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Abstract

Background: Vernalization is an obligatory requirement of extended exposure to low temperatures to induce
flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium
longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized
plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the
global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C.

Results: We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes
which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the
more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression
clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and
GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most
of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and
chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known
regulators of flowering in other species.

Conclusions: We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering
several time points and accounting for biological variation by the use of replicates. The resulting collection of
transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a
fine level. The selected potential candidate genes can shed light on the regulation of this process.

Background
Lilium longiflorum (Easter lily) is a leading bulbous crop
worldwide and is produced as cut flower, potted plant,
garden plant and as dry cell bulb [1]. Like many other
ornamental bulbs [2], L. longiflorum flowering requires
cooling of the bulbs to meet the obligatory vernalization
requirement of this plant species [3, 4]. L. longiflorum,
(cultivar White Heaven) plants developing from non-
vernalized bulbs grown at a constant temperature of 25 °C
produced only leaves and did not flower over a period of
more than 15 months (Ram et al., in preparation), con-
firming the obligatory cold requirement of this cultivar.

Vernalization is also the main parameter involved in
flowering time regulation in Easter lily and therefore
has been the focus of a considerable amount of research
related to physiological aspects of this species’ develop-
ment, in order to reach flowering at specific dates [3, 5].
Typically, cold exposure of L. longiflorum bulbs at 2 to
10 °C quantitatively hastens flowering time while de-
creasing height, leaf and flower number, up to a satur-
ation point of 6 weeks, after which additional cold
exposure will not have a further effect on these parame-
ters [3, 5–10]. In a previous study on L. longiflorum
cultivar White Heaven [11], we found that bulb expos-
ure to 4 °C for one week induced a decrease of about
20 % in the time from planting to floral transition and
to flowering. Additional cold exposure led to a gradual
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decrease up to about 80 % and 55 % for floral transition
and flowering, respectively, after nine weeks at 4 °C.
Despite the importance of vernalization in Lilium flower-

ing, the molecular regulation of this mechanism is largely
unknown in this species and other ornamental flowering
bulbs. Most of the information available on molecular con-
trol of vernalization comes mainly from work performed
on Arabidopsis, cereals and sugar beet and revealed that,
while the general mechanism of vernalization is conserved
among distant species, the sequence of the main regulatory
genes is not [12–17].
In Arabidopsis, FLOWERING LOCUS C (FLC), a

MADS-box gene encoding a potent repressor of flower-
ing, is active in meristems in autumn. Flowering repres-
sion by FLC is mediated by its binding to major genes
that promote flowering, such as FLOWERING LOCUS T
and D (FT and FD, respectively) and SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1 (SOC1) [18, 19].
While FLC represses genes that induce meristems to form
flowers, it relies on FRIGIDA (FRI) to elevate its autumnal
expression to a level that prevents flowering [19, 20]. Dur-
ing winter, vernalization causes the acquisition of meri-
stem competence to flower by repressing FLC expression.
Once it has been repressed by vernalization, FLC remains
off for the rest of the plant’s life cycle after the return of
warm conditions, i.e. the repression is epigenetic in the
sense that it is mitotically stable in the absence of the
inducing signal (cold exposure). The mechanism of epi-
genetic repression of FLC involves histone modifications
that convert FLC into a heterochromatin-like state. A key
player in the vernalization-mediated silencing of FLC is
VERNALIZATION INSENSITIVE 3 (VIN3), which is re-
quired for all FLC chromatin modifications associated
with vernalization-mediated silencing and as a measure of
the cold period [21]. Recently, it was shown that all
members of the VIN3 family act together to repress FLC
family members during vernalization [22]. In addition, the
non-coding (nc) antisense transcript COOLAIR and the
intronic long ncRNA COLDAIR are upregulated at differ-
ent points during cold exposure and are apparently play-
ing a role in the epigenetic regulation of FLC [23–25].
Altogether, this measure of gradual cold acquisition
ensures that only a prolonged cold exposure (the winter
season) will lead to activation of the vernalization process.
In winter cereals, which require vernalization, a system

similar to that in Arabidopsis exists. Specifically, a flower-
ing repressor prevents flowering prior to cold exposure
and the expression of this repressor is turned off by cold.
In wheat, the repressor is a zinc-finger type protein
VERNALIZATION 2 (VRN2). One of the genes repressed
by VRN2 is VERNALIZATION1 (VRN1), which encodes a
MADS-box protein that promotes flowering [26, 27].
When expressed in the leaves at high levels, VRN2 also
represses FT [27], thereby playing a similar role as FLC in

Arabidopsis. However, these two genes are unrelated and
no FLC orthologues have been isolated from grasses
[16]. In sugar beet, three genes have been found to
regulate the vernalization response, BvBTC1, BvFT1,
and BvFT2 [14]. Both BvFT1 and BvFT2 belong to the
phosphatidylethanolamine-binding protein (PEBP) fam-
ily and act in an antagonistic way: overexpression of the
flower repressor BvFT1 leads to the repression of BvFT2
(the homologue of FT) and delays flowering time. Fur-
thermore, like FLC in Arabidopsis, BvFT1 is downregu-
lated by cold exposure. Different alleles of the BvBTC1
locus are associated with the expression level of BvFT1
and BvFT2 and with the vernalization response and
flowering habit of various beet genotypes [15].
High throughput sequencing can produce a wealth of

