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Abstract

Background: Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and
Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide.
Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the
highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous
studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few
reliable QTLs were identified for use in genomic research and breeding.

Results: This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance,
and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were
then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported
from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for
resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the
A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution
of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated.

Conclusions: Ten VW resistance QTL identified in a 4-year replicated study have added useful information to
the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24
hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted
selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL
hotspots for different diseases indicates that their resistances are controlled by different genes.
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Background

Upland cotton (Gossypium hirsutum L., 2n = 4x = 52), as
a tetraploid cotton, produces 97 % of lint fibers for the
textile industry in the world, while extra-long staple
(ELS) cotton (G. barbadense L., 2n=4x=52), also
known as Sea-Island, American Pima, or Egyptian cotton
accounts for about 3 % of the world cotton. However,
various diseases cause substantial yield losses in cotton
[1-3]. Verticillium wilt (VW), caused by the soil-borne
fungus Verticillium dahliae Kleb., and Fusarium wilt
(FW), caused by the soil-borne fungus Fusarium
oxysporum f. sp. vasinfectum (Atk.) Synd. & Hans, are
two most destructive diseases in cotton production in
the world. VW and FW can significantly reduce cotton
yield and fiber quality due to leaf chlorosis, necrosis or
wilting, leaf and boll abscission and plant death [4, 5].
Root-knot nematodes [Meloidogyne incognita (Kofoid &
White), RKN] and reniform nematodes (Rotylenchulus
reniformis Linford & Oliveira, RN) cause the highest
yield loss (4.3 and 2.5 %, respectively) in the U.S. [3].
Planting disease resistant cultivars is the most effective
and economical control method.

Many G. barbadense genotypes are known to carry
high levels of resistance to VW [6-8], but its resistance
has not been successfully transferred into commercial
Upland cotton due to hybrid breakdown except for
introgressed breeding lines [7, 9]. There have been many
studies indicating that the VW resistance in G. barba-
dense is controlled by a dominant or partially dominant
gene in interspecific crosses between G. barbadense and
G. hirsutum. In several recent studies, more than 100
VW resistance quantitative trait loci (QTLs) in the inter-
specific Upland x Pima populations and also intra- Up-
land populations have been detected on almost all of
the 26 tetraploid cotton chromosomes (cl through
€26) except for c2, c6, c10, c12, and c18, and VW re-
sistance QTLs were more frequently detected on c5,
c7, ¢8, cll, cl6, cl17, cl19, c21, ¢23, ¢24, and c26 (for
a review, see [4]).

A number of qualitative genetic studies have identified
five major resistance genes against FW in Upland (in the
U.S. and China) and Pima (in the U.S., Egypt and Israel)
including Fwi, Fw2, Fw® (c17), FOVI (c16) and FOV4
(c14). There are also numerous quantitative genetic
studies using early segregating populations confirming
the predominant presence of additive gene effects with
low heritabilities on FW resistance. Several recent map-
ping studies have collectively detected approximately 40
QTLs on all the 26 tetraploid cotton chromosomes
except for c1, c4, ¢5, c10, c13, c20 and c24 (for a review,
see [10]).

In Upland cotton, high RKN resistance was achieved
in Auburn 623RKN through crossing between moder-
ately resistant Clevewilt and Wild Mexico Jack Jones,
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which was then transferred to other breeding lines [11].
The resistance was later determined to be controlled by
two genes through a classic genetic analysis [12], and the
two genes (Mil or gMi-C11 and Mi2 or gMi-C14) were
mapped to chromosomes cl11 from Clevewilt and c14
from Wild Mexico Jack Jones through a collective re-
search effort [13, 14]. In an interspecific recombinant in-
bred line population of two susceptible parents of
Upland and Pima cotton, major QTLs (on c3, c4, cll,
cl4, c17 and c23) and 19 putative QTLs for RKN re-
sponses were reported [15].

For RN, the high level of resistance (essentially im-
munity) in G. longicalyx was transferred to Upland cot-
ton [16], and the resistance is conferred by a single
dominant gene Ren located on chromosome c11 [17].
Moderate resistance was also found in several G. barba-
dense accessions including GB 713 [18]. Three resistance
QTLs (2 on ¢21 and 1 on c¢18) were identified in GB 713
in a cross with Acala Nem-X using SSR markers [19],
and one of the two QTLs on c21 was later identified as
a major QTL through SNP mapping [20]. In a cross
between a tri-species hybrid G. arboreum x (G. hirsu-
tum x G. aridum) and Upland MD51ne, a major domin-
ant resistance gene Ren®” also on c21 presumably from
G. aridum was identified using SSR markers [21].

The consistency and utility of most resistance QTLs in
breeding and genomic research identified for the above
four major diseases remain uncertain. Because most
QTL studies used early segregating populations such as
F,, BCiF; and F,3, disease resistance could not be
repeatedly evaluated for the same genotypes. However,
QTLs as reported from different studies provide a good
opportunity to perform a meta-analysis of resistance
QTLs for identification of consistent resistance QTLs
for the same disease (hotspots) and common QTLs for
different diseases (clusters) across different studies. QTL
clusters for resistance to different diseases and resistance
QTL hotspots for the same disease will be very useful
for breeders and geneticists to choose chromosome re-
gions for marker-assisted selection and high resolution
mapping of disease resistance QTLs or genes.

It is currently known that plant disease resistance is
often conferred by disease resistance (R) genes includ-
ing predominantly nucleotide-binding site (NBS)- en-
coding genes [22, 23]. R genes have evolved and
clustered on the plant genome through various mecha-
nisms such as tandem and segmental gene duplications,
recombination, unequal crossing-over, point mutations,
and diversifying selection. Recent genome sequencing
studies have identified 391 and 280 NBS-encoding
genes in G. raimondii and G. arboreum, respectively
[24-26]. However, the relationship between the distri-
bution of the NBS genes and resistance QTLs or genes
is unclear in cotton.



