Liu and Zhang BMC Genomics (2015) 16:503

DOI 10.1186/512864-015-1687-x
BMC

Genomics

RESEARCH ARTICLE Open Access

Tumor characterization and stratification by @
integrated molecular profiles reveals
essential pan-cancer features
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Abstract

Background: Identification of tumor heterogeneity and genomic similarities across different cancer types is essential
to the design of effective stratified treatments and for the discovery of treatments that can be extended to different
types of tumors. However, systematic investigations on comprehensive molecular profiles have not been fully explored
to achieve this goal.

Results: Here, we performed a network-based integrative pan-cancer genomic analysis on >3000 samples from 12
cancer types to uncover novel stratifications among tumors. Our study not only revealed recurrently reported
cross-cancer similarities, but also identified novel ones. The macro-scale stratification demonstrates strong clinical
relevance and reveals consistent risk tendency among cancer types. The micro-scale stratification shows essential
pan-cancer heterogeneity with subgroup-specific gene network characteristics and biological functions.

Conclusions: In summary, our comprehensive network-based pan-cancer stratification provides valuable information

about inter- and intra- cancer stratification for patient clinical assessments and therapeutic strategies.

Background

Cancer largely results from various molecular aberra-
tions comprising somatic mutational events such as
single nucleotide mutations, copy number changes and
DNA methylations [1-3]. In addition, cancer is viewed
as a wildly heterogeneous disease, consisting of different
subtypes with diverse molecular implementations of
oncogenesis and therapeutic responses. Many organ-
specific cancers have established definitions of molecular
subtypes on the basis of genomic, transcriptomic, and
epigenomic characterizations [1-3], indicating diverse
molecular oncogenic processes and clinical outcomes.
The molecular-defined intrinsic breast cancer subtypes
(luminal A, luminal B, HER2-enriched, basal-like, and
normal-like) are typical examples, since they have been
reported to be associated with distinct phenotype out-
comes and have different chemotherapy responses and
respective stratified therapy [4—8]. Similarly, endometrial
cancers have also been classified into four categories
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(POLE ultramutated, microsatellite instability hypermu-
tated, copy-number low, and serous-like) through a
comprehensive, multiplatform analysis [9], and glio-
blastoma multiformae was stratified into four distinct
molecular subtypes (proneural, neural, classical, and
mesenchymal) based on the CpG island methylation
phenotype [1]. Different tumor subtypes of the same
organ reflect diverse molecular oncogenic processes
and various clinical outcomes, which imply that they
should be treated as different cancers for treatment de-
sign in some sense [10].

Key genomic similarities shared by subgroups of pa-
tients across cancer types would present an opportunity
to design tumor treatment strategies among tumors
regardless of tissue or organ of origin and enable the
extension of effective treatments from one cancer type
to another [11]. For example, the molecular commonal-
ities between basal-like breast tumors with high-grade
serous ovarian tumors indicate a related etiology and
similar therapeutic opportunities [12]. However, the current
tumor heterogeneity is mostly defined for tumors of the
same organ without considering the potential cross-cancer
benefits. Thus, deciphering tumor heterogeneity for all
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cancers based on their genomic characteristics is an ur-
gent issue.

In the past, insufficiency of high quality genomic data-
sets of a large number of patients across different tumor
types has impeded such investigations. With great ad-
vancement in high-throughput sequencing technologies
and comprehensive efforts of systematic cancer genom-
ics projects (e.g., the Cancer Genome Atlas pan-cancer
project [11]), studies on molecular aberrations of cancer
patients have increased unprecedentedly in scale and
accessibility, enabling large-scale integrative cross-cancer
analysis [13]. Very recently, Hoadley et al. conducted a
comprehensive integrative analysis using data from six
independent omics platforms on 3,527 specimens from
12 cancer types and reported a unified classification into
11 major subtypes (originally, there were 13 classes and 2
classes only had 3 samples and 6 samples respectively) [14].

