamers (Invitrogen), and digested result-
ing cDNAs with 2 units of RNase H (Invitrogen). We
then used the TaKaRa HotStart LA Taq polymerase
(Clontech) and cDNA templates with the highest FPKM
measurements for each targeted lncRNA [Additional
files 16 and 25]. We cycled reactions as follows: 95 °C
for 2 min, 35 cycles of 95 °C for 15 sec, 55 °C for 3 min,
60 °C for 3 min, 60 °C for 7 min, 65 °C for 7 min, 72 °C
for 7 min. We gel-extracted products of the expected
size at room temperature (Qiagen MinElute Kit), se-
quenced amplicons using GeneWiz services, and ana-
lyzed sequence chromatograms using Geneious v7.1.7
software (Biomatters) [108]. Amplicon size supported all
10 junctions, and Sanger sequencing read quality was
sufficient in 9 cases. See Additional file 26 for diagrams
showing Sanger sequencing read coverage and quality
across targeted lncRNAs.

CircRNA prediction
We predicted 1381 P. falciparum circRNAs using the
methods developed by Memczak et al. [55]. In brief, we
aligned reads to the PlasmoDBv10.0 genome using
Bowtie v2.1.0, and used circBase v1.0 scripts to split
high-quality unaligned reads into anchors, subsequently
screening anchors for linear or head-to-tail (circular)
splicing. To get a reasonable set of circRNA candidates,
we used the default circBase filtering suggestions, except
for specifying a minimum circRNA size of 100 bp and a
maximum circRNA size of 10,000 bp.

Human microRNA binding site prediction in coding
regions
For human microRNA binding site prediction in coding
regions, we used the recently described PACCMIT-cds
algorithm and the human microRNA v18 database (pro-
vided with the PACCMIT-cds distribution) [88]. The ad-
vantage of PACCMIT-cds is an improved background
model that preserves both amino acid sequence and
codon usage. We note, however, that the background
model and significance calculations are not tuned for
non-coding elements, and thus should be ignored or
interpreted with caution in these cases. We first
searched our six validated P. falciparum circRNA tran-
scripts, and found that each candidate had predicted
binding sites [Additional file 31]. Intrigued by this result,
we then searched across PlasmoDBv10.0 transcripts and
found thousands of significant hits (10e6 precision)
[Additional file 32].

CircRNA expression correlation
To estimate whether the transcript levels of validated
circRNAs tracked with the transcript levels of their re-
spective linear mRNAs, we first multiplied the circRNA
read counts per time-point by a library normalization
factor. We defined the normalization factors as the max-
imum number of reads passing filtering in any time-
point divided by the number of reads passing filtering in
each time-point. We then computed the Pearson correl-
ation between normalized circRNA read count profiles
and respective linear mRNA log2(FPKM + 1) expression
profiles [Column Q in Additional file 27]. As P. falcip-
arum circRNAs appeared to be represented with far
fewer reads than their linear mRNA counterparts, we
were not concerned about circRNA read contributions
to FPKM measurements.

CircRNA primer design
We designed convergent and divergent PCR primers for
nine P. falciparum genes with predicted circRNAs using
AlleleID v7.6 software (Premier Biosoft International).
Furthermore, we designed divergent forward primers as
the reverse complement of convergent reverse primers,
and divergent reverse primers as the reverse comple-
ment of convergent forward primers. We then added a
tail consisting of the T7 promoter sequence 5’-TAA TAC
GAC TCA CTA TAG GG-3’ and 5’-TAG TAG TAG
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TAG-3’ to all forward primers, and a tail consisting of
the M13F(−47) sequence 5’-CGC CAG GGT TTT CCC
AGT CAC GAC-3’ and 5’-TAG TAG TAG TAG-3’ to all
reverse primers. This allowed us to directly sequence
both divergent and convergent PCR amplicons using uni-
versal T7 or M13F(−47) primers. Primer and expected
amplicon sequences are listed in Additional file 29.

CircRNA PCR and Sanger sequencing
We reverse transcribed 50 ng of total RNA from time
course 1 and time course 2 time-points using SuperScript
III (Invitrogen) and random hexamers (Invitrogen), and
digested resulting cDNAs with 2 units of RNase H
(Invitrogen). We then used the KAPA HiFi HotStart
polymerase (Kapa Biosystems) with cDNAs from time
course 1, cDNAs from time course 2, P. falciparum
gDNA (~30 ng), or water as the template. For each cir-
cRNA candidate, we tested two cDNAs (one from each
time course) corresponding to the libraries with the
maximum number of circRNA-specific read counts
[Additional files 27 and 29]. We cycled convergent re-
actions as follows: 95 °C for 3 min, 35 cycles of 98 °C
for 20 sec, 55 °C for 15 sec, ramp to 65 °C at 0.2 °C/sec,
65 °C for 15 sec, 65 °C for 7 min, 68 °C for 7 min, 72 °C
for 7 min. We cycled divergent reactions equivalently,
except that we performed an additional 5 cycles.
Convergent reactions yielded a product of the ex-

pected size (with positive Sanger sequencing) for 9/9
genes using time course 1 cDNAs, 8/9 genes using time
course 2 cDNAs, and 7/9 genes using gDNA. Divergent
reactions yielded a product of the expected size (with
positive Sanger sequencing) for 6/9 genes using time
course 1 cDNAs, 5/9 genes using time course 2 cDNAs,
and 0/9 genes using gDNA. We gel-extracted products of
the expected size at room temperature (Qiagen MinElute
Kit), sequenced amplicons using GeneWiz services, and
analyzed sequence chromatograms using Geneious v7.0.6
software (Biomatters) [108]. See Fig. 5D and Additional
file 30 for divergent amplicon sequencing results.

Availability of supporting data
The data set supporting the results of this article is avail-
able in the NCBI Gene Expression Omnibus repository
[109], GSE57439 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE57439).
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DNA; MCA2: Metacaspase-like protein; PNA: Peptide nucleic acid; FSS: First
strand synthesis; SSS: Second strand synthesis; USER: Uracil-Specific Excision
Reagent; PF: Passing Illumina filtering; JS: Jensen-Shannon; TARE: Telomere-
associated repetitive element.
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