Zhang et al. BMC Genomics (2015) 16:577

Page 3 of 13

Table 1 QTL for Verticillium wilt (VW) resistance detected in a backcross inbred line (BIL) population of 146 lines derived from a

cross of (SG 747 x Giza 75) x SG 747 BC,F,

Year QTL name Position (cM) Marker interval LOD Add. PVE (%) Direction
2006 qvWI-06-c2-1 2 NAU3775a-BNLO663 332 6.23 9.90 SG 747
2008 qVWI-08-c2-1 27 NAU3684-BNL3971 2.93 -8.59 32.38 Giza 75
2008 qVWR-08-c4-1 7 BNL3089-NAU3469 382 -0.19 3543 Giza 75
2008 qVWI-08-c4-1 7 BNL3089-NAU3469 4.19 —-7.95 41.98 Giza 75
2007 qVWI-07-c9-1 59 NAU3358-NAU5494 422 9.54 25.04 SG 747
2007 qVWR-06-c12-1 16 CIR272-NAU3401b 3.25 0.21 10.15 SG 747
2009 qvWI-09-c13-1 74 NAU2730-NAU5110 283 -11.56 25.07 Giza 75
2006 qvVWI06-c21-1 106 NAU3341a-NAU3895 442 572 1717 SG 747
2008 qVWI-08-c22-1 87 BNL0206-NAU3392 286 -7.53 4039 Giza 75
2008 qVWR-09-c23-1 80 NAU5508-NAU3967 2.99 -0.15 14.18 Giza 75

Add. additive effect, PVE phenotypic variance explained, VW/ VW incidence, VWR VW rating, c2, c4, ¢9, c12, c13, c21, c22 and 23, chromosomes

The objectives of this study were to perform a QTL
analysis of VW resistance from multiple years of repli-
cated tests on a backcross inbred line (BIL) population
of an interspecific Upland x Pima cross and a meta-
analysis of QTLs and genes resistant to VW, FW, RKN
and RN identified and reported previously. Relationships
between the resistance QTLs and NBS genes on cotton
chromosomes were also analyzed.

Results

QTL mapping for VW resistance in the BIL population

In the BIL population of 146 lines tested in four years,
we detected a total of 10 QTLs for VW resistance based
on a linkage map with 392 polymorphic SSR loci span-
ning a total genetic distance of 2,895 cM as established
by Yu et al. [27]. The QTLs were distributed on 8 chro-
mosomes (Table 1, Additional file 1). These QTLs
included two detected in 2006 and 2007 each, five in
2008 and one in 2009. Two VW-QTLs were located on
chromosome c2 within a 25-cM region, while another
two QTLs were on c4 in the same region with the same
marker interval. Other six QTLs were located on ¢9,
cl2, c13, 21, c22, and c23 with one QTL each. The VW
resistance QTLs were further mapped onto a consensus
map (Fig. 1), which shows that VW resistance QTLs on
these eight chromosomes were also reported by others
previously.

As shown in Table 1, the LOD scores for these QTLs
ranged from 2.83 to 4.42, significant based on permuta-
tion tests, and phenotypic variation explained (PVE) by
each QTL ranged from 9.9 to 42.0 %. Six QTLs that
were from the resistance parent Giza 75 decreased Verti-
cillium wilt incidents or severity ratings with higher PVE
(14.2-42.0 %), while other four QTLs from the suscep-
tible parent SG 747 increased Verticillium wilt incidents
or severity ratings with lower PVE (9.9-25.0 %).

Clusters of disease resistance QTLs

A total of 306 disease resistance QTLs have been
reported including 10 VW resistance QTLs identified in
this study (Table 2), with 193 VW resistance QTLs
accounting for 63 % of the disease QTLs identified in
past studies, followed by RKN (75) and FW (27). Chro-
mosomes ¢23 carried the most resistance QTLs (36),
followed by c¢7 (25 QTLs), c11 (23 QTLs), c21 (22
QTLs), ¢5 (21 QTLs), c16 (21 QTLs), and cl19 (21
QTLs). Chromosomes ¢4, c8, ¢9, and cl4 each carried
10-17 QTLs; ¢3, c6, cl13, cl5, c17, c20, c22, and ¢26
each carried 6-10 QTLs; c10 carried no resistance QTLs;
and the remaining chromosomes (cl, c2, c12, cl18, c24
and c25) carried the least number of QTLs (2-5).

For the distribution of resistance QTLs on homeolo-
gous chromosomes, four pairs carried more QTLs
including three pairs with similar numbers (c5 with 21
QTLs vs. c19 with 21 QTLs; c¢7 with 25 QTLs vs. c16
with 21 QTLs; and c11 with 23 vs. c21 with 23). How-
ever, ¢23 carried twice QTLs than its homeologous
counterpart ¢9 (36 vs. 17). Four pairs carried less but
with similar numbers of QTLs (c1 with 5 vs. c15 with 8;
c3 with 9 vs. ¢17 with 7; ¢4 with 10 vs. c22 with 9; and
c13 with 6 vs. c18 with 2). Among other five pairs carry-
ing a few QTLs, three A-subgenome chromosomes
carried less (c2 with 5 vs. c14 with 14; ¢10 with none vs.
c20 with 7; and c12 with 3 vs. ¢26 with 7); and two
other A-subgenome chromosomes carried more (c6
with 8 vs. ¢25 with 2; and c8 with 14 vs. c24 with 4).
However, the number of QTLs carried between home-
ologous chromosomes was significantly and positively
correlated (r=0.682; 0.01<P<0.05). Overall, the A-
subgenome carried 146 QTLs, which was slightly fewer
than the D-subgenome (160). However, the difference was
not statistically significant (y* = 0.64; xg 05 = 3.84 at df = 1).

