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Abstract

Background: Genome-wide association studies (GWAS) have become a common approach to identifying single
nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint
effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint
effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test
association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which
may contain only a portion of SNPs with effects on the disease. Therefore, a challenge for the multi-SNP analysis
is how to effectively select a subset of SNPs with promising association signals from the SNP set.

Results: We developed the Optimal P-value Threshold Pedigree Disequilibrium Test (OPTPDT). The OPTPDT uses
general nuclear families. A variable p-value threshold algorithm is used to determine an optimal p-value threshold
for selecting a subset of SNPs. A permutation procedure is used to assess the significance of the test. We used
simulations to verify that the OPTPDT has correct type I error rates. Our power studies showed that the OPTPDT
can be more powerful than the set-based test in PLINK, the multi-SNP FBAT test, and the p-value based test
GATES. We applied the OPTPDT to a family-based autism GWAS dataset for gene-based association analysis
and identified MACROD2-AS1 with genome-wide significance (p-value= 2.5 × 10− 6).

Conclusions: Our simulation results suggested that the OPTPDT is a valid and powerful test. The OPTPDT will
be helpful for gene-based or pathway association analysis. The method is ideal for the secondary analysis of
existing GWAS datasets, which may identify a set of SNPs with joint effects on the disease.
Background
Genome-wide association studies (GWAS) have become
a common approach to identifying single nucleotide
polymorphisms (SNPs) associated with complex diseases.
Traditional GWAS analysis tested individual SNPs
associated with the disease. However, the significant
SNPs only explained a small portion of heritability of the
complex traits [1]. Complex diseases, such as hypertension,
diabetes, and Alzheimer disease, are caused by the joint
effects of multiple genes, while the effects of individual
genes or SNPs are modest. The statistical power for
identifying single SNPs with small effects can be low.
Therefore, a method that considers the joint effects of
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multiple SNPs will be more powerful than the single-
SNP test.
There have been many multi-SNP association tests

proposed for genetic studies. Han and Pan [2] classified
the multi-SNP tests for unrelated cases and controls into
five categories. Methods in the first three categories
compare the difference in allele frequencies [3, 4],
Hardy-Weinberg disequilibrium [5], and linkage dis-
equilibrium (LD) [6] between cases and controls.
Methods in the other two categories are based on the
genomic distance-based regression [7] and haplotype
similarity approaches [8, 9]. Moreover, haplotype-based
tests [10], which compare the difference in haplotype fre-
quencies between cases and controls, can be classified in
the same category of methods that compare the difference
in allele frequencies.
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Many family-based multi-SNP association tests are also
available. A multi-SNP test [11] similar to the Hotelling-T2

test based on the single-SNP FBAT statistics [12] and a
multi-SNP statistic [13] based on combining the weighted
single-SNP FBAT statistics were developed. These methods
can be classified into the category of comparing allele
frequencies between affected siblings and controls (such as
parents and unaffected siblings). The LD-based approach
was also extended to a family-based method by comparing
LD patterns between affected siblings and controls
[14]. The transmission disequilibrium test (TDT) [15] was
extended to multi-SNP tests based on the haplotype
similarity approaches [16, 17]. Finally, several haplotype-
based tests were also developed for analyzing family
data [18–20].
Biological functions, such as genes or pathways, are

commonly used to define SNP sets in the multi-SNP
analysis. The multi-SNP analyses which select SNPs
based on genes and pathways are referred to as the
gene-based and pathway-based analyses, respectively.
Current gene-based or pathway-based methods can be
divided into three categories based on the data they use:
case–control [21, 22], family [11, 23], and p-value based
methods [24, 25]. Case–control and family-based methods
use raw genotypes in unrelated cases and controls and
families, respectively, while the p-value based methods use
p-values from single-SNP association tests. One of the
advantages for methods using raw genotypes is that
permutation can be used to account for LD between SNPs
and to correct for gene or pathway sizes. In contrast,
p-value based methods have the advantages of accom-
modating different study designs, and p-values are easier
to share in a consortium than the raw genotypes [26].
Gene or pathway-based methods provide biologically