Cancer has long been considered as a disease of com-
binations of functionally related alterations at the net-
work level. In recent years, the molecular network as a
simple but efficient presentation of complex interactions
and regulatory relationships between molecules has been
adopted comprehensively for understanding system-level
properties of complex disease. However, Hoadley et al.
only adopted very limited information on pathways and
failed to employ a large-scale molecular interaction
network [14]. In contrast, we believe that aggregating
genomic characterizations of patients using gene networks
would contribute to identifying subgroups of patients with
similar molecular-network patterns affected by diverse
genetic alterations.

In this study, we adopted a network-based stratifica-
tion (NBS) approach [15] to integrate key genetic and
epigenetic features of 3299 tumor samples from 12 can-
cer types [16] to uncover novel pan-cancer heterogen-
eity. We found that our pan-cancer stratification is
predictive of clinical outcomes, and different cancer pa-
tients falling into the same subgroup show consistent
survival tendency or grade/stage severity. We identified
subgroup-specific genomic alterations and networks that
are responsible for distinguishing each subgroup. These
subgroup networks demonstrate specific genomic char-
acteristics and biological functions. In summary, our
cross-cancer stratifications not only revealed most recur-
rently reported cross-cancer similarities, but also novel
patient groupings, implying valuable messages for pa-
tient clinical assessments and therapeutic strategies.

Results

Overview of the pan-cancer stratification analysis

We integrated and mapped the genomic aberrations of
tumors of 12 cancer types to a large-scale molecular
interaction network, and adopted the NBS procedure to
reveal pan-cancer subgroups with similar molecular
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features (see Methods, Fig. 1 and in Additional file 1:
Figure S1). The 12 cancer types include bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
colon and rectum adenocarcinoma (COAD, READ), glio-
blastoma multiformae (GBM), head and neck squamous
cell carcinoma (HNSC), kidney renal clear-cell carcinoma
(KIRC), acute myeloid leukemia (LAML), lung adenocar-
cinoma (LUAD), lung squamous cell carcinoma (LUSC),
ovarian serous cystadenocarcinoma (OV), and uterine cor-
pus endometrioid carcinoma (UCEC) (in Additional file 1:
Table S1).

We can observe clear consistency between every suc-
cessive two classifications (e.g., k=6 versus k=7) of the
samples (Fig. 1b). In particular, two patient subgroups
were consistently identified across all 3 ~15 classes
(samples denoted by light blue and green in Fig. 1b).
One subgroup was dominated by KIRC tumors. KIRC
has been reported to have a high frequency of Von
Hippel-Lindau (VHL) mutation and show distinct exclu-
sivity from other 11 cancer types [17]. The other sub-
group consists of subsets of GBM, BLCA, LUSC, and
HNSC tumors. The similarity of these tumors has been
implicated in the mutation or amplification of ERBB2-
HER2 [11]. The remaining patients are progressively
subdivided into new subgroups as the number of classes
gets larger. We will further explore those representative
subgroups in terms of macro-scale (with k=3) and
micro-scale (with k=9 and Fig. 1c) classes in the follow-
ing subsections.

Macro-scale pan-cancer subgroups reveal clinical
relevance

We found that the unsupervised macro-scale pan-cancer
subgroups (with k=3) reveal distinct clinical relevance
across diverse cancer types (Fig. 2). We first observed
that each cancer type was significantly clustered into
one of the three pan-cancer subgroups (Fig. 2a). We fur-
ther found that the significantly enriched patients of five
cancer types demonstrated significantly different survival
rates compared to the remaining patients of the same
cancer types, respectively (Fig. 2b-f). In particular, the
patients for OV and LAML in subgroup 1 are associated
with long survival time and those for HNSC, LUAD, and
LUSC in subgroup 3 are correlated with bad survival
outcomes. More intriguingly, we found that patients in
subgroup 3 tend to have relatively poorer survival for
almost all cancer types, and COADREAD and OV
subgroup 3 patients also show statistically significant
shorter survival time (log-rank p-value <0.05) (in Additional
file 1: Figure S2). Similarly, subgroup 1 patients were associ-
ated with better survival outcomes for almost all cancer
types and HNSC, LUAD, and LUSC show statistical sig-
nificance (in Additional file 1: Figure S3).
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Lastly, we found that a large fraction of KIRC tu-
mors and a subset of UCEC tumors were significantly
enriched in subgroup 2 (Fig. 2a). Those KIRC tumors
and UCEC tumors in subgroup 2 tend to be patients
at early tumor stage and low grade (Fig. 2g, h). More
than half of the KIRC tumors in subgroup 2 are at
Stage I, and no UCEC tumor in subgroup 2 is at
Stage IV and high grade. All these observations dem-
onstrate that our pan-cancer macro-scale stratifica-
tion reveals strong clinical relevance and shows
consistent clinical tendency in some cancer types,
implying distinct pan-cancer heterogeneity as well as
oncogenic mechanisms.