Based on the selection criterion that 4 QTLs within a
25-cM region constitute a cluster, 28 QTL clusters (12



Zhang et al. BMC Genomics (2015) 16:577 Page 4 of 13

Fig. 1 A meta-analysis of quantitative trait loci (QTLs) for resistance
to Verticillium wilt (VW), Fusarium wilt (FW), root-knot nematodes
(RKN), reniform nematodes (RN), and black root rot (BRR). When
older markers with multiple positions along a chromosome were
used as the sole means to position a QTL and the markers did not
appear in the cotton marker database those QTL were not able to
be placed on the (“Guazuncho2” (G. hirsutum) x "VH8-4602"

(G. barbadense)) map. For this reason some QTL identified from
previous studies were not included in this meta-analysis and do not
appear on the combined QTL linkage map
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Table 2 Numbers of quantitative trait loci (QTLs) resistant to
Verticillium wilt (VW), Fusarium wilt (FW), root-knot nematodes
(RKN), reniform nematodes (RN), bacterial blight (BB) and black
root rot (BRR) that were identified in this study and reported in
other studies
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Table 3 Resistance QTL clusters and hotspots identified for Verticillium wilt (VW), Fusarium wilt (FW), rootknot nematodes (RKN) and

reniform nematodes (RN)

Chr Total No. clusters No. QTLs Type hotspot Region Linked markers

cl 5 0

c2 5 0

c3 9 0

c4 10 1 5 VW, 2 RKN VW 0-10 cM CIR 210A, NAU22353, BNL2572CIR122B, NAU2291B
c5 21 2 7 RKN, 3 VW, 1 BRR RKN 10-35cM CIR067, CIR224a, CIR102, CIR280b, CIR062a

c5 5 VW VW 75-100 cM CIR373, BNL3995, JESPRO65b

6 8 1 5FW, 1 VW FW 5-25Cm CIR267a, BNL3359b, CIR298, CIR203, BNL2569

c7 25 3 10 RKN, 2 VW, 1 FW RKN 0-25Cm pAR057b, pAR188b, CG05a

c7 4 RKN RKN 40-55 cM (G233, CIR355, NAU2432b

c/ 5 VW VW 65-85 cM NAU2186a, R2, BNL1597, CIR412

c8 14 2 2 FW, 2 VW 0-20 cM CIR244, G1114, JESPR2323, pAR792a

c8 7 VW VW 35-60 Cm CIR3764a, JESPR0O66, CIR237, CIR254a, BNL2961a

9 17 1 3 VW, 2 RKN 35-55 <M MUSB1040b, BNL3799, JESPR230b

c10 0 0

cll 23 2 17 RKN, 1 VW, 1 FW RKN 0-25cM CIR069b, pAR044b, pARG48b

cll 4 RKN, 2 FW, 1 RN? RKN 20-45 cM PAR044b, pAR648b, CIR196, CIR003, BNL1066, BNLO836
cl12 3 0

c13 6 0

cl4 14 1 9 RKN, 1TFW RKN 0-20 ctM CIR246, pAR723b, G1012

cl15 8 1 4 RKN, 1 VW RKN 40-60 cM pARO15b, BNL2646, JESPR205

clé 21 3 8 VW VW 0-25cM A1826, pAR544

c16 6 VW, 1 FW VW 30-55 cM HAU09663, BNL16043a, BNL1122b

cl6 6 VW VW 57-75 cM JESPR228a, HAU2432a, BNL2986

cl7 7 1 4 FW, 2 VW FW 0-10 ctM BNL3408a, CIR347, BNL2443a

c18 2 0

c19 21 2 5VW, 5 FW VW, FW 0-25 cM CIR415a, CIR224b, CIR242, CIR165a

c19 4 RKN, 2 VW RKN 20-50 cM CIR165a, BNL3452, CIR086a, CIR176

c20 7 1 3 VW, 2 RKN 0-20 cM A12143, CMS21b, CIR187

21 22 2 5 VW, 2 RKN, 2 FW VW 0-25 cM LTCOL, CG22, CIR112, CIR069a, CIR316, JESPRO66a
c21 4 VW 85-105 cM BNL3997, CIR061¢c, HAU4855, BNL1053a, BNL1681b
c22 9 1 2 VW, 2 FW, 1 RKN 0-25cM NAU2235b, BNL3873, CIR218b, CIR122a, NAU2291a
c23 36 2 22 VW, T FW, 2 RKN VW 0-25 cM CIR198, CIR286, BNLO86b, CIR019, BNL1161a, BNL3383
c23 4 VW VW 35-45 cM pAR517, CAC263d

c24 4 1 3VW, 1 FW 0-25 cM CIR026, CIR388, JESPR1573, HAU2407b, BNL3860
c25 2 0

c26 7 1 4 VW VW 0-20 cM JESPR300b, NAU3896, CIR272b, BNL1045a

BRR black root rot

®a major resistance gene Ren™"

transferred to Upland from G. longicalyx

identified). The difference in distribution of clusters on
the A- and D- subgenomes was not significant (y* =
0.57; Xo.05 = 3.84 at df = 1). The first region (at 0—25 cM)
on the chromosomes of the cotton genome contained most
QTL clusters (16), followed by the second region at
25-50 cM with 8 clusters; and the third region at 60—85