information on the genes involved in a certain process.
Individual genes can be annotated based on the prediction
of open reading frames and by comparison with expressed
sequence tag (EST) collections. For example, such tech-
nology was successfully used to analyse the transcriptome
of vernalization and gibberellin responses in sugar beet,
revealing connections between gene expression patterns,
genotypes and treatments, as well as potential new func-
tions of the RAV1-like AP2/B3 domain protein in the
vernalization response [28]. In Lilium, several studies
based on ESTs for genetic analyses and marker develop-
ment are available [29–32]. A report about the transcrip-
tome of Asiatic lily hybrid (cultivar Tiny Ghost) bulbs
27 days after exposure to 25 °C or 4 °C was recently pub-
lished. The reported results revealed changes in the ex-
pression of a large number of genes belonging to several
metabolic pathways and orthologs to vernalization genes
in other plant species [33]. In that study, the length of cold
exposure of the bulbs was established according to the
peak in sugar content in the scales, however, the report
does not specify the effect of cold exposure on flowering
time, therefore, a definite association between the results
and the actual vernalization process is not explicit.
The search for genes regulating vernalization in lily,

which has a huge genome and no vernalization mutants
available, can be narrowed with a selection of genes differ-
entially expressed during cold exposure. In this study, we
use RNA sequencing to investigate gene expression pat-
terns in the meristems of lily bulbs at several time points
during cold exposure, aiming to characterize the gradual
changes occurring in the bulb during vernalization, in
view of its quantitative effect on flowering.

Methods
Design of the experiment, plant material and RNA
collection
Previous experiments conducted in our lab [11] have
shown that exposure of L. longiflorum cultivar White
Heaven bulbs to 4 °C reduces the time from planting to
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flowering in a quantitative manner. Therefore, several
time points between 0 and 9 weeks of cold exposure were
selected for the transcriptome construction in order to
cover a wide range of vernalization related transcription
patterns useful for later inference.
L. longiflorum bulbs (cultivar White Heaven) were ob-

tained from a nursery at the end of the growing season
(August). Bulbs were sanitized and stored in humid
standard pot medium at 25 °C (control, 0 W) or at 4 °C
for 2, 5, 7 or 9 weeks (2 W, 5 W, 7 W, 9 W, respect-
ively). At each of these time points, shoot apical meri-
stems were excised from the bulbs, immediately frozen
in liquid nitrogen and then stored at -80 °C until RNA
extraction. Typically, the material used for extraction
was meristem-enriched, including the meristem itself
and a small portion of the stem underneath (Fig. 1a-e).
Apical meristems from additional bulbs were sampled at
each time point for developmental stage validation under
a stereo microscope (Stemi 200 °C, Zeiss, Germany). At
all points, the meristems were at the vegetative stage, as
can be seen from Fig. 1f-o. Floral transition occurs after
stem emergence and production of a number of leaves
above ground [11]. Therefore, changes in gene expression
taking place during bulb cold exposure cannot be related
to a change in developmental phase of the meristem (e.g.
from vegetative to reproductive), as occurring in other
geophytes [2].
In order to obtain sufficient RNA for each extraction,

five meristems were pooled. The number of individuals
to be pooled is a compromise between the technical re-
quirements of the library preparation protocol, the need

to reduce the impact of potential outliers and the sound-
ness of downstream statistical analysis: pooling too many
individuals could lead to an underestimation of the vari-
ability of expression between replicates and thus make
many false positive rejections of the null hypothesis
when comparing different treatments, inflating the num-
ber of differentially expressed genes.
Two biological replicates were made for each time point.

This detail of the experimental design is important, since
one of the central goals of our study is to compare the
expression in different stages of the vernalization process,
for which we need to infer the expression variance in each
condition [34]. Moreover, only using biological replication
can we test whether the difference between two samples
with different treatment is stronger than what we expect
to see between two samples that are replicates, and there-
fore, whether that difference can be attributed to the cold
treatment.

RNA-seq sample preparation and sequencing
RNA was isolated using the AurumTM Total RNA mini
kit (Biorad # 732-6820) following manufacturer’s instruc-
tions. The procedure was followed by an additional DNase
treatment with TURBO™ DNase (Life technologies #
AM2238) to remove all genomic DNA still present after
the isolation. The RNA integrity was confirmed using the
2100 Bioanalyzer (Agilent Technologies).
The samples were prepared for transcriptome sequen-

cing using the Illumina kit (TruSeq RNA Sample Prepar-
ation Kit v2, # RS-122-2001) following the manufacturer’s
recommendations. The obtained libraries were adjusted

Fig. 1 Lily bulb meristems at sampling points after 0, 2, 5, 7 or 9 weeks at 4 °C. a-e: Longitudinal section in lily bulbs. The area comprising the
meristem is indicated by a red ellipse (Bar = 1 cm). Some of the outer scales have been removed. f-j: apical meristem from above, after removal
of scales and leaf primordia (Bar = 1 mm). k-o: longitudinal section of the apical meristem (Bar = 0.5 mm)
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and pooled at a concentration of 20 nmol and sequencing
was performed with 100-bp, paired-end reads on the
HiSeq 2000 (Illumina).

Quality control and data pre-processing
After base calling via the Illumina pipeline (HiSeq Built-In
Software), a total of 528 million of paired-reads (MPR)
was obtained. A stringent quality control was then applied
by removing the first three bases in the 5’ ends of each
read and also the bases at the 3’ ends with a quality score
smaller than 20. Reads containing primer/adaptor se-
quences were removed as well as the ones with long mono
and di-nucleotide repeats.

De-novo transcriptome assembly
Four methods for the de-novo transcriptome assembly
were tested: tIDBA [35], trans-Abyss [36], Oases [37]
and Trinity [38]. The resulting assemblies were com-
pared using a reference set of L. longiflorum ESTs and
the criteria proposed by Martin et al. [39].
Considering the resulting metrics of accuracy, com-

pleteness and contiguity, Trinity was chosen to perform
the final assembly because it showed the best perform-
ance for this dataset [40]. In order to obtain a transcrip-
tome reference sequence that is common to all the data
points, the reads were merged from all the different
treatments before the final assembly. Since all samples
were from the same lily cultivar, which is vegetatively
propagated, merging different samples did not increase
the complexity of the assembly. The cut-off for mini-
mum contig length was set at 200 bp. Parameters for the
assembly and further bioinformatic analyses are provided
in Additional file 4.