Hoadley et al. [14] reported patient overall survival of
their 11 identified subtypes, which is very similar to the
overall survival observed in the original cancer types, in-
dicating limited contribution to the prognosis evaluation
and stratified therapy of patients. However, we note that
the comparison of patient survival among cancer tissue
types is limited to some extent. For example, GBM or
LAML patients are often associated with poor prognosis
compared to relatively moderate BRCA or UCEC pa-
tients. Seen from this angle, our pan-cancer macro-
scale stratification divides almost all cancers into
subgroups with consistent good or poor survival rates,
revealing underlying pan-cancer similarities among
cancer types and providing valuable information for

patient clinical assessments and stratified therapeutic
strategies.

Micro-scale pan-cancer subgroups reveal abundant
cross-cancer similarities
Further, we found that the micro-scale pan-cancer sub-
groups (e.g., with k=9) reveal heterogeneous aberration
patterns across diverse cancer types. (For convenience,
we named all subgroups as PC9 subgroup-X, X=1... 9,
or subgroup-X for short; Fig. 3) We observed that most
of the 12 cancer types and their subtypes were signifi-
cantly clustered into at least one of the 9 pan-cancer sub-
groups (Fig. 3a).

We first found that 94.4 % of the tumors in subgroup-
5 were KIRC types, making this subgroup highly exclu-
sive to a single cancer type, and more than half of
tumors (56.8 %) in subgroup-4 were BRCA types. In
contrast to these two subgroups dominated by individual
cancer type, other subgroups consist of multiple cancer
types. For example, subgroup-7 is significantly enriched
with a large fraction of GBM (60.6 %), HNSC, LUSC,
and BLCA tumors. In subgroup-6, 59.1 % of LAML tu-
mors and three molecule-defined COADREAD subtypes
were clustered together, indicating potential commonal-
ities between solid and liquid tumors (Fig. 3a).

We next explored the network modules consisting of
significant differentially influenced genes for each subgroup
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Fig. 2 Macro-scale pan-cancer subgroups reveal clinical relevance. a Patient distribution of 12 cancer types (COAD and READ are treated as one
type) in pan-cancer subgroups with k= 3. For a patient set of each cancer type in a subgroup, the significance of enrichment was evaluated using
a chi-squared test (see Methods). P-values lower than 1x 107'% were set as 1x 107 for convenient visualization. The number denotes the size of
the corresponding patient cohort of each cancer type in this subgroup. b-f Kaplan-Meier survival curves of patients in significantly enriched
subgroups and the remaining ones for cancer types OV b, LAML ¢, HNSC (d), LUAD (e), and LUSC f were plotted, respectively. P-values were
derived from the log-rank test. g-h Pie plots demonstrating the distributions of tumor stage and grade on patients in significantly enriched
subgroups and others for cancer types KIRC (g) and UCEC h. P-values denoting the significant level of the difference between the distributions of
two groups were calculated by Fisher's exact test

(see Methods). We can see that the overlap of these gene  Micro-scale pan-cancer subgroups demonstrate distinct
sets is very limited, indicating that these gene sets are highly  subgroup-specific patterns

specific to a subgroup (Fig. 3b). Moreover, the biological ~More importantly, genes from each gene set with high
functional annotations of these 9 gene sets are also very  aberration frequencies among corresponding subgroups
specific to individual subgroups (Fig. 3¢, d). indeed show significantly distinct patterns among the 9
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Fig. 3 Micro-scale pan-cancer subgroups demonstrate distinct subgroup-specific patterns. a Patient distribution of 12 cancer types (COAD and