c¢M and the fourth region at 75-100 cM only carried 2
clusters each. Across the cotton genome, the difference in
distribution of clusters in the four regions was highly sig-
nificant (y* = 18.86; X305 = 7.82 and X3,0; = 16.27 at df = 3).
There were no clusters on cl, c2, c3, c10, c12, c13, c18,
and c25. Chromosomes c7 and c16 each carried 3 clusters,
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while c5, c8, c11, c19, c21, and ¢23 each carried 2 clusters.
However, some of the clusters did not contain any QTL
hotspot (at least 4 resistance QTLs for the same disease)
including c8 (2 VW and 2 FW QTLs at 0-20 cM), ¢9
(3 VW and 2 RKN QTLs at 35-55 cM), ¢20 (3 VW and 2
RKN QTLs at 0-20 cM), ¢22 (2 VW, 2 FW and 1 RKN
QTL at 0-25 cM) and c24 (3 VW and 1 FW QTL at
0-20 cM). Some of the clusters may contain QTL
hotspots after more QTL mapping results are reported in
the future. In the following sections, clusters containing
resistance QTL hotspots for each disease will be analyzed
in more details.

Comparing the distribution of QTL clusters between
homeologous chromosomes (Table 3), c1, ¢2, ¢3, cl0,
and c12 did not have any clusters identified, while their
counterparts (c15, c14, c17, ¢20 and c26, respectively)
each had one cluster. However, c6 had one cluster while
its homeologous chromosome c25 carried no cluster,
nor the homeologous pair c13 and c18 carried any clus-
ters. Homeologous chromosome pair ¢4 and c22 each
carried one cluster in similar regions with QTLs for VW
and RKN resistance identified, while other three pairs
(c5 vs. ¢19, ¢7 vs. ¢l6, and cl1 vs. ¢21) each carried 2-3
clusters. For ¢5 and c19, 3-5 VW QTLs were identified
in the similar region (0-30 cM), while the second cluster
differed in map positions and types of QTLs between
the two chromosomes. For c7 and c16, the first cluster
had 2 VW QTLs; the second cluster differed in QTL
types, while the third cluster had the same QTL type but
differed in positions. For c11 and c21, the first cluster in
a similar position only had 2 QTLs in common for the
same traits, while the second cluster differed in QTL type
and position. Interestingly, for homeologous pair ¢9 and
c23, both had 3 VW QTLs in a similar region (30—
50 cM). However, c23 carried 2 clusters (with 25 and 4
QTLs, respectively), while ¢9 carried one cluster with only
5 QTLs. For another homeologous pair ¢8 (with 2
clusters) and c24 (with one), both had QTLs for VW and
FW resistance in the same region (0-20 cM).

Meta-analysis of Verticillium wilt (VW) and Fusarium wilt
(FW) resistance QTLs

Of a total of 193 QTLs for VW resistance, 83 and 110
were distributed on the A- and D- subgenomes, respect-
ively (Table 2, Fig. 1). But the difference in QTLs
between the two subgenomes was not statistically signifi-
cant ()(2 =3.78; X%.os =3.84 at df = 1). Except for chromo-
somes cl0 and c18, all chromosomes carried VW
resistance QTLs. Chromosome ¢23 carried the most
QTLs (33), followed by c16 with 20 and c21 with 16.
Chromosomes c5, c7, ¢8, ¢9 and c19 each carried 11-12
QTLs, while c4 and c26 carried 7-8 QTLs. Due to the
concentration of QTLs in regions, ¢4 (at 0-10 cM), c5
(at 80-100 cM), ¢7 (at 65-85 cM), ¢8 (35-55 cM), c19
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(at 0-25 cM), and ¢26 (at 0-20 cM) each carried one
hotspot with 4-7 VW resistance QTLs, while c21 and
¢23 each carried 2 hotspots, and c16 carried 3 hotspots
(Table 3). On c16, the three hotspots were distributed at
0-20, 30-40, and 50-65 cM with 8, 6 and 6 QTLs,
respectively. On ¢21, at two distal regions (at 0—
25 ¢cM and 85-105 cM) from the centromere, the
two hotspots each contained 4-5 QTLs. On c23, the
hotspot at 0-25 c¢cM had 22 QTLs concentrated for
VW resistance, while the one at 35-45 cM had only
4 VW resistance QTLs. The above 13 hotspots con-
tained 86 individual VW resistance QTLs (45 % of
total VW QTLs) and a few QTLs for FW or RKN
resistance. Of the 193 VW resistance QTLs identified,
111 (57 %) were located in disease resistance QTL
clusters.

All 27 FW resistance QTLs reported on 16 chromo-
somes were located in resistance QTL clusters, 14 of
which were located on three chromosomes ¢6, c17 and
c19 (Table 2, Fig. 1). The relevant regions (0-25 cM) on
these three chromosomes (5 QTLs at 5-25 ¢cM on ¢6, 4
QTLs at 0-10 ¢cM on c17, and 5 QTLs at 0-25 ¢cM on
c19) each carried a QTL hotspot for FW resistance
(Table 3). It is interesting to note that the same region
on ¢19 also carried a QTL hotspot with 5 QTLs for VW
resistance. Therefore, this region may have resistance
genes for both VW and FW.

Meta-analysis of root-knot nematode (RKN) and reniform

nematode (RN) resistance QTLs

For RKN resistance, a total of 75 QTLs were identi-
fied on 14 chromosomes (Table 2, Fig. 1), 18 of
which were located on c11, followed by c7 (13 QTLs),
cl4d (9 QTLs), ¢5 (7 QTLs), c19 (6 QTLs), ¢9 (4
QTLs), and c15 (4 QTLs). Chromosomes cl, ¢3, c4,
c20, c21, c22 and c23 each carried 1-3 RKN resist-
ance QTLs, and the remaining chromosomes did not
carry any RKN resistance QTLs. Eight QTL hotspots
were identified including two each on ¢7 and cl1 (at
0-25 and 20-45 cM regions), and one each on c5 (at
10-35 cM), cl4 (at 0-20 cM), cl15 (at 40-60 cM),
and c19 (at 20-50 cM). Two major RKN resistance
genes or QTLs with major effects from Auburn
623RKN and its derived lines, as reported previously
[13, 14], have been confirmed in the hotspot regions
of c11 with 17 QTLs and cl14 with 9 QTLs. Of the
75 RKN QTLs identified, 69 (92 %) and 59 (79 %)
were located within 14 resistance QTL clusters and
the 8 RKN resistance QTL hotspots, respectively
(Table 3).