Mapping, summarization, filtering and exploratory
analysis
Each sample was mapped separately using a Bowtie [41]
wrapper bundled with Trinity. After this, the counts of
mapping reads per contig and per gene were summa-
rized. Variation between replicates and distance between
samples was explored using heatmaps and principal
components analysis (PCA). For this purpose we used a
subset of the top 500 genes with most variable expres-
sion after variance stabilizing transformation (which
renders the expression values homoscedastic in relation
to the fitted expression mean). This allowed us to rule
out unexpected batch effects.
In order to reduce the amount of chimeric transcripts

and noise, sequences whose total read count over all
conditions was below the 80th percentile of read counts
were filtered out. That resulted in 42,430 genes passing
this filter, a number coherent with the amount of genes
found in other plant species. Further filtering was
applied to remove isoforms supported by less than 4 %

of the reads mapping in any given gene. The purpose of
independent filtering is to get rid of genes that, if tested,
would have no chance of showing significant evidence of
differential expression. By using a statistically independ-
ent filter (one that does not depend on the test statistic),
a strong multiple-test correction (with the procedure
described by Benjamini and Hochberg, [42]) was avoided
and thus, statistical power was increased.

Differential expression analysis
Differential expression between each pair of conditions
was analyzed following the methods as implemented in
DESeq v1.10.1 [34]. Robust estimates of the variability in
the expression of each gene were calculated doing an
average of its variability over each condition (weighted by
the number of samples for each combination of factors,
which is the same for all conditions). For a confident dis-
persion estimate, a conservative approach was used: esti-
mates of high dispersion genes (those above the fitted
regression line) were accepted but estimates of low disper-
sion genes were pulled up to the fitted line [34]. We used
a corrected [42] p-value of 0.05 as threshold to call differ-
entially expressed genes.

Gene clustering
After analyzing differential expression, we extracted
genes beyond a threshold of a 4 fold-change in expres-
sion between any pair of time points and clustered them
according to their patterns of differential expression
across time. This was made using both the standard K-
means clustering algorithm and pre-computed models
for time series expression data in STEM [43]. In particu-
lar, this last method first defines a set of distinct and
representative models of gene expression, all of whom
use a value of zero as a starting point. The number of
real gene profiles assigned to each model is then com-
puted. The number of genes expected to be assigned to
a profile is estimated by randomly permuting the ori-
ginal time point values, renormalizing the gene’s expres-
sion values and then assigning genes to their most
closely matching model profiles, repeating this for a
large number of permutations. The average number of
genes assigned to a model profile over all permutations
is the expected number of genes for that model. This
provides a framework to test the statistical significance
of profile clusters. The biological significance of the
model or cluster was investigated by means of GO [44]
enrichment analysis, as explained in the gene set analysis
section. For this clustering, those profiles that did not
show a minimum absolute expression change of 4 log-fold
(based on the difference between the minimum and max-
imum) were filtered out.
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Functional annotation
Function prediction was done in three steps: first inferring
ORFs with Transdecoder (bundled with Trinity, [45]), sec-
ond, calculating sequence similarity to a protein sequence
database (UniProtKB) and third, to a protein profile data-
base [46].
Computational approaches to annotation is not straight-

forward due to ambiguities in the model sequence-
structure-function. Therefore, it is important to back in-
ferences in different sources that should be integrated
according to the semantics and strength of the evidence
for each annotation source. For this integration purpose,
we used Argot2 web-service [47]. We provided as an input
the results of sequence-based methods (Blast to a relevant
subset of UniprotKB: plant sequences with a GO annota-
tion) and functional domains assignments (HMMER3 [48]
to PfamA profiles [46]).
For those genes whose ORFs could not be inferred or

could not be annotated, an additional similarity search
(DNA to protein database) was done using Blastx and
mapping the GO terms to the Blast results with Blast2GO
[49]. Once all the relevant GO annotations were obtained,
these were mapped to GOslim Plants to achieve a reduced
representation of GO terms.

Gene set analysis
The purpose of gene set analysis (GSA) [50, 51] is to shift
the focus from single genes to sets of related genes. GSA
was performed using two very different approaches: first,
over gene profiles (clusters of genes with similar time-
series expression patterns) and second, over pairwise
comparisons of differential expression performed between
different vernalization treatment time-points.
For the first approach, GSA was performed using time-

series profiles with STEM [43]. In this way, the cluster
significance was determined first (checking whether the
number of genes in each profile is higher than expected
by chance alone), and afterwards their biological signifi-
cance using an enrichment calculation based on their GO
annotation and on the expected number of genes anno-
tated with that specific GO given that particular cluster
size. This calculation involves a comparison to a base set
of genes (i.e. background or complement used as a refer-
ence) which in this case was comprised by all the genes in
the dataset. Gene sets were based on the functions and
pathways represented by the initial GO annotations (each
of the 3657 ontology terms defines a gene set) and also on
the transposons and other repetitive elements annotated
with RepeatMasker [52].
In the second approach, GSA was performed with the

package for R/Bioconductor GSVA 1.4.4 [53]. This uses
as input a gene expression matrix in the form of read
counts and a database of gene sets, which were defined
over the whole transcriptome, using GO slim plants

(a summarized version of the 3657 GO annotations that
results in 94 more general terms) and a subset of the
transcriptome corresponding to genes annotated as
transposons, using RepeatMasker [52] for that purpose
(as in the previous method). This package implements a
non-parametric unsupervised method for assessing gene
set enrichment. It calculates gene expression level statis-
tic for each sample and then it orders them by rank.
Next, a Kolmogorov-Smirnov-like rank statistic is calcu-
lated which is subsequently used to obtain the resulting
GSVA enrichment scores.