meaningful ways to select a set of SNPs within a gene or
a pathway for the multi-SNP analysis. However, testing
all the SNPs in the set may decrease the statistical
power, particularly when there is only a portion of the
SNPs that have effects on the disease in a large gene or
a large pathway. Tag SNPs, which can predict the genotypes
at other SNPs that are in LD with the tag SNPs, were used
to select a representative subset of SNPs in a multimarker
test [11] (implemented in the FBAT package). The
multimarker test was shown to have similar power
with the Bonferroni-Holm [27] method that controls
family-wise error rate (FWER). A truncated product
method [28] (referred to as the threshold method)
was proposed to select SNPs with single-SNP p-values
less than the pre-specified threshold in the set, and to test
association only on the selected SNPs. A permutation or a
Monte-Carlo simulation approach was used to account
for LD between the SNPs and to obtain the p-value for
the test. This method was more powerful than the
methods that combined p-values for all of the SNPs in the
set, such as Fisher’s method for combining p-values, and
also more powerful than the method that controls FWER,
such as Simes test [29]. A similar approach to the trun-
cated product method was implemented in PLINK [30]
(with the –set-test option), which used case–control or
family genotype data in the analysis.
While the threshold method provides a powerful

approach to the multi-SNP analysis, a p-value threshold
needs to be specified before the analysis can be performed.
In practice, the p-value threshold is usually specified as
0.05 (the default value in PLINK), even though this
threshold may not be optimal. For example, if most of the
causal SNPs have p-values less than 0.01, using a p-value
threshold of 0.01 can result in higher power than using a
p-value threshold of 0.05. The PLINK test can only use
families with two parents and one affected children (triad)
or families with one affected and one unaffected sib
(discordant sib pair). However, general nuclear families
with multiple siblings were sampled in many family-based
studies [31–33] and the PLINK test could not adequately
analyze these studies. Thus, a multi-SNP test that uses
general nuclear families is essential.
We developed the optimal p-value threshold pedigree

disequilibrium test (OPTPDT) to accommodate general
nuclear families without a pre-specified p-value thresh-
old. The OPTPDT uses a variable threshold algorithm to
select SNPs with the strongest association signal. The
OPTPDT method is based on the Pedigree Disequilibrium
Test (PDT) [34], which can use general nuclear family
structures. The method is not restricted to a single gene
analysis, but can be applied to a gene-set or pathway
analysis. We used simulations to demonstrate that the
OPTPDT test has correct type I error rates under
different scenarios. Further, we compared the power for
the OPTPDT test with the set-based test in PLINK, the
multi-SNP FBAT test, and the p-value based test GATES
[25], under different scenarios. Finally, we applied the
OPTPDT to the Autism Genome Project (AGP) family
GWAS dataset for gene-based association analysis, and
identified the MACROD2-AS1 gene with genome-wide
significance for autism.

Methods
Pedigree disequilibrium test (PDT)
The OPTPDT was developed based on the PDT statistic.
Therefore, we first review the PDT statistic. Two types
of families, including the informative nuclear families
and the informative discordant sibships, are considered
in the PDT. At a SNP, an informative nuclear family con-
sists of at least one triad, and each triad has one affected
child as well as two genotyped parents, where one or both
parents are heterozygous. An informative discordant
sibship has at least one discordant sib pair (DSP), and
each DSP has one affected as well as one unaffected
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sibling with different genotypes at the SNP. Here we
consider families that contain an informative nuclear
family and/or an informative discordant sibship.
Consider two alleles, A1 and A2, at the SNP. For an

affected child, there is a pair of alleles transmitted and not
transmitted to the child from a parent. Define ran-
dom variables XTi and XSj for a triad i and a DSP j,
respectively, as:

XTi ¼ number of A1 transmittedð Þ − number of A1 not transmittedð Þ

XSj ¼ number of A1 in affected sibð Þ − number of A1 in unaffected sibð Þ

within a nuclear family.
Let nT be the number of triads and nS be the number of

DSPs in the nuclear family. Then XT and XS are defined as

XT ¼
XnT

i¼1
XTi and XS ¼

XnS

j¼1
XSj , respectively. The

PDT statistic for the nuclear family was previously
described by [34] and is defined as D ¼ 1

nTþnS
XT þ XSð Þ .

If there are N nuclear families, then the PDT statistic for
the SNP is defined as:

T2 ¼
XN

i¼1
Di

� �2

XN

i¼1
Di

2
ð1Þ

Under the null hypothesis of no linkage or no association,
T2 is asymptotically chi-square, with 1 degree of freedom.
The statistic takes into consideration minor alleles with risk
or protective effects since the statistic takes a squared
value.