Of the six QTLs reported for reniform nematode (RN)
resistance, c21 carried five, while c18 carried one. Since
the five QTLs on c21 were scattered along the whole
chromosome, there was no QTL hotspot identified.
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However, cl1 carried one major dominant resistance
gene Ren™ transferred from G. longicalyx, and it was in
a close proximity to the two RKN resistance QTL hot-
spots with 21 QTL identified including one of the two
major resistance genes for RKN resistance (Table 3,
Fig. 1). Therefore, this cll region carries important
resistance genes for both RKN and RN resistance.

QTLs for resistance to bacterial blight (BB) and black root
rot (BRR)

Due to the RFLP markers used by Wright et al. [28], the
BB resistance QTLs could not be placed on the consen-
sus map in this study. However, three reported QTLs re-
sistant to BRR were mapped onto c5, ¢9 and c13 of the
consensus map (Fig. 1). The one on c5 was close to a
QTL cluster with 7 RKN and 3 VW QTLs, while the
other two QTLs were distant from others.

Identification of linked markers to the disease resistance
QTL clusters and hotspot

The closely linked SSR markers for the 28 disease resist-
ance QTL clusters involving 13 VW resistance hotspots,
3 FW resistance hotspots and 7 RKN resistance hotspots
are listed in Table 3. The information should be useful
to breeders and geneticists.

Association between number of resistance QTLs and
number of nucleotide-binding site (NBS)-encoding genes
Based on the sequenced genomes in G. raimondii (D5
genome) and G. arboreum (A2 genome), 391 and 280
NBS-coding genes were identified, respectively [24]. The
significantly higher number of NBS genes in G. raimon-
dii than in G. arboreum ()f =18.36; X3,05 =3.84 at df = 1)
may explain why the D subgenome carried more disease
resistance QTLs than the A subgenome in the tetraploid
cotton. The number of NBS genes and the number of
QTLs identified on the 13 D-subgenome chromosomes
were positively correlated (r=0.399; P>0.05), while the
correlation was significant with the number of total
disease resistance QTLs on homeologous A-subgenome
chromosomes (r=0.645; 0.01 <P<0.05). The sum of
QTLs in 13 pairs of homeologous chromosomes was also
significantly correlated with the number of NBS-coding
genes (r=0.553; 0.01 < P < 0.05). The correlation with the
number VW QTLs on A- and D- subgenome chromo-
somes was also positive but insignificant (r = 0.387-0.464;
P> 0.05); however, the correlation with the number of
RKN QTLs on the A subgenome chromosomes was
significant (r=0.645; 0.01 < P < 0.01). Therefore, there is a
trend that the more NBS-encoding genes a chromosome
carries, the more disease resistance QTLs it has. For
example, chromosome 7 (D5) carried the most number of
NBS genes (87), and its homeologous pair of Upland cot-
ton (c7 vs. c16) carried a total of 46 QTLs (25 vs. 21).
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Chromosomes 9 and 11 in D5 carried 23 and 34 NBS
genes, respectively, and their homeologous pairs (c9 vs.
¢23, and c11 vs. ¢21) carried a total of 53 (17 vs. 36) and
46 (23 vs. 23) QTLs, respectively. Chromosomes 6, 10, 12
and 13 in D5 contained a minimum numbers of NBS
genes (1-8), their corresponding tetraploid chromo-
somes (c6 vs. ¢25, c10 vs. ¢20, c¢12 vs. ¢26, and cl13
vs. c18) also carried the least numbers of QTLs (8 vs.
2, 0 vs. 7, 3 vs. 7, and 6 vs. 2, respectively). However,
three chromosomes (1, 2, and 8) in D5 also had high
numbers of NBS genes (24, 22, and 32, respectively),
but their tetraploid counterparts (cl vs. c15, ¢2 vs.
cl4, and c8 vs. c24, respectively) only carried moder-
ate numbers of QTLs (5 vs. 8, 5 vs. 14, and 14 vs. 4,
respectively). Surprisingly, chromosomes 5 in D5 car-
ried a small number of NBS genes (5), but its tetra-
ploid counterparts (c5 vs. c19) carried a high number
of QTLs (21 vs. 21).

Furthermore, the number of NBS genes was signifi-
cantly correlated with the number of QTL clusters on
A- and D- subgenome chromosomes and the sum of the
homeologous chromosomes (r = 0.683, r=0.710, and r =
0.754, respectively; rgo5=0.553, roo; =0.684; df=11).
For example, chromosomes 7, 8, 9 and 11 with high
numbers of NBS genes each had a total of 3-6 clusters
in their tetraploid counterparts. Since NBS genes on
these chromosomes with high numbers of NBS genes
are clustered, the results indicate that the disease resist-
ance QTL clusters may be in part determined by NBS
gene clusters. However, the reverse is true for chromo-
some 5 with only 5 NBS genes in the D5 genome, while
its tetraploid counterparts carried 4 clusters. This result
indicates that either these NBS genes may have pleio-
tropic effects on multiple diseases or other genes on the
chromosome are involved in quantitative resistance.