Orthologue vernalization gene finding
In order to find genes related to vernalization, several
approaches were followed. First we used an “omics” ap-
proach, already described in the functional annotation
sections. We selected genes whose inferred ORFs were
annotated with terms related to vernalization. From these
sequences we selected those whose domains matched
the ones present in genes known to be involved in
vernalization from other species (Arabidopsis [54], rice
[55] and wheat [56]). Then, the protein sequence of each
of the lily candidate genes was blasted [57] against the
UniProtKB database. Top hits were then filtered based on
the highest percentage of hit coverage combined the high-
est percentage of sequence similarity. Expression profile
from the top hits was used to compare it against the
expression of their putative orthologues and used it as an-
other filtering criterion. Additionally we blasted protein
sequences of known genes from other species, involved in
vernalization, against the transcriptome data using BioEdit
software [58] Top hits were then selected and filtered as
described previously.

Results
Transcriptome statistics
The initial Trinity assembly yielded a total of 329,599
transcripts belonging to 212,304 components (potential
genes). By filtering out genes with lower count numbers
and removing isoforms that represent just a small
fraction of a gene’s total counts (smaller than 4 %) we
reduced the total number to 121,572 transcripts and
42,430 genes. The total size of the unfiltered transcrip-
tome was 263,039,169 bp. The N50 was 1,443 bp. The
longest contig was 16,512 bp and the shortest, 201 bp.
G + C content was 42.3 %.

Differential expression analysis
Our exploratory analysis (Fig. 2) showed that there are no
unexpected batch effects and that replicates tend to clus-
ter with each other (particularly so in the case of technical
replicates). A critical step in the analysis of gene expres-
sion data is the detection of differentially expressed genes.
As shown in Table 1, most changes in expression took
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place during the first 2 weeks of cold exposure (9,872
genes, time-points 0-2). During the next three weeks, the
number of differentially expressed genes was lower (1,938
genes, time-points 2-5) and expression appeared almost
stable in the following measured periods (19 genes, time-
points 5-7 and 81 genes, time-points 7-9).
The number of genes significantly upregulated appears

similar to the number of downregulated genes (Fig. 3, red
dots). Notice as well that the fold changes in expression
were higher during the first weeks of cold treatment.

Clustering and time-series analysis
Significant temporal expression profiles and the genes
associated with these profiles were identified by clustering
and visualization of the time series expression data. We
integrated gene ontology data to perform enrichment ana-
lyses for sets of genes having the same temporal expres-
sion pattern.
From the 42,430 total genes we selected for time-series

analysis only those with a minimum absolute expression
change between time-points of 4-fold resulting in a total

of 2,095 genes. A set of 50 pre-computed expression
patterns [43] was used; each of them was called a model
profile. Some of these models were very similar to each
other; thus if this similarity was beyond the minimum cor-
relation coefficient of 0.7 then these model profiles were
grouped under the same cluster (profiles represented with
the same color, Fig. 4). This distinction between profiles
and clusters applies only to the STEM-specific algorithm.
Each square in Fig. 4 represents a profile and each group
of profiles with the same color a cluster (i.e. 50 profiles, 6
clusters). Profiles that had a significant amount of genes
(more than expected by chance alone) are colored. Using
more pre-computed profiles yielded similar results (data
not shown). The pre-computed model profiles were gen-
erated using a value of 2 for the maximum unit change
parameter (c). Additional tests with c = 1 and c = 3
returned similar results (data not shown). From the 50
model profiles, nine profiles in six clusters were identified
as significant. A minimum correlation of 0.7 was used as a
threshold to group profiles in the same cluster, where the
value of 0.7 was obtained by considering the average

Fig. 2 PCA of technical and biological replicates for each time point. Each hue corresponds to a different time-point. Each time-point has two
biological replicates which are represented in different tints. Technical replicates are represented with exactly the same hue and tint. Technical
noise is small. Most variation occurs between time-points 0 W and 2 W. No unexpected batch effects take place, other than the controlled
experimental factors

Table 1 Final numbers of differentially expressed genes and isoforms differentially expressed (DE). Between pairs of vernalization
treatments (0 to 9 weeks at 4 °C) using the most conservative parameters

Type n 0-2 0-5 0-7 0-9 2-5 2-7 2-9 5-7 5-9 7-9

Genes 42,430 9872 7574 6651 7864 1938 427 3584 19 444 81

Isoforms 121,572 7576 6244 5377 7409 643 491 1196 134 477 271
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distance between the two data replicates. Of the six clus-
ters of profiles, three contained two profiles and three
were single profiles. four of the nine significant model pro-
files had significantly enriched GO categories (based on a
hypergeometric test), two of these profiles were in an up-
regulated cluster (#41 and #42, Fig. 4) and the other two
were in a downregulated one (#4 and #0, Fig. 4). We noted
that the transcriptome still contains a large number of

unannotated genes, which could explain why other pro-
files were not significantly enriched for GO categories.
Table 2 describes the functions enriched for the genes in
the profiles mentioned above.
While other profiles (like the #38, Fig. 4) showed

patterns of expression matching our expectations of
vernalization as a gradual cumulative process, the number
of genes assigned to them in our clustering algorithm was

Fig. 3 MA plots of differentially expressed genes in a 2 or 3 week window. Each dot represents a gene. The x-axis represents the logarithm of
read counts in that gene. The y-axis is the logarithm with base 2 of the fold change from one condition to the other (logFC = 2 implies a 4 fold-
change in expression). Red dots represent differentially expressed genes (adj. p-val < 0.05)