Optimal threshold pedigree disequilibrium test (OPTPDT)
Assume there are n SNPs in a pre-defined chromosomal
region. The region can be defined by the biological func-
tions, such as introns, exons, genes, or pathways. Thus, our
method is not restricted to a single gene analysis, but can
be applied to a gene-set or pathway analysis. The null
hypothesis for the test is that none of the SNPs in
the region are associated with the disease. For each SNP
in the region, the PDT statistic and its corresponding
p-value is calculated. We define four variable p-value
thresholds (i.e. 0.05, 0.03, 0.01, and 0.005), and SNPs
with p-values less than each of the thresholds are selected.
For a p-value threshold k, let Lk be a vector containing the
PDT statistics with p-values < k. The test statistic Yk for
threshold k is defined as the sum of all the PDT statistics
in Lk. If no PDT statistics have p-values less than threshold
k, Lk is an empty set and Yk is not calculated.
Our goal is to select an optimal threshold k so that

Lk contains the SNPs with the most significant associ-
ation signal over the four possible values of k. However,
each Yk is not directly comparable because Yk has a differ-
ent distribution for each k. Therefore, we standardize Yk
to a Z-score, which is calculated as Zk ¼ Y k−μk
σk

, where μk
and σk are the mean and standard deviation for Yk under
the null. We use a permutation procedure to generate the
statistics under the null for Yk and estimate μk and σk
based on the null statistics. For a permutation, we ran-
domly permute the transmitted and non-transmitted al-
leles from parents to all children simultaneously for each
family, and the PDT statistic for each family is calculated.
We perform the permutations for m times, and each per-
mutation j results in a permuted statistic Ykj . Then the esti-

mates for μk and σk are calculated as bμk ¼ Xm

j¼1
Ykj=m

and bσk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1
Ykj− bμk� �2

= m−1ð Þ
q

, respectively. The sta-

tistics Yk and Ykj are standardized as Zk and Zkj , respect-
ively, based on μ̂k and σ̂k for each k. Finally, we define the
OPTPDT statistic M as max(Z0.05,Z0.03,Z0.01,Z0.005) and
for each permutation j, Mj ¼ max Z0:05j ; ;Z0:03j ; ;Z0:01j

�
; ;

Z0:005jÞ . The p-value for the OPTPDT is calculated as the
number of Mj ≥ M divided by m.
The OPTPDT algorithm is summarized as follows.

1. For each SNP in the region, calculate the PDT
statistic, T2, and its corresponding p-value.

2. Assume the variable p-value thresholds are 0.05,
0.03, 0.01, and 0.005. Select the SNPs with p-values
less than each of the thresholds. For threshold k,
Lk ¼ T 1

2; ;T 2
2;…; ;Tnk

2
� �

, where Ti
2 is the PDT

statistic T2 for SNP i with a p-value < k, and nk is
the number of SNPs in Lk with p-values < k .

3. For each Lk, calculate Yk ¼
Xnk

i¼1
Ti

2.

4. Perform the permutation procedure for m times. For
each permutation j, repeat steps 2–3, and obtain Ykj .

5. Standardize the statistics Yk and Ykj in each
permutation based on the m permuted statistics, and
obtain Zk and Zkj for each k.

6. Select M = max (Z0.05,Z0.03,Z0.01,Z0.005). For each
permutation j, select Mj = max (Z 0.05 j Z 0.03 j Z 0.01 j

Z 0.005 j

7. The p-value is calculated as
number of Mj≥Mð Þ

m .

When the transmitted and non-transmitted alleles are
permuted, the permutation simply results in a sign
change in the PDT statistic. That is,

D ¼ 1
nT þ nS

XT þ XSð Þ ¼ −
1

nT þ nS
X Tð Þ þ X Sð Þ
� � ð2Þ

where X(T) and X(S) are the permuted statistics. The
argument is still true when there are different numbers
of affected and unaffected siblings. This property allows
us to perform permutations even when parents are
missing by simply permuting the sign of the PDT
statistic for the family. Similarly, if we permute the