Discussion

Difficulties in screening cotton for VW resistance

In this study, a BIL population of 146 lines was tested in
2—4 replications (with 27-30 plants for each genotype in
each replication) through 4-years replicated field tests.
Disease resistance was determined by an average severity
rating from 54—120 individual plants for each genotype,
therefore rendering low experimental errors than most
previous VW resistance studies. However, only 10 VW
resistance QTLs on 8 chromosomes were identified. On
two chromosome regions, two QTLs were identified in
the same or similar regions. On the 8 chromosomes
where the 10 QTLs were mapped, VW resistance QTLs
were also mapped by previous studies. In fact, 4 QTLs
were mapped onto three chromosomes (c4, c21 and c23)
with VW QTL hotspots. Therefore, the results in this
study demonstrated a moderate level of consistency in
QTL mapping for VW resistance based on the multiple
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years of replicated studies. The results also demonstrated
difficulties in VW resistance studies even if inbred lines
are evaluated for VW resistance in multiple replicated
field tests with or without inoculations.

As Zhang et al. [4, 10] noted, it is difficult to reliably
identify VW and FW resistance QTLs. There are a num-
ber of contributing factors to the complication of disease
resistance studies. First, Many early segregating popula-
tions were used in disease resistance QTL mapping,
which did not allow repeated evaluation of the same
genotypes from multiple individuals in multiple replica-
tions and multiple environments. Experimental errors
were understandably higher. Second, VW and FW
disease infections are highly sensitive to environmental
and developmental factors, and even artificial inocula-
tions could not achieve similar disease infections in the
same genotypes [4, 8, 29, 30]. Thirdly, an artificial grad-
ing system for disease severity is often used, rendering it
very difficult to quantitatively and accurately phenotype
cotton responses to the diseases. Fourth, there exist
interactions of genotype with environment, strains of a
pathogen, and evaluation methods, resulting in different
disease responses of the same genotypes to different
strains of pathogens under different environmental
conditions or using different inoculation methods.
Furthermore, most disease resistance QTLs have low
contributions to disease resistance, which could not
be detected in many environmental conditions where
experimental errors for resistance screening are
higher. Finally, low genome coverage of molecular
markers in many mapping studies does not allow a
genome-wide detection of QTLs with a high reso-
lution, resulting in different QTLs identified from
different genetic populations evaluated under different
environmental and screening conditions. All of these
issues call for reliable screening techniques and phe-
notyping of disease resistance in mapping populations
with multiple individuals in each genotype using mul-
tiple replicated tests. Of course, genome-wide markers
should be developed for better genome coverage, so
more QTLs with high accumulated PVE will be
detected.

Genetic basis of VW resistance

The complexity in mapping QTLs for VW resistance in
cotton is further illustrated from the meta-analysis of
VW resistance QTLs reported previously. Out of 193
QTLs reported, except for ¢10 and c18 where no QTLs
for VW resistance were reported, all other chromosomes
had QTLs mapped, although 14 chromosomes carried
only 1-6 VW QTLs. The identification of 13 VW resist-
ance QTL hotspots on 9 chromosomes further demon-
strated the complexity in studying the genetic basis of
VW resistance in cotton, because selection of QTLs for
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VW resistance breeding and further genetic and gen-
omic studies will be difficult. However, more attention
should be paid to several VW QTL populated hotspots,
such as the hotspot with 7 VW QTLs on c¢8 at 35—
60 cM and three hotspots with 22 VW QTLs on c16 at
0-75 cM. But, the most notable is the hotspot with 22
VW QTLs on ¢23 at 0-25 cM, because this region may
also confer resistance to FW and RKN since 1-2 resist-
ance QTLs to FW and RKN were identified.

Several other regions also deserve more attention. The
VW QTL hotspot on c19 is interesting, because a FW
QTL hotspot was within the same region, and a RKN
QTL hotspot was also in the proximity. Therefore, this
region may share genes responsive to VW, FW and
RKN.

A region on cll is also very important in confer-
ring resistance to multiple diseases. In a broad region
(0-45 cM), 21 RKN QTLs, 3 FW QTLs, 1 VW QTL,
and 1 major RN resistance gene (Ren") were mapped.
Another region (0-20 cM) with the second most frequent
RKN QTLs was on c14. In this region, a major gene or
QTL was identified for RKN resistance [13, 14]. However,
this region appeared to confer resistance to only RKN,
because there were very few QTLs identified for resistance
to other diseases.

Chromosome c21 also deserves more consideration,
because it carried two QTL hotspots for VW resistance,
2 QTL for RKN resistance and also 5 QTLs for reniform
nematode (RN) resistance. However, the RN resistance
QTLs were scattered along the chromosome and not
contained in any of the hotspots. Except for the hotspot
in the same region on c19 for VW and FW resistance,
other hotspots including 8 hotspots for RKN resistance
did not overlap with any of the resistance QTL hotspots
for VW and FW. In fact, the numbers of QTLs for VW,
FW and RKN on different chromosomes were not corre-
lated (r=-0.039 to 0.114; ry o5 = 0.388 at df = 24). There-
fore, it is reasonable to speculate that the resistance
mechanisms for the three diseases are likely different.
However, the linked markers for 13 VW hotspots, 3 FW
hotspots and 8 RKN hotspots should be highly useful in
choosing chromosome regions with consistent QTLs for
marker-assisted selection and high resolution mapping
of resistance QTLs and genes.