Fig. 4 Expression profiles during cold exposure (from 0 to 9 weeks) ordered by the number of genes assigned. As indicated on the graphic
legend at the bottom right, the number on the upper left of each profile is the profile ID. The number in the bottom left indicates the number
of genes assigned to the profile during clustering. Profiles with colored background are significant in terms of the number genes assigned to
them in comparison to random permutations. Profiles colored with the same shade belong to the same cluster (correlation > 0.7)
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Table 2 Overrepresented gene sets in the upregulated and downregulated expression time-series clusters. Genes are categorized
in sets according to their Gene Ontology. Column “Observed” is the number of genes from each category or set assigned to the
cluster. ”Expected” is the number of genes that was calculated in the permutation simulation based on the total size of each
category and the uniqueness of the profile. The results are order according to the Fold change. Only significant results are shown
(Bonferroni corrected p-value < 0.05)

GO enrichment for Cluster 1 upregulated (Profiles 41 and 42)

Category ID Category Name Observed Expected Fold Corrected p-value

GO:0006270 DNA replication initiation 5 0.1 35.5 <0.001

GO:0044815 DNA packaging complex 13 0.5 27.5 <0.001

GO:0000786 nucleosome 11 0.4 26 <0.001

GO:1990104 DNA bending complex 11 0.4 26 <0.001

GO:0034728 nucleosome organization 11 0.5 22 <0.001

GO:0006334 nucleosome assembly 11 0.5 22 <0.001

GO:0065004 protein-DNA complex assembly 12 0.6 20.8 <0.001

GO:0071824 protein-DNA complex subunit organization 12 0.6 20.8 <0.001

GO:0031497 chromatin assembly 12 0.6 20.8 <0.001

GO:0032993 protein-DNA complex 18 0.9 19.3 <0.001

GO:0006333 chromatin assembly or disassembly 12 0.6 18.8 <0.001

GO:0006323 DNA packaging 14 0.8 18.2 <0.001

GO:0006261 DNA-dependent DNA replication 7 0.4 17.1 <0.001

GO:0000785 chromatin 11 0.7 16.2 <0.001

GO:0044427 chromosomal part 22 1.6 13.8 <0.001

GO:0071103 DNA conformation change 16 1.2 13.6 <0.001

GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity 5 0.4 11.5 0.022

GO:0071900 regulation of protein serine/threonine kinase activity 5 0.5 10.9 0.03

GO:0046982 protein heterodimerization activity 9 0.8 10.8 <0.001

GO:0019901 protein kinase binding 5 0.5 10 0.038

GO:0019900 kinase binding 5 0.5 10 0.038

GO:0043549 regulation of kinase activity 5 0.5 9.3 0.05

GO:0045859 regulation of protein kinase activity 5 0.5 9.3 0.05

GO:0005694 chromosome 24 2.7 9 <0.001

GO:0051726 regulation of cell cycle 10 1.1 9 <0.001

GO:0008017 microtubule binding 6 0.8 7.6 0.042

GO:0034622 cellular macromolecular complex assembly 16 2.4 6.7 <0.001

GO:0006461 protein complex assembly 15 2.4 6.3 <0.001

GO:0070271 protein complex biogenesis 15 2.4 6.3 <0.001

GO:1903047 mitotic cell cycle process 7 1.1 6.2 0.042

GO:0006325 chromatin organization 18 3 6.1 <0.001

GO:0065003 macromolecular complex assembly 16 2.6 6 <0.001

GO:0007049 cell cycle 21 3.8 5.5 <0.001

GO:0051276 chromosome organization 21 3.8 5.5 <0.001

GO:0071822 protein complex subunit organization 15 2.9 5.3 <0.001

GO:0043933 macromolecular complex subunit organization 16 3.1 5.1 <0.001

GO:0022402 cell cycle process 14 2.8 5 <0.001

GO:0006281 DNA repair 13 2.6 4.9 <0.001

GO:0022607 cellular component assembly 17 3.5 4.8 <0.001

GO:0005874 microtubule 9 2 4.5 0.048
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not significant (a random pattern could have similar num-
bers of genes assigned just by chance) and was therefore
not further explored at this stage.
In profile #41 (Fig. 4), most of the significantly enriched

GO terms (corrected p-val < 0.05) (significant and upregu-
lated, see Fig. 4) were related to epigenetic processes and
chromatin remodeling (Table 2). From these profiles, the
expression of several genes was validated by qPCR. In gen-
eral, there were good correlations between the results ob-
tained by RNA-seq and qPCR (Additional file 1: Figure S1).

Annotation statistics and functional enrichment
From the final 121,572 transcripts, a total of 82,219
ORFs were inferred (of which 67,658 ORFs had an anno-
tation). These ORFs correspond to 15,414 genes, which
were annotated with up to 3,657 GO terms.
An inherent problem of using GO annotations to define

gene sets, is the strongly unbalanced sizes of the resulting
groups (some GO terms apply to thousands of genes,
while other, more specific functions, are represented by
fewer than 10 genes). This disparity is inconvenient for
sound statistical analysis (see gene set analysis).

In order to further facilitate the description of the
functions in the transcriptome and decrease the effect of
expression heterogeneity in the smaller sets, we trans-
lated the previous GO annotations into GO slim plant
ontologies. GO slims are cut-down versions of the GO
ontologies containing a subset of the terms in the whole
GO. They give a broad overview of the ontology content
without the detail of the specific fine grained terms. This
turns out particularly useful as a summary of the results
of GO annotation.
Instead of creating a custom GO slim vocabulary or a

generic “all-species” one, we used an intermediate ap-
proach: a standard GO slim plant vocabulary developed
by The Arabidopsis Information Resource (TAIR) [54]
in order to facilitate comparisons with other plant spe-
cies in future studies. With this new ontology, the num-
ber of functions was summarized in 94 annotations
(Additional file 2: Figure S2), which could be further
tested for overrepresentation using gene set analysis.