READ are treated as one type) in pan-cancer subgroups with k=9. Subtypes of three cancers were used. For example, BRCA-Her2 stands for the
Her2+ breast cancer subtype, while BRCA stands for the breast cancer samples with no subtype information. For a patient set of each cancer type
or subtype in the subgroups, the significance of enrichment was evaluated using a Chi-squared test (see Methods). P-values lower than 1 x 10~ '°

were set as 1x 107'° for convenient visualization. The number denotes the size of the corresponding patient cohort of each cancer type or
subtype in this subgroup. b The number of overlaps between each pair of the 9 sets of significantly differentially influenced genes in each
subgroup. ¢ The number of overlaps of the biological functional terms derived from the corresponding significantly differentially influenced genes
sets of each subgroup using DAVID. Genes and functional terms were selected with false discovery rate (FDR) g-value smaller than 0.05.

d Selected GO terms (biological processes) from the functional analysis using the 9 sets of significantly differentially influenced genes for each
subgroup. Bars represent the significance with -log;o(FDR) (green) and the number of enriched genes (red) of the corresponding GO term

subgroups (Fig. 4). These observations imply that diverse
carcinogenic implementations and functional genetic
alteration events exist in different pan-cancer subgroups,
depicting essential tumor heterogeneity. More specific-
ally, the KIRC-specific subgroup-5 possesses exclusive
somatic mutation of the tumor suppressor gene VHL
with a mutation rate of 81.8 % in subgroup-5 (Fig. 4 and
Fig. 5a) [17]. The relationship between mutations of
VHL and KIRC has been established for decades and the
association between VHL and tumor stage, tumor-cell
proliferation, and patient prognosis has also been well
studied [18, 19]. Besides VHL, other genetic alterations
in subgroup-5 involve the mutation of the chromatin

remodeling gene PBRMI, the mutation of the histone
methyltransferase gene SETD2, which has been identified
as a tumor suppressor in KIRC [20] and high methylation
rate of GSTPI (Fig. 4 and in Additional file 1: Figure S8).
Moreover, VHL, SETD2, PBRM1I, and others display sig-
nificant low expression in this subgroup compared to the
remaining ones (Fig. 5a). These genomic alterations in this
subgroup are exclusive to KIRC, marking it highly exclu-
sive from other cancer types.

Multiple cancer types or subtypes including COAD-
READ-ultra and UCEC as well as BRCA-luminal A tu-
mors are significantly enriched in pan-cancer subgroup-1
(Fig. 3a). This subgroup was marked by mutations of
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multiple genes that exhibit a mutually exclusive pattern in
this cohort (Fig. 4 and in Additional file 1: Figure S4). Both
PTEN and PIK3CA alterations were reported to have
strong relationships with UCEC and COADREAD, and
the loss of PTEN expression is also observed to be associ-
ated with PIK3CA mutations in metastatic colorectal can-
cer [21-25]. Altered PTEN expression was viewed as a
diagnostic marker for early detection of UCEC [21], and is
associated with favorable clinical and pathologic char-
acteristics [22]. In addition, PIK3CA mutations were
reported to be present in approximately 25 % of breast
cancers, particularly the estrogen receptor—positive
subtypes, while they are absent in the basal-type breast
cancer [26]. This is consistent with the fact that
luminal A breast tumors are significantly enriched in
this subgroup. The mutation of PTEN and PIK3CA to-
gether with other alterations of genes affects a common
biological network, which reflects the major similarities
among subgroup-1 tumors (Fig. 5b in Additional file 1).
Moreover, high methylation frequency of MLHI was ob-
served exclusively in the UCEC-MSI cohort of subgroup-1
(in Additional file 1: Figure S4), confirming that MLHI
promoter methylation is the primary cause of microsat-
ellite instability in sporadic endometrial cancers [27]. Fi-
nally, many subgroup-1-specific altered genes including

PIK3CA show significant differential expression in
subgroup-1 compared to all other patients (Fig. 5b), in-
dicating the potential associations with downstream ex-
pression changes.