Wang et al. BMC Genomics  (2015) 16:381 Page 4 of 10
transmitted and non-transmitted haplotypes at multiple
SNPs, the permutations simply result in sign changes in
the statistics D for all of the SNPs. Thus, we permute the
signs of the PDT statistics for all SNPs simultaneously so
that LD among SNPs can be maintained. These important
properties of the algorithm are demonstrated in detail in
Additional file 1. Also note that linkage is maintained by
permuting the transmitted and non-transmitted alleles
from parents to all children simultaneously in a family, as
the identity-by-descent (IBD) status between children is
not affected by the permutation.
Simulations
We used simulation studies to evaluate the type I error
and the power of the OPTPDT. Our simulation proce-
dures occurred in two steps. In the first step, we used
HAPGEN version 2 [35] to simulate haplotypes with al-
lele frequencies and LD structures that were similar to
the data collected from the European population in the
HapMap Project [36]. We randomly selected 10 genes
on chromosome 1 for the simulated regions. A total of
10,000 haplotypes in the 10 genes were simulated. In the
second step, SeqSIMLA [37] was used to simulate
nuclear families based on the 10,000 haplotypes. Seq-
SIMLA performed random mating and gene dropping
based on the 10,000 haplotypes to generate pedigrees.
We used the prevalence model in SeqSIMLA to simulate
the disease status. In the prevalence model, the odds
ratios for the disease loci and disease prevalence were
specified. A logistic penetrance function described as
follows was used to determine the affection status.

P Affected jXð Þ ¼ exp α þ BXð Þ
1þ exp α þ BXð Þ , where X is a vector of

genotype coding based on the additive, dominant or re-
cessive disease model, for the n disease SNPs X1,…,
Xn; α is used to determine the disease prevalence;
B = (β1,…, βn) represents the effect sizes for the disease
SNPs. The disease prevalence was specified as 5 %.
We simulated different sample sizes (500 and 1000

families), family structures (nuclear family, triad, and
discordant sibship), and different numbers of genes
(1 and 10 genes). In a nuclear family, there were two
parents and three siblings, which had one affected
sibling and two unaffected siblings. A triad consisted
of two parents and one affected sibling. A discordant
sibship had two missing parents and one affected sibling
and two unaffected siblings. There were 46 SNPs in 1 gene
and 1207 SNPs in the 10 genes. For the type I error
simulations, none of the SNPs in the region were
associated with the disease. For the power simulations, we
simulated different odds ratios (1.1, 1.2, and 1.3) for the
disease SNPs, different disease models (recessive, additive,
and dominant), and different numbers of disease SNPs
(5 and 10). The odds ratios for all disease SNPs were
assumed to be the same. The disease SNPs were
randomly selected from the SNPs that were not in LD,
with minor allele frequencies (MAF) > 1 %. The MAF for
the 5 disease SNPs were 0.1, 0.13, 0.2, 0.4, and 0.42, while
the MAF for the 10 disease SNPs were 0.04, 0.05, 0.1, 0.1,
0.13, 0.2, 0.37, 0.4, 0.42, and 0.43.
We compared the power of the OPTPDT with two

other family-based multi-SNP tests, PLINK and FBAT
[11], and a p-value based method, GATES [25], under
different scenarios. PLINK is also a threshold method
that uses a default p-value threshold (i.e., 0.05). The
FBAT uses all of the SNPs or a pre-selected tag SNPs in
the set for a multivariate test. GATES uses an extended
Simes procedure to calculate an overall p-value for a
set of p-values obtained from single-SNP association
tests. The PDT was used to calculate the single-SNP
association p-values for GATES. Because PLINK can
only use triads or DSPs, we simulated triads for the
power comparison. Tag SNPs, selected based on the “LD
based SNP pruning” function in PLINK, in a simulated
region were used for FBAT.

Real dataset analysis
We applied the OPTPDT to a GWAS dataset from the
Autism Genome Project (AGP) [38–40]. The dataset
containing the genotype and phenotype information was
downloaded from dbGaP (accession phs000267.v4.p2).
Samples in the data were recruited from North America
and Europe. The dataset consisted of nuclear families
collected from two stages. The stage 1 data contained
about 1400 autism spectrum disorder (ASD) families
genotyped on the Illumina Infinium 1 M-single SNP
array, while the stage 2 data consisted of 1301 ASD
families genotyped on either the Illumina Infinium
1 M-single or the Illumina 1 M-duo array. The combined
data from both stages were used for the analysis. Strict
autism as defined in the phenotype file provided by the
Project was used for the phenotype in the analysis.
Written informed consent for participation in the AGP
study was obtained from all participants and research in
the AGP study was approved by institutional review
boards from all institutions involved in the AGP study
[39]. The analysis in the present study was approved by
the Institutional Review Board (IRB) of the National
Health Research Institutes in Taiwan (IRB protocol #
EC1020503-E). The same quality control (QC) procedures
as described in [38] were applied to the combined data.
Families clustered with the European samples in the
HapMap project based on the principal component
analysis performed using the SNPRelate package [41] were
extracted. After QC, our analysis dataset consisted of 1192
families with 1206 children diagnosed with strict autism
and 2384 unaffected individuals and 822,668 SNPs. We
downloaded the hg18 gene annotations from the UCSC
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genome browser website [42]. SNPs within each gene
were defined as a test set. There were 17,016 genes used
in the analysis, and a total of 368,584 SNPs were mapped
to the genes.