NBS-coding genes and disease resistance QTLs

In rice and other plant species, many disease resistance
genes were cloned and isolated [22, 23]. It is known that
most of the disease resistance genes belong to a super
gene family encoding nucleotide-binding site (NBS)
domains. Through resistance gene analog RGA-based
marker analysis, many RGAs in cotton were mapped
[31-33]. Except that a RGA marker was found to be
linked to a RKN resistance gene in a study [32], no other
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studies have associated NBS genes with disease resist-
ance in cotton. Based on the current study, the number
of disease resistance QTLs and QTL clusters including
hotspots identified on chromosomes seemed to be posi-
tively correlated with the number of NBS genes. How-
ever, on several other chromosomes with very few NBS
genes, substantially higher numbers of resistance QTLs
were identified. It is likely that in some QTL cluster and
hotspot regions, multiple NBS genes are located, and
different NBS genes may confer resistance to different
diseases. Since NBS-coding R genes are normally major
Mendelian resistance genes [22, 23], the positive correl-
ation of QTL clusters and hotspots identified in the
current meta-analysis with NBS genes indicates that
these QTL regions maybe contain major resistance R
genes. In fact, major disease resistance genes or QTLs
with major effects have been identified for VW, FW,
RKN, RN, and BB [4, 10, 12-14, 17, 19-21, 34]. For ex-
ample, two major resistance genes were identified for
RKN [12-14]; and more than 12 major genes resistant
to various races of BB including one on chromosome 5
have been reported [34]. Others major resistance genes
include one resistant to southwestern cotton rust (Pucci-
nia ccabata Arth. and Holw.) and two resistant to cotton
leaf crumple virus [34]. Recent studies have shown that
some major disease resistance R genes in other plants
are co-localized with resistance QTLs, suggesting weak
or defeated effects of R genes or their tight linkage with
other genes responsible for quantitative resistance loci
[35]. There are other genes with different functions iden-
tified recently that may be responsible for quantitative
disease resistance [35, 36]. Further studies are needed to
discern the relationship between disease resistance QTLs
and NBS genes in cotton. Because a 25 ¢cM region may
contain 700—-800 genes based on the sequenced diploid
cotton genomes, identification of candidate genes for the
resistance QTL clusters is currently impractical in this
study. In the future, positional candidate gene approaches
in relating NBS genes to resistance QTLs will be possible
once the tetraploid cotton genome is sequenced and the
QTL clusters are narrowed to 5-10 cM regions through a
high resolution mapping strategy using large genetic
populations.

Materials and methods

Materials

An interspecific backcross inbred line (BIL) population
comprising of 146 lines was used in this study. The BILs
were developed from a cross between Upland cotton (G.
hirsutum) SG 747 and G. barbadense Giza 75 through
two generations of backcrossing using SG 747 as the
recurrent parent followed by four generations of self-
pollination. During the BIL development, each BC;F;
plant was used as male parent to backcross with SG 747
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to derive BC,F;. In each BC;F;-derived BC,F5 progeny,
one single representative plant was selected for seed
increase and used as the seed source for subsequent field
tests. The 146 BILs and the two parents were planted in
the experimental farm of China Cotton Research Insti-
tute, Chinese Academy of Agricultural Sciences, Anyang,
Henan province in 2006, 2007 and 2008. The fields used
to evaluate VW resistance were grown with cotton yearly
and heavily infected with race 3 of V. dahliae Kleb. To
further evaluate VW resistance, an artificially inoculated
field nursery with the VW strain from Anyang was used
in 2009. The 148 entries were arranged in a randomized
complete block design with two (2007), three (2008 and
2009) and four replications (2006). Seeds were sown in
single row plots in April and crop managements
followed local recommendations. The plot length was
8.3 m with a row-spacing of 0.8 m and seedlings were
thinned to 27-30 plants per plot.

VW resistance screening

All the individual plants in each plot were evaluated for
VW resistance based on a system established as a na-
tional standard for screening cotton for VW resistance
in China [4], as the following,

No symptom (healthy)

<25 % chlorotic/necrotic leaves
25-50 % chlorotic/necrotic leaves
50-75 % chlorotic/necrotic leaves
>75 % chlorotic/necrotic leaves
Complete defoliation or plant death

G W o

The number of infected plants was divided by the total
number of plants screened to calculate disease incidence
(VW %), and average disease severity rating-VWR, i.e.,
the sum of (rating x number of plants) was divided by
the total number of plants [4, 7]. The average disease
severity rating on the 0-5 scale was converted to the
disease index (%) on a 0-100 % scale as the ratio
between the average severity rating and the highest rat-
ing (i.e., 5).

DNA extraction, maker analysis, and map construction
The genomic DNAs were extracted from young leaves of
the 146 individual BIL lines and the two parents using a
quick method [37]. Simple sequence repeat markers
(SSRs) were used to construct a genetic map for the BIL
population using JoinMap 3.0 [38] and the linkage map
was published elsewhere [27].

QTL mapping

For QTL mapping, the IciMapping software (v3.2;
http://www.isbreeding.net/), an integrated software for
building linkage maps and mapping QTLs which can
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handle various mapping populations including BILs in
this study, was used [39]. See Yu et al. [27] for details.
The QTL nomenclature followed McCouch et al. [40] in
that a QTL designation begins with “q”, followed by an
abbreviation of the trait name, year, chromosome name,
and finally a serial number.

Meta-analysis of QTLs

As of the end of January 2015, results of disease resist-
ance QTL mapping from all publicly accessible journals
were obtained, in addition to a few papers published in
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Chinese in China. This study used 32 published papers
regarding mapping of resistance to VW, FW, RKN, RN,
bacterial blight (BB) and black root rot (BRR) with 306
QTLs reported (see Table 4 for details). For VW resist-
ance QTL mapping, 12 studies [41-50] were included.
For FW QTL mapping, 6 studies [51-56] were included.
For RKN QTL mapping, 7 studies [13, 14, 57-60] were
included. For RN QTL mapping, 5 studies were included
[17, 19-21]. To be more inclusive, results from two
studies on BB and BRR resistance QTL mapping were
also used [28, 61].