Subgroup-6 was mainly characterized by frequent pro-
moter hypermethylation of MGMT and mutations of
APC, KRAS, FLT3, and NPM1 (Fig. 4, Fig. 6a and in
Additional file 1: Figure S9). Patients in this subgroup
contain 40.6 % COADREAD and 59.1 % LAML as well
as sporadic samples from other types (Fig. 3a). About
one-fifth of LAML samples in subgroup-6 were described
with MGMT methylation. Increased MGMT activity is as-
sociated with resistance to cancer therapy using an alkylat-
ing agent, temozolomide, which has been shown to inhibit
cell growth in leukemia cell lines [28]. Thus, hypermethy-
lation of MGMT, inhibiting the expression of this gene, is
of clinical interest for LAML. We indeed observed that it
showed significant lower expression in this subgroup than
in others (Fig. 6a). Moreover, the methylation of MGMT
was also reported as a valuable molecular marker for the
early detection of colorectal cancer [29]. Therefore, the al-
teration of MGMT would provide potential implications
for targeted and shared therapy across these two ma-
lignancies. Besides MGMT, these two solid and liquid
tumors also share other mutated genes including
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Similar settings were used for Fig. 6

KRAS, IDHI, and NRAS. In contrast, we also found that a
few genes are tumor-specific for patients in subgroup-6.
For example, mutations of tumor suppressor gene APC
were only presented in COADREAD, while mutations of
FLT3 and NPM1 are exclusive to LAML.

Subgroup-7 was characterized by the copy number
deletion on chromosome 9p21 (98.4 % CNA deletion;
Fig. 4 and in Additional file 1: Figure S10). Genes lo-
cated in this region include CDKN2A, CDKN2B, KLHL9,
and MTAP as well as the IFNA gene family. More than
half of GBM (60.6 %) were clustered in subgroup-7 with
other significant enriched cancer types of HNSC, LUSC,
and BLCA (Fig. 3a and Fig. 6b in Additional file 1). This
subgroup demonstrates a typical cross-cancer similarity
phenomenon that subsets of samples from different
tumor types are characterized by the same genomic al-
terations on chromosome 9. The associations of the de-
letion of tumor suppressor genes CDKN2A, CDKN2B,
and MTAP with the four significant enriched cancer
types in this subgroup have been widely investigated and
reported [30-34]. [FNAI, 2, 6, 8, 9, and 13 are members
of the alpha-interferon genes cluster on chromosome 9.
Interferons are encoded by IFNA genes in response to

the presence of pathogens such as viruses, bacteria,
parasites, or tumor cells. They activate immune cells,
trigger the protective defenses of the immune system,
and eradicate pathogens or tumors. As is known, viruses
cause 10-15 % of all human cancers, and inflammation
promotes oncogenesis in the evolution of cellular trans-
formation [35, 36]. It was reported that human papil-
loma virus (HPV) types 16 and 18 were detected in
HNSC and played an important role in carcinogenesis of
this cancer [37]. Similar discoveries show that HPV is
the second most important cause of lung cancer after
cigarette smoking [38]. Shokeir et al. [39] showed that
the carcinogenesis of bladder cancer is likely related to
bacterial and viral infections. In addition, another study
also suggested that HPV infection status could be con-
sidered as an independent prognostic factor for GBM
and recognized as a causative agent in gliomagenesis
[40]. The lack of expression due to the deletion of IFNAs
may be responsible for the HPV infection in carcinogen-
esis of these cancers; however, their relationships need
to be further investigated. Subgroup-7 has shown distinct
gene expression differences such as that of CDKN2A,
CDKN2B, MATP, KLHLY, IFNA2, and IFNA6 with
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extremely low q-values, which could be explained by
the ~100 % copy number deletion on chromosome 9 in
subgroup-7 (Fig. 6b).