Results and discussion
Type I error and power
Figure 1 shows the type I error rates under different
scenarios (such as different family structures, numbers
of families, and numbers of genes) at the significance
levels (α) of 0.05 and 0.01. The type I error rates for the
OPTPDT are close to the nominal levels, and all of the
95 % confidence intervals contain the expected levels.
We compared the power for the OPTPDT test with

PLINK, FBAT and GATES under different scenarios.
The default parameter setting was 500 triads, 5 disease
SNPs with the odds ratios of 1.2, an additive model, and
1 gene for testing. Parameters were changed one or two
at a time for each simulation scenario. Figure 2 shows
the power comparison when the disease SNPs have
different odds ratios of (1.1, 1.2, and 1.3) based on 500
and 1000 triads, respectively. The power for the OPTPDT
is higher than PLINK, FBAT, and GATES with different
odds ratios for either 500 or 1000 triads. As expected, the
power for the four tests increased when the odds ratios
increased for the disease SNPs. Figure 3 shows the power
comparison with 5 and 10 disease SNPs. A similar power
pattern was observed that the OPTPDT has the highest
power compared to PLINK, FBAT, and GATES with 5 or
10 disease SNPs. The power for all the tests increased
when more disease SNPs were simulated.
Figure 4 shows the power comparison in the recessive,

additive, and dominant models. Again, the OPTPDT
maintains the highest power under different disease
models, except that GATES has slightly higher power
than the OPTPDT under the recessive model at the
Fig. 1 Type I error rates under different scenarios at α = 0.05 and 0.01. The
error rates
0.05 significance level. As seen in Figs 1, 2, 3 and 4,
FBAT has the lowest power compared to the OPTPDT,
PLINK, and GATES in many of the scenarios. More-
over, interestingly, GATES, a p-value based test, is
more powerful than PLINK and FBAT, which use raw
genotypes, in these simulation scenarios.
Figure 5 shows the power comparison for a region that

has 10 genes. A total of 10 disease SNPs were simulated
with the same odds ratios of 1.2, 1.25 and 1.3. Similar to
the observations for 1 gene, the OPTPDT has higher
power than PLINK, FBAT, and GATES in all of the
scenarios. FBAT has no power with 500 families, due to
the large degrees of freedom for the multivariate test, and
GATES also has relatively low power with 500 families,
compared to the OPTPDT and PLINK. These results
suggest that there is an advantage to selecting a promising
subset of SNPs for analysis, particularly when the pro-
portion of causal SNPs is small in the set of SNPs that
are analyzed. We also randomly selected another 5 and
10 disease SNPs that were not in LD with MAF > 1 %
for the power simulations, and found similar power
patterns (Data not shown). Therefore, our power
results represent a general power pattern for testing
the joint effects of SNPs with MAF > 1 % for different
methods compared in this study given the simulation
settings.

AGP analysis
We applied the OPTPDT to the AGP GWAS dataset. The
10 most significant genes based on the OPTPDT p-values
are shown in Table 1. The p-value for the most significant
gene, MACRO domain containing 2 antisense RNA 1
(MACROD2-AS1), passed the multiple testing threshold
of 2.93 × 10− 6 for testing 17,016 genes. We show the
association p-values for the individual SNPs and their LD
structures in MACROD2-AS1 in Fig. 6. As seen in the
error bars represent the 95 % confidence intervals for the type I