Gene set analysis
Gene set enrichment analysis is a way of abstracting the
differential expression analysis from the level of gene

Table 2 Overrepresented gene sets in the upregulated and downregulated expression time-series clusters. Genes are categorized
in sets according to their Gene Ontology. Column “Observed” is the number of genes from each category or set assigned to the
cluster. ”Expected” is the number of genes that was calculated in the permutation simulation based on the total size of each
category and the uniqueness of the profile. The results are order according to the Fold change. Only significant results are shown
(Bonferroni corrected p-value < 0.05) (Continued)

GO:0006974 cellular response to DNA damage stimulus 13 2.9 4.4 <0.001

GO:0051301 cell division 11 2.6 4.2 0.022

GO:0006260 DNA replication 22 5.8 3.8 <0.001

GO:0044085 cellular component biogenesis 19 5.8 3.3 <0.001

GO:0006259 DNA metabolic process 47 15.3 3.1 <0.001

GO:0006996 organelle organization 27 9.3 2.9 <0.001

GO:0043228 non-membrane-bounded organelle 41 14.4 2.8 <0.001

GO:0043232 intracellular non-membrane-bounded organelle 41 14.4 2.8 <0.001

GO:0043234 protein complex 43 16.5 2.6 <0.001

GO:0003677 DNA binding 44 18.6 2.4 <0.001

GO:0016043 cellular component organization 34 14.5 2.3 <0.001

GO:0071840 cellular component organization or biogenesis 35 16.3 2.2 0.006

GO:0032991 macromolecular complex 46 22.7 2 <0.001

GO:0005634 nucleus 71 40.3 1.8 <0.001

GO:0005488 binding 138 101.6 1.4 0.016

GO:0044699 single-organism process 107 76.2 1.4 0.044

GO enrichment for Cluster 0 downregulated (Profiles 0 and 4)

Category ID Category Name Observed Expected Fold Corrected p-value

GO:0006278 RNA-dependent DNA replication 20 5.5 3.7 0.002

GO:0003964 RNA-directed DNA polymerase activity 15 4.4 3.4 0.03

GO:0015074 DNA integration 24 9.4 2.5 0.028
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expression profiles into a pathway or functional level. It
provides a reduction dimensionality of the sample (testing
a few hundred gene sets, rather than many thousand indi-
vidual genes), as well as greater biological interpretability.
Specifically, with GSVA (Gene Set Variation Analysis)

[53] we calculated sample-wise gene set enrichment scores
as a function of genes inside and outside the gene set,
analogously to a competitive gene set test (see Methods).
Moreover, we estimated the variation of gene set enrich-
ment over the samples independently of any class label.
Conceptually, this is equivalent to a change in coordinate
systems for gene expression data, from genes to gene sets.
Our first enrichment analysis (see Clustering and time-

series analysis results above) was done for each of the
time-course clusters using the complete GO annotation,
and only 2 clusters (those with profiles 41/42 and with
profiles 4/0) had functions significantly overrepresented
on them and are therefore shown in detail in Table 2.
Other clusters might simply not provide enough power
for the hypergeometric enrichment test to detect any
effect due to the smaller number of genes included or to
the small number of genes annotated with each term.
This period between a non-vernalized and vernalized

state, which is critical for the plant’s ability to flower in
view of its obligatory requirement for cold, was character-
ized by major changes in gene expression (Fig. 3), which
therefore might be related, among other processes, to the
flowering mechanism.
In contrast to the time-series approach, where we used

the fine-grained GO annotation of 3657 sets (and there-
fore, fewer genes in each set), Figs. 5 and 6 represent
the results of functional enrichment using a different ap-
proach, where the compared groups correspond to dif-
ferent time points rather than different clusters. This
was done using gene sets defined by the GO slim plant
annotation, a more general classification that resulted in
less sets (94) with higher number of genes in each one.
Most of the gene sets with significant changes in expres-
sion were detected during the first 2 weeks of
vernalization. Figure 7 summarizes the number of up
and downregulated sets for each pairwise comparison,
both for GO slim and transposable elements.

Ortholog vernalization genes finding
Two approaches were subsequently followed to identify
putative orthologues as described in the Methods section.
After screening theses sequences we identified 12 poten-
tial candidate genes with high sequence similarity to
known genes in other species known to be involved in the
vernalization pathway. Alignments of the lily potential
candidates with genes from other species are presented in
Additional file 3: Figure S3. Some of them are key players
in this biological process including VIN3, SOC1, VRN2
and FT from Arabidopsis and others, such as VRN A1

/VRN1 from wheat and barley respectively. Table 3 shows
the known genes from other species and their comparison
with the identified putative ortholog in lily.

Discussion
Importance of the assembled transcriptome as reference
for further research
In bulbous species, large genome sizes (36 Gbp for lily)
make full genome sequencing expensive and error-prone
[30]. Transcriptome sequencing provides a proxy for high
throughput comparisons of the exomes of crops with large
genomes. In this way, ESTs of lily and tulip cultivars have
been assembled using 454 pyro-sequencing, essentially for
marker development [31]. The transcriptome produced in
this study provides additional molecular data for lily and
a reliable quantitative profile of genes differentially
expressed during cold exposure, enabling the molecular
analysis of the vernalization response at a global scale.
While the physiological response of the plant to cold

exposure has been well characterized in the literature
[3, 5–10, 59] and by our own lab on this specific cultivar
[11], the transcriptome analysis provides deeper insights
into the molecular regulation of this vernalization re-
sponse in a major flowering species. It will also enable
the isolation of genes regulating flowering, which could
be used to reduce vernalization requirements and to de-
velop molecular markers for optimal bulb cold treat-
ment, aiming at year-round production, high flower
yield and quality, and reduced economic and environ-
mental costs. In addition, it can serve to address funda-
mental questions regarding the conservation of the
vernalization response among higher plants.