Subgroup-2 mainly consists of LUAD and BRCA tu-
mors, which were characterized by the amplifications on
chromosome 1 involving UBQLN4, SETDB1, MDM4,
ENSA, and so forth (in Additional file 1: Figure S5). The
largest patient group, subgroup-3 enriched with BRCA-
basal, UCEC-serous, and OV tumors, was characterized
by multiple recurrent chromosomal gains and losses (in
Additional file 1: Figure S6A). The amplification of onco-
gene MYC occurs in 30.8 % of samples in subgroup-3.
BRCA-basal, UCEC-serous, and OV patients in this co-
hort are associated with a high mutation rate of TP53
(88.4 %) (in Additional file 1: Figure S6B), which was con-
sistent with previous observations [11, 14]. Amplification
of 11q13 involving CCND1, ORAOVI, and ANOI was
dominated in subgroup-4, mainly consisting of luminal
BRCA and HNSC (in Additional file 1: Figure S7). These
estrogen-receptor positive luminal tumors are significantly
enriched in this subgroup, while basal-like breast cancers
are not. Amplification and overexpression of CCNDI
would alter cell cycle progression and contribute to
tumorigenesis. Previous studies have shown that lu-
minal cancers harbor recurrent amplifications and over-
expression of CCND1, whereas basal-like tumors harbor

recurrent deletions and down-regulation of it [41, 42].
Subgroup-8, mainly consisting of LUSC, HNSC, and
OV tumors, was characterized by 100 % copy number
gain on chromosome 3q26 involving genes PIK3CA,
KCNMB3, KCNMB2, MFN1, GNB4, MECOM, ZMATS3,
SOX2, and KCNJ13 (in Additional file 1: Figure S11).
Subgroup-9, mainly consisting of HNSC, OV, and
COADREAD, was characterized by a distinct 7P53 mu-
tation rate (98.6 %, in Additional file 1: Figure S12).

Discussion

In this paper, we adopted a network framework to inte-
grate the alteration profile of 12 cancer types to reveal
essential pan-cancer heterogeneity among diverse can-
cers. Without considering the primary tumor organ in-
formation, all tumors were clustered into pan-cancer
subgroups, which allowed us to discover important
cross-cancer commonalities. In a recent study, Ciriello
et al. [16] revealed two major classes, the M class (domi-
nated by mutation) and the C class (dominated by
CNAs), and further derived a hierarchical classification
of patients based on the binary event data by repeating
the algorithm on each newly identified class. However,
this process affects the identification of tumor hetero-
geneity and ignores the cross-cancer similarities em-
bodied in pathways and networks. Our network-based
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stratification can conquer these limitations of the spars-
ity of the discrete binary data and the lack of informa-
tion on neighboring genes.

More recently, Hoadley et al. identified 11 major pan-
cancer classes by integrating the data of six platforms.
However, these classes are highly correlated to the can-
cer tissue of origin, revealing limited features shared by
diverse cancers. In contrast, our stratifications uncover
distinct cross-cancer similarities and significant clinical
relevance (Figs 2 and 3, Fig 7 and in Additional file 1:
Figure S13). Hoadley et al. clustered the combined hard
membership matrices of unsupervised clustering results
from all data platforms to get the final classification,
which ignores the distinct diversity of each data and
oversimplifies the underlying clustering features. More-
over, Hoadley et al. did not make full use of the effect of
mutated genes on their neighboring genes through
large-scale biological networks.

Specifically, among the 11 classes identified by Hoadley
et al., five show near one-to-one relationships with tissue
of origin, while only one subgroup was found in our PC9
subgroups (KIRC specific subgroup-5; in Additional file 1:
Figure S13). This repeated finding further confirms the
highly exclusive molecular characteristics of KIRC com-
pared to others. We also clustered BRCA luminal tumors
and basal-like tumors into two separate classes (subgroup-
3 and subgroup-4) as done by Hoadley et al., emphasising
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the intrinsic divergence of this tumor (in Additional file 1:
Figure S13). The most important cross-cancer class in
Hoadley et al. [14] is the squamous-like subtype, which
consists of LUSC, BLCA, and some BLCA. Similar ob-
servations in our work can be found in subgroup-7 with
additional enriched GBM samples (in Additional file 1:
Figure S13). Both studies reported the loss of CDKN2A
in this patient cohort; however, our subgroup-7 was
characterized by the copy number deletion on chromo-
some 9p21 with nearly 100 % frequency. We also found
that the loss of IFNA family genes in this group may be
related to the virus infection in carcinogenesis of these
tumors. Our results revealed the known cross-cancer
similarities between basal-like and serous OV, however,
which was failed to be clustered together in Hoadley et al.
[12, 14] (in Additional file 1: Figure S13). In addition, our
study reveals more cross-cancer similarities that were not
reported in Hoadley et al. such as the hypermethylation of
MGMT and other genetic characteristics shared by subsets
of LAML and UCEC in subgroup-6 and the 100 % copy
number gain on chromosome 3q26 in fractional OV,
LUSC, and HNSC in subgroup-8 (in Additional file 1:
Figure S13).