Fig. 2 Power comparison for different odds ratios (1.1, 1.2, and 1.3) and different numbers of triads (500 and 1000) at the significance levels (α) of
0.05 and 0.01
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Figure, two SNPs, rs14135 and rs1475531, in the gene
show highly significant marginal p-values of 9.33 × 10− 7

and 7.08 × 10− 7, respectively, while other SNPs, such as
rs6135305 with p-value of 3.63 × 10− 3, rs2423846 with
p-value of 4.27 × 10− 2, rs1408428 with p-value of
1.77 × 10− 2, and rs6079611 with p-value of 3.83 × 10− 3,
also show some marginal significance. However, none
of the p-values for the SNPs in the gene would pass
the commonly used genome-wide multiple-testing
threshold (i.e., 5 × 10− 8) for individual SNP analysis.
We also show the GATES, PLINK and FBAT p-
values for the 10 genes. The GATES, PLINK and FBAT
test p-values were also significant (p-value < 0.05) for most
of the 10 genes.
Fig. 3 Power comparison for different numbers of disease SNPs
(5 and 10) at the significance levels (α) of 0.05 and 0.01
Discussion
PLINK requires a user-specified p-value threshold while
the OPTPDT automatically identifies an optimal threshold
for selecting a subset of promising SNPs for the analysis.
The OPTPDT uses four variable p-value thresholds
(i.e. 0.05, 0.03, 0.01, and 0.005) to select SNPs. More
thresholds can be incorporated in the OPTPDT for
the SNP selection based on the same algorithm. However,
increasing the number of thresholds will increase the
computational complexity in the algorithm. Further, we
evaluated the power for the OPTPDT which uses ten
p-value thresholds (0.05, 0.04, 0.03, 0.02, 0.01, 0.009,
0.007, 0.005, 0.003, and 0.001) based on the default
setting in the power simulations, and found that the
Fig. 4 Power comparison under different disease models (recessive,
additive, and dominant) at the significance levels (α) of 0.05 and 0.01



Fig. 5 Power comparison with different odds ratios (1.2, 1.25, and 1.3) for 10 disease SNPs at 10 genes at the significance levels (α) of 0.05 and 0.01
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power is similar to the power for the OPTPDT using
the four thresholds (Data not shown). Therefore,
when the four thresholds were used, the OPTPDT
was still capable of identifying an optimal set of SNPs
based on the simulations.
Although the permutation strategy of permuting the

transmitted and non-transmitted alleles in families were
used in other family-based association tests [43, 44], the
property of the permutation procedure with the test
statistic has not been explored in detail. We discussed the
property of the permutation procedure in Additional file 1
in different situations, such as permutations at one SNP or
multiple SNPs in LD, families with different numbers of
affected and unaffected siblings, and recombination
between SNPs. The general conclusion is that permuting
the transmitted and non-transmitted haplotypes in a region
from parents to all siblings results in simultaneous sign
changes in single-SNP PDT statistics for all markers in the
Table 1 The 10 most significant genes in the AGP analysis for autism

Chromosome Gene Number of SNPs

20 MACROD2-AS1 16

1 CYMP 11

5 CAPSL 18

13 LINC00548 7

18 IMPA2 28

3 GMNC 2

11 LUZP2 206

17 KRTAP4-6 1

17 ERN1 16

2 IRS1 18
region. This important property can be applied to future
family-based association tests incorporating permutations.
Currently, the OPTPDT uses nuclear families in the

analysis. The method cannot be directly applied to the
extended pedigrees, because permuting transmitted
and non-transmitted alleles at a SNP in the extended
pedigrees does not result in a sign change in the
PDT statistic. Further, when there are missing data,
permuting transmitted and non-transmitted alleles in the
extended pedigrees is not straightforward. Moreover, the
OPTPDT currently considers only dichotomous trait. The
extended PDT which uses a quantitative trait [45] can be
potentially incorporated in the OPTPDT algorithm. It is
our future work to develop an efficient permutation
strategy in the OPTPDT for extended pedigrees and
quantitative traits.
The optimal p-value threshold algorithm can also be

applied to other association test statistics, such as the
identified by the OPTPDT