Table 4 Mapping of resistance to Verticillium wilt (VW), Fusarium wilt (FW), root-knot nematodes (RKN) and reniform nematodes

(RN) that were identified in this study and reported in other studies

Author Journal Year No. QTL Population Disease
Wright RJ et al. Genetics 1998 2 F2 BB
Niu C et al. Theor Appl Genet 2008 3 F2/F2:3 BRR
Wang & Roberts Phytopathology 2006 1 F2:3 FW
Wang PZ et al. Theor Appl Genet 2009 6 F2:3 FW
Lopez-Lavalle et al. Mol Breed 2012 9 F3/F4 FW
Mei H et al. Euphytica 2014 7 4WC FW
Ulloa M et al. Mol Genet Genomics 2011 6 RIL Fw
Ulloa M et al. Theor Appl Genet 2013 4 F2 & RIL FW
Gutierrez OA et al. Theor Appl Genet 2010 12 RIL RKN
He et al. Theor Appl Genet 2014 1 F2 RKN
Shen X et al. Theor Appl Genet 2010 1 F2 RKN
Shen X et al. Theor Appl Genet 2006 13 F2 RKN
Wang C et al. Theor Appl Genet 2006 1 RIL RKN
Wang C et al. PLoS ONE 2012 45 RIL RKN
Ulloa M et al. Plant Breed 2009 2 BC1P1/P2 RKN
Buyyarapu R et al. ICGI 2014 Conf 2014 1 F2 RN
Dighe ND et al. Crop Sci 2009 1 BCF1/BCS1 RN
Gutierrez OA et al. Theor Appl Genet 2011 3 BCP1/2 RN
Romano GB et al. Theor Appl Genet 2009 1 Trispecific RN
Bolek et al. Plant Sci 2005 33 F2 VW
Fang H et al. Mol Breed 2014 19 RIL VW
Fang H et al. Euphytica 2013 3 BIL VW
Ge HY et al. Cotton Sci 2008 1 F2:3 VW
Jiang F et al. Sci in China Ser C: Life Sci 2009 41 F2:3 VW
Wang FR et al. Cotton Sci 2007 4 F2:3 VW
Zhao Y et al. PLoS ONE 2014 14 AM VW
Wang P et al. The Crop Journal 2014 23 CSlLs VW
Wang HM et al. J Integr Plant Biol 2008 4 F2:3 VW
Zhang X et al. PLoS ONE 2014 5 F2:3 VW
Yang C et al. Plant Sci 2008 18 BC1S2 VW
Ning ZY et al. Crop Sci 2013 12 RIL VW
Zhang JF et al. This study 2015 10 BIL VW

BB bacterial blight, BRR black root rot, RIL recombinant inbred line, BIL backcross inbred line, CSIL chromosome segment introgression line, AM association

mapping panel
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A meta-analysis of QTLs for VW resistance was
performed using Biomercator V3 software ([62] (http://
moulon.inra.fr/index.php/fr/equipestransversales/atelier-de-
bioinformatique/projects/ projets/135). Briefly, using Bio-
mercator V3, the map file and QTL file from each study
were loaded into the software in the tab delimited format,
and were then mapped to the consensus [“Guazuncho2”
(G. hirsutum) x “VH8-4602” (G. barbadense)] map [63] ob-
tained from the Cotton Marker Database [64]. Since the
map file contains distances between markers on each
chromosome, each population’s QTLs were mapped to
the consensus map separately. A detailed description in
the meta-analysis of resistance QTLs can be found in Said
et al. [65, 66].

To reduce errors in declaring a QTL, four or more
QTLs (with a false positive rate of 6.25 % or below) in
an interval of 25 cM were considered a consistent QTL
region. If there was more than one trait involved in the
QTLs, the region is called a QTL cluster. Otherwise, it is
called a QTL hotspot for the region involving only one
single trait.

Correlation analysis between number of QTLs and
nucleotide-binding site (NBS)-encoding genes distributed
on chromosomes

Based on the recent completion of genome sequencing
of G. raimondii and G. arboreum [24-26], NBS-
encoding genes were identified. For example, chromo-
somes 1 through 13 of the G. raimondii genome carried
24, 22,11, 8, 5, 5, 87, 32, 23, 5, 34, 1, and 8, respectively
[67]. A simple correlation analysis was performed be-
tween the number of the NBS genes and the number of
total QTLs and QTLs resistant to individual diseases.
Coefficients of correlation were tested for significance at
the degree of freedom of 24 (genomewide with 26 chro-
mosomes) or 11 (on the subgenome level with 13
chromosomes).

Conclusions

In this study, linkage mapping of Verticillium wilt (VW)
resistance and meta-analysis of QTLs were used to map
QTL clusters and hotspots for resistance to VW, Fusar-
ium wilt, root-knot nematodes and reniform nematodes
in cotton. In a four-year replicated test of a backcross in-
bred line population for VW resistance, 10 resistance
QTLs were mapped based on a 2895 cM linkage map
with 392 SSR markers, which has added useful informa-
tion to the understanding of the genetic basis of VW re-
sistance in cotton. Twenty-eight disease resistance QTL
clusters and 24 hotspots identified from a total of 306
reported QTLs in 32 papers and linked SSR markers
provide important information for marker-assisted selec-
tion and high resolution mapping of resistance QTLs
and genes. The non-overlapping of most resistance QTL
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hotspots for different diseases indicates that their resis-
tances are controlled by different genes.

Additional file

Additional file 1: Mapping of quantitative trait loci for Verticillium
wilt resistance in a backcross inbred line population of (SG 747 x
Giza 75) x SG 747 BC,F,.
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