Finally, in order to evaluate the robustness of our
classification to obtain the 9 pan-cancer subgroups, we
performed random subsamplings of the samples and
reclassified the reduced dataset into 9 classes with the

The 9 pan-cancer subgroups
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Fig. 7 The distributions of the 12 cancer types (COAD and READ were treated as one type) under our pan-cancer classification and that of
Hoadley et al. Above: our pan-cancer classification (PC9). Below: the pan-cancer classification by Hoadley et al. 2631 samples were involved
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same calculation procedure. The results demonstrate
that our pan-cancer stratification is a robust grouping
system that can uncover very consistent patient assign-
ments (in Additional file 1: Figure S14 ).

Conclusions

In summary, our comprehensive network-based strati-
fication of 12 cancer types reveals essential pan-cancer
heterogeneity among diverse cancers without consider-
ing the primary tumor organ information. The uncov-
ered similarities among cancers of different organs
suggest important cross-cancer commonalities. These
commonalities not only cover most of the recurrently
reported cross-cancer similarities, but also identify sev-
eral novel potential ones. The macro-scale pan-cancer
subgroups demonstrate strong clinical relevance and re-
veal consistent clinical risk tendency among cancer types.
The micro-scale stratification shows essential pan-cancer
heterogeneity with subgroup-specific genomic network
characteristics and molecular implementations of onco-
genesis. We believe that the pan-cancer subgroups defined
here are promising stratifications of tumors for decipher-
ing the underlying mechanisms of cancer deeply. With the
rapid accumulation of cancer genomics data, this pan-
cancer subgrouping procedure can be adopted for a more
comprehensive understanding of the pan-cancer hetero-
geneity. Moreover, it is known that mutations in the same
gene can lead to different consequences depending on
which domain interface is altered [43—-45]. How to inte-
grate such information into the pan-caner stratifications is
of great interest and worth exploring in further study.

Methods

Functional genetic alterations data

We obtained the 479 selected functional events (SFEs)
of three data types (copy number alterations, somatic
mutations, and DNA hyper-methylations) that were filtered
by statistical and functional significant analysis from thou-
sands of genomic and epigenetic changes [16]. The SFEs
binary data were downloaded from http://cbio.mskcc.org/
cancergenomics/pancan_tcga/. These data contain 479
functional genetic alterations, including 116 copy num-
ber gains, 151 copy number losses, 199 recurrently mu-
tated genes, and 13 epigenetically silenced genes
recorded across 3299 tumor samples from 12 cancer
types (Additional file 1: Table S1). Three cancer types
(breast, colorectal, and endometrioid tumors) were pro-
vided with molecular subtype information. The profile is
represented by binary (1, 0) values, in which a “1” indicates
that a certain genetic alteration has occurred in this tumor.

Data preprocessing
We first transformed the 479 functional genetic changes
to genes. The genes located in the same region of
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recurrent copy number gain and loss were treated
equally as altered events. Secondly, multiple alterations
on the same gene (e.g., a gene was observed to harbor
both copy number gain and mutation) were merged.
This resulted in a binary matrix of 3299 samples with
1750 genes, where a “1” means the gene has been altered
by some kind of genomic or epigenetic change. Finally,
genes were projected onto a biological network STRING
v.9 [46] and gene symbols were mapped to Ensembl IDs
for downstream analysis (in Additional file 2).