P-value

OPTPDT GATES PLINK FBAT

2.5 × 10− 6 7.2 × 10− 6 1.5 × 10− 3 2.2 × 10− 2

5.0 × 10− 5 2.8 × 10− 4 1.5 × 10− 3 3.9 × 10− 4

5.0 × 10− 5 1.2 × 10− 3 1.5 × 10− 3 1.1 × 10− 2

4.0 × 10− 4 6.2 × 10− 3 2.5 × 10− 3 5.3 × 10− 3

4.0 × 10− 4 5.4 × 10− 3 2.5 × 10− 2 1.5 × 10− 1

4.0 × 10− 4 2.3 × 10− 4 2.0 × 10− 4 6.9 × 10− 5

5.0 × 10− 4 5.2 × 10− 2 3.0 × 10− 1 6.5 × 10− 1

5.0 × 10− 4 1.3 × 10− 3 1.0 × 10− 3 1.7 × 10− 3

5.0 × 10− 4 7.1 × 10− 3 3.5 × 10− 3 2.8 × 10− 1

5.0 × 10− 4 1.4 × 10− 3 1.3 × 10− 2 4.7 × 10− 3



Fig. 6 The association p-values for the individual SNPs and their LD structures in MACROD2-AS1
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FBAT statistic, test statistics based on linear and logistic
regressions from unrelated subjects, or test statistic
based on mixed-model from related subjects, as long as
an appropriate permutation strategy is used. To be more
specific, the single-marker PDT statistic in Step 1 of the
OPTPDT algorithm can be replaced by another test
statistic for association. For unrelated subjects, the
permutation procedure in Step 4 of the OPTPDT
algorithm can be performed by randomly permuting
the trait values among subjects. For related subjects,
the correlation structures among subjects should be
considered in the permutation procedure.
The OPTPDT is designed to analyze only common

variants (e.g., variants with MAF > 1 %), because the
algorithm uses the single-SNP p-values for identifying an
optimal subset of SNPs. Hence, the OPTPDT is suitable
for analyzing GWAS data. For rare variants from
sequencing studies, their single-SNP p-values may not
be informative to the SNP selection in the OPTPDT.
Therefore, other family-based methods designed for
rare variants, such as methods proposed in [46, 47],
should be used to test a set of rare variants.
Our AGP analysis identified a significant gene,

MACROD2-AS1, associated with autism. Interestingly,
analysis based on the stage 1 AGP data identified a
genome-wide significant SNP, rs4141463, in the intron
region of MACROD2, which is located downstream 1 MB
of MACROD2-AS1 on chromosome 20, for autism.
However, the role of MACROD2-AS1 in the function
of MACROD2 is not clear based on our literature search.
As several SNPs in MACROD2-AS1 show p-values < 0.05,
we performed haplotype analysis for the 16 SNPs in the
gene to investigate whether there are haplotype effects in
the gene on autism, using the haplotype-based transmission
disequilibrium test (hap-TDT) implemented in PLINK. The
results are shown in Additional file 2. The haplotype ana-
lysis identified a common haplotype (GCGCCGGGAA
GAGGAG) with frequency of 11 % that shows significant
p-value of 1.0 × 10− 3 based on the multiple testing thresh-
old of 3.8 × 10− 3 for testing 13 haplotypes.
We evaluated the performance of the OPTPDT in

terms of run time on a Linux server with Xeon
2.0 GHz CPUs. The OPTPDT spent averages of 5 and
7 s for the set of 46 SNPs in one simulated replicate of
500 and 1000 triads, respectively, based on 2000 per-
mutations. The OPTPDT spent averages of 1 min and
6 s and 2 min and 46 s for the set of 1207 SNPs in one
simulated replicate of 500 and 1000 triads, respect-
ively. For the AGP analysis, the OPTPDT spent about
5 h and 44 s analyzing 1770 genes on chromosome 1.
The analyses for different chromosomes can be run in
parallel as the analyses are independent. Therefore, the
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OPTPDT can finish analyzing a large GWAS dataset in
a reasonable time frame.

Conclusions
We developed the multi-SNP association test, OPTPDT,
using a variable p-value threshold algorithm to select
SNPs with the strongest association signal at a particular
p-value threshold. We used simulations to verify that the
OPTPDT had correct type I error rates. We also used
simulations to compare the power of the OPTPDT with
PLINK, FBAT, and GATES. The OPTPDT had the high-
est power in most of the scenarios, followed by GATES,
PLINK and FBAT. The simulation results showed that
FBAT had the lowest power in all of the simulation sce-
narios. These results demonstrate that the threshold
methods (i.e., OPTPDT and PLINK) are more powerful
than a method using all of the SNPs without selection,
particularly when only a portion of the SNPs in the set
are causal.
The OPTPDT can be helpful for gene-based or pathway

association analysis. The method is ideal for the secondary
analysis of existing GWAS datasets, which may identify a
set of SNPs with joint effects on the disease. We have
implemented the method into an efficient software
package using C++, which can be downloaded for free
from http://optpdt.sourceforge.net.

Additional files

Additional file 1: Permutation property for the PDT statistic.

Additional file 2: Haplotype analysis results for MACROD2-AS1.
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