The emergence of systemic approaches for researching
vernalization
From the methodological point of view, there is notable
interest in importing the knowledge of vernalization
acquired in model-species like Arabidopsis and wheat
into other commercially relevant crops. This can be
done using a singular, targeted approach -from genes to
systems, or a more comprehensive, integrative approach
-from systems to genes [60].
In our approach to tackle the vernalization process in

Lilium, we have focused in the latter: the functional
genomics of vernalization. To our knowledge, this is the
first time in which vernalization of a bulb species is
studied as a true dynamic process (including several
time points), with a comprehensive level for comparative
genomics (sequencing of more than 500 million read
pairs yielding 121,572 isoforms) and a realistic model of
expression variation (using biological replicates). With
the assembly of a comprehensive de-novo transcriptome
we provide the ground to develop and test hypotheses
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Fig. 5 (See legend on next page.)
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related to the dynamics of vernalization in a poorly stud-
ied, yet economically important group of plants.
During the annotation we identified novel isoforms for

many potential orthologues of vernalization genes. A pre-
vious study measured expression of Asiatic lily bulbs
before and after vernalization (27 days at 4 °C) using
RNA-seq [33]. Both studies show that vernalization in-
duces many cellular, biological and metabolic changes and
similar genes, such as the SOC1 homologue, are found
upregulated after cold treatment in the bulb meristem
hinting that this gene, known to be involved in flowering,
might play a role in the vernalization pathway.
A recent report by Huang et al., [33] attempted to

understand the process of vernalization using what they
refer to as “dynamic transcriptomes”. Their expression
study involved a comparison between two samples taken
before and after vernalization takes place but not during
the vernalization process itself. Moreover, that compari-
son was done without considering biological variation in
the expression. The approach followed in our research
was to monitor the changes in expression throughout
the whole process of vernalization. It is important to
mention that the need of biological replication (sequen-
cing different cDNA libraries extracted from different
individuals) for assessing the effect of a given treatment
in gene expression is critical and has been addressed
before [61]. The lack of this biological replication might
be an explanation for the striking number of 68116
genes “differentially expressed” [33] found in the previ-
ously mentioned report by Huang et al., [33].

By using multiple time-points and biological replica-
tion in our research, we can say that the present work is
the first dynamic study of the effect of vernalization in
gene expression of lily bulbs.
The differential expression analysis for multiple time

points during cold exposure allowed us to point at all
the individual genes affected by vernalization at each
stage. This information is critical for prioritization of
downstream analysis and validation. On the other hand,
gene set analysis allowed us to gain insight into the func-
tions being influenced during vernalization and also the
global effect that it has over the transcribed fraction of
the transposable elements in the genome. Gene set ana-
lysis provides a scalable way to look at the changes that
take place during vernalization at a high level.
The clustering performed for the time-series profiles

also shows a general view on the number of genes that are
up and downregulated, their functions and the patterns
across time. None of these questions could be addressed
adequately using an approach focused solely on individual
genes. Additionally, unlike microarray studies, the use of
high throughput sequencing technologies gave us margin
to discover and measure new isoforms that would other-
wise be unaccounted in the probes of array platforms.

Functional enrichment during cold exposure
The difference in the number of enriched functions that
were upregulated versus downregulated by cold was
strikingly high (see results of gene set analysis). In agree-
ment with experiments in wheat and Arabidopsis, which

Fig. 6 Comparisons of differentially expressed transposable elements (TEs) between non-vernalized bulbs and bulbs vernalized for 2, 5, 7 or
9 weeks. The ID and description of the TE annotations are presented in the y axis. Comparisons between treatments: 0-2 (blue), 0-5 (orange), 0-7
(gray), 0-9 (yellow) are presented in the x axis. All the significant results for TE sets correspond to downregulated functions (none of them was
found to be upregulated)

(See figure on previous page.)
Fig. 5 Comparisons of differentially expressed functions between non-vernalized bulbs and bulbs vernalized for 2, 5 or 7 weeks. The ID and
description of the GO are presented in the y axis. Comparisons between treatments: 0-2 (blue), 0-5 (orange), 0-7 (gray) are presented in the x axis.
Comparison 0-9 was also made but not shown because no significant results were obtained. All the significant results for GO sets correspond to
upregulated functions (none of them was found to be downregulated)
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had previously shown that vernalization is an epigenetic
phenomenon [62], Table 2 illustrates empirically that the
clusters found during bulb vernalization are consistent
with theoretical expectations: the vast majority of enriched
genes were annotated to functions related to chromatin
and chromosome modifications and to functions related
to cell division. Indeed the “memory of the cold” in the
vernalization process is closely linked with cell division
[63]. Moreover, cell division is a pre-requisite for the inte-
gration and the maintenance of the vernalization signal
[64, 65]. Therefore, upregulation of cell division-related
genes during Lilium bulb vernalization is to be expected
and is observed here.
Chromatin remodeling is an important regulatory