Identifying essential cancer subgroups using NBS

We adopted the NBS procedure [15] to integrate a
genome-scale alteration profile with a gene interaction
network (STRING v.9) to produce robust classifications of
patients (in Additional file 2). Briefly, the NBS applies a
network propagation method to spread the influence of
each mutation over its network neighborhood and produce
a network-smoothed profile to reflect the effect of each
genetic alteration on network module or pathway levels
with a continuous value. Next, the network-smoothed
patient matrix is clustered into a predefined number of
subgroups via a network-regularized non-negative matrix
factorization approach. Finally, in order to ensure robust
cluster assignments, consensus clustering was performed.
We employed the MATLAB package “nbs_release_v0.2”
(http://chianti.ucsd.edu/~mhofree/wordpress/?page_id=26)
to implement NBS to stratify samples into k (k=3 ~ 15)
clusters (in Additional file 2: Table S2). All other para-
meters were set as defaults. We adopted the Pearson’s
chi-squared test to determine the enrichment significance
of a certain tumor type or subtype in a cluster. All P values
were corrected for the FDR g value.

Clinical outcome association analysis

We test to see if the identified subgroups are associ-
ated with clinical features of a specific cancer type
including patient survival, tumor grade, and stage.
The clinical data of 12 cancer types were downloaded
from the TCGA_Pancancer page on Synapse (https://
www.synapse.org/#!Synapse:syn300013/). Patient sur-
vival time was extracted from the tab-separated .patient
files and detailed AJCC TNM staging information was
merged (e.g., Stage IIA/IIB/IIC was merged as Stage II).
Patients with missing clinical variables were excluded
from the correlation analysis for that feature. For each
cancer type, the survival information of samples located in
different cohorts (e.g.,, BRCAs in its enriched subgroup
versus all other BRCAs) was compared using Kaplan-
Meier survival curves with log-rank test. The association
of tumor grade/stage annotation with identified tumor
subgroups was evaluated by Fisher's exact test. We con-
ducted these analyses for each cancer type individually.
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Survival analysis was conducted using the R package “sur-
vival” and “survcomp”.

Identifying differentially altered sub-networks for each
pan-cancer subgroup

For patients in each subgroup, we identified signifi-
cantly altered genes against the remaining samples
based on the network-smoothed alteration data by
SAM (SAM—significance analysis of microarrays—was
originally designed for identifying differentially expressed
genes) [47]. The g-value was calculated using the SAM
permutation scheme with 1,000 permutations. The top
significantly altered genes (SAM score >15 and FDR
g-value <0.05) in each subgroup were selected as
“significant differentially influenced genes”, and were
mapped to the STRING v.9 network for visualization
using the Cytoscape software. The biological functional
analysis of the “significant differentially influenced
genes” in each subgroup was performed using DAVID
(http://david.abcc.nciferf.gov/) and GeneMANIA (http://
www.genemania.org/). Annotation categories were pre-
selected as defaults in DAVID and only terms with g-
values lower than 0.05 were selected.

Identifying genes with subgroup-specific mRNA
expression changes

We adopted the normalized RNA Seq V2 RSEM data
of the 3299 TCGA samples for identifying genes with
significant subgroup-specific expression changes. The
dataset was downloaded from the cBioPortal for Can-
cer Genomics (http://www.cbioportal.org/public-portal/
index.do) using the R package “cgdsr.” For GBM and OV,
we used Agilent microarray data instead since it covers
more patients presented in the SFEs binary dataset. For
each PC9 subgroup, gene expressions were compared
using the Wilcoxon rank-sum test on patients in this sub-
group and those in the remaining subgroups. We con-
ducted this analysis for all differentially altered genes of
each subgroup. P values were corrected to get the g-values
using Benjamini and Hochberg correction [48].

Additional files

Additional file 1: This file contains supplementary text, legends of
supplementary figures and tables, and supplementary figures and
tables.

Additional file 2: Table S2. The subgroup assignments of TCGA
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excluded from the list of 3299 patients. data.mat. The well pre-processed
SFEs data used in this work. code.m. Code for calculating the pan-cancer
stratifications using the NBS method in this work.
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