mechanism of gene expression, well conserved among
eukaryotes [66]. The series of epigenetic events taking
place during cold accumulation by the plant seem to be
a common mechanism in flowering plants responding to
vernalization [67]. Indeed, chromatin modifications are
tightly associated with the vernalization pathway in the
context of the epigenetic repression of floral inhibitors.
In the case of Arabidopsis, repression of the major floral
repressor FLC by vernalization shows a pattern of epi-
genetic silencing comprising downregulation during cold
exposure and continuation of silencing during the warm
period following cold [62]. This mechanism involves the
action of chromatin-remodeling complexes, which are
responsible for histone methylation at the FLC locus
[22]. In cereals, the vernalization response also involves
epigenetic regulation. However, this regulation is not
targeted to a floral repressor, but rather to the flowering
enhancer VRN1, whose expression is silenced by histone
methylations before cold exposure [68, 69]. In view of

the conservation of cold-related epigenetic regulation of
flowering among such distant species as Arabidopsis and
cereals, it is probable that such a regulation exists in Lilium
as well. The enrichment of chromatin related functions ob-
served in the lily transcriptome during cold exposure could
also be related to the silencing of transposable elements
[66], whose expression decreased during cold exposure, as
shown in the gene set analysis. Chromatin-related gene
enrichment could also be attributed to the plant’s reponse
to cold as an abiotic stress, as was observed for the ATP-
dependent chromatin remodeling factors Snf2, in rice [70].

Ortholog and candidate vernalization genes
One of our goals was to identify candidate genes that
play a role in lily vernalization. Based on their expression
profile and/or sequence similarity to proteins involved in
vernalization in other species, we identified 12 genes.
These genes were classified then into enhancers or re-
pressors (expected to be upregulated and downregulated
respectively after cold induction) based on their reported
function in other species. The expression profile of some
of the candidate genes in lily did not match the expres-
sion reported in other species, suggesting that they may
have a different role in the pathway. These results are
similar to findings in beet, in which two paralogs of the
FT gene (in Arabidopsis) have antagonistic functions.
BvFT2 is functionally conserved with FT but BvFT1 re-
presses flowering and its downregulation is essential for
vernalization response in this species [13]. In addition
these data strongly suggests that, while the general mech-
anism of vernalization is relatively conserved among these
distant species (a floral repressor is downregulated), the
genes that mediate this process are not homologs and

Fig. 7 Number of GO and TE gene sets differentially expressed. Blue bars represent gene sets defined by their Gene Ontology (GO) while orange
bars denote sets of genes annotated as Transposable Elements (TE). The y-axis indicates, for each of the comparisons, how many gene sets are
upregulated (positive values) and downregulated (negative values)
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some of these components have resulted from convergent
evolution [10–16]. For example, in wheat, although VRN2
is considered to have the same function as FLC as a floral
repressor, it is evolutionarily unrelated, and so far there
are not known orthologues of FLC in monocots [15]. New
functions for known genes are also hypothesized and will
be subsequently validated.
In the differential expression analysis a relatively high

number of genes were found to have significant changes
during cold induction, which may only hint that these
genes are candidates of regulators of vernalization in lily.
Thus, a more thorough analysis of these data is needed.
Additional experiments, including expression analysis of
these and other genes in meristems, scales and leaves of
lily plants grown under different environmental conditions
are currently being performed, in order to further investi-
gate the involvement of the genes in the vernalization
pathway and in plant development. Furthermore,

functional analysis of the selected candidate genes in lily
and in Arabidopsis, also under way, will provide more in-
formation on how and when they are involved in the
vernalization response. This will serve as a starting point
to elucidate the vernalization pathway in this species and
to have a detailed understanding of the molecular changes
occurring in the bulb under cold induction.

Conclusions
In this study, we presented a detailed analysis of gene
expression dynamics, covering a series of time points
during bulb cold exposure in Lilium longiflorum, a lead-
ing ornamental crop. The resulting collection of tran-
scripts and their novel isoforms provides a valuable data
base for the exploration of fine molecular changes
occurring during vernalization and the selected potential
candidate genes can lead to the elucidation of the mo-
lecular regulation of vernalization in lily.

Table 3 Lily putative orthologues of vernalization-related genes and their expression in bulb meristems during cold exposure.
Gene expression during cold exposure is schematically represented based on the log-fold change from week 0 to 9 at 4 °C

Gene product/Species Putative ortholog
in lily

Protein
identity (%)

Conserved
domains

Flowering Enhancer/
Repressor

Expression profile in lily meristem
during cold exposurea

Reference

FD / Arabidopsis Comp189117-c0 72 bZIP Enhancer
*

[71]

FT / Arabidopsis Comp184710-c4 68 PEBP Enhancer
*

[72]

SOC1 / Arabidopsis Comp189264-c0 63 MADS-box, K-Box Enhancer
*

[73]

VIP4 / Arabidopsis Comp178334-c0 53 Enhancer [74]

VRN A1, VRN1 / Wheat,
Barley

Comp176908_c0 59 MADS-Box, K-Box Enhancer
*

[75]

VRN B3, VRN H3 / Wheat,
Barley

Comp178222_c0 70 PEBP Enhancer
*

[26]

VRN2 / Arabidopsis Comp184285-c0 44 Polycomb Enhancer [76]

EMF2 / Arabidopsis Comp184487-c0 53 Polycomb Enhancer [77]

VIN3 / Arabidopsis Comp174259-c0 41 PHD-type Zinc
finger

Enhancer
*

[21]

VIP6 (ELF8) / Arabidopsis Comp120922-c0 65 TPR Enhancer
*

[78]

SUF4 / Arabidopsis Comp183048-c0 53 C2H2-type Zinc
finger

Repressor [79]

SVP / Arabidopsis Comp176786-c0 62 MADS-Box, K-Box Repressor [80]

aExpression of at least one point during cold exposure was significantly different (p-adj < 0.05) than the control (0 W)
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Overall, this study constitutes an important contribu-
tion to our current understanding of the molecular regu-
lation and evolution of the vernalization response and
can serve as a basis for similar research in other flower-
ing bulbs.
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