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Abstract

vector is scarce.

against nematode-bacteria complexes.

Background: Drosophila melanogaster activates a variety of immune responses against microbial infections.
However, information on the Drosophila immune response to entomopathogenic nematode infections is currently
limited. The nematode Heterorhabditis bacteriophora is an insect parasite that forms a mutualistic relationship with
the gram-negative bacteria Photorhabdus luminescens. Following infection, the nematodes release the bacteria that
quickly multiply within the insect and produce several toxins that eventually kill the host. Although we currently
know that the insect immune system interacts with Photorhabdus, information on interaction with the nematode

Results: Here we have used next generation RNA-sequencing to analyze the transcriptional profile of wild-type
adult flies infected by axenic Heterorhabditis nematodes (lacking Photorhabdus bacteria), symbiotic Heterorhabditis
nematodes (carrying Photorhabdus bacteria), and Photorhabdus bacteria alone. We have obtained approximately

54 million reads from the different infection treatments. Bioinformatic analysis shows that infection with Photorhabdus
alters the transcription of a large number of Drosophila genes involved in translational repression as well in response to
stress. However, Heterorhabditis infection alters the transcription of several genes that participate in lipidhomeostasis
and metabolism, stress responses, DNA/protein sythesis and neuronal functions. We have also identified genes in the
fly with potential roles in nematode recognition, anti-nematode activity and nociception.

Conclusions: These findings provide fundamental information on the molecular events that take place in Drosophila
upon infection with the two pathogens, either separately or together. Such large-scale transcriptomic analyses set the
stage for future functional studies aimed at identifying the exact role of key factors in the Drosophila immune response
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Background

Host innate immune responses are broadly conserved
across many phyla [1]. The study of the interaction be-
tween invertebrate model hosts and pathogenic organisms
provides insights into the mechanisms underlying patho-
gen virulence and host immunity, and complements the
use of mammalian models by enabling whole-animal high
throughput infection assays and genome wide transcrip-
tome analyses [2]. Despite impressive advances in the
broad field of innate immunity, our understanding of the
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molecules that participate in the host immune response to
nematode infections remains incomplete [3]. Novel anti-
nematode immune responses in the host are likely to be
identified in model systems in which the host has a se-
quenced genome and can be genetically manipulated. The
common fruit fly, Drosophila melanogaster, with a vast
number of genetics and genomics tools available, is widely
recognized as an outstanding model to analyze immune
signaling pathways and elucidate the molecular and gen-
etic basis of immune defense mechanisms [4—6].

The insect pathogenic nematode Heterorhabditis
bacteriophora is emerging as a promising parasitic
organism for studying nematode pathogenicity and
characterizing the function of novel host factors that
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contribute to anti-nematode immune reactions [7, 8].
Heterorhabditis nematodes form a mutually beneficial
symbiotic relationship with the Gram-negative bac-
teria of the Enterobacteriaceae family, Photorhabdus
luminescens, which are found in the gut of the worms
[9]. Heterorhabditis infective juvenile (IJ) worms belong
to an obligate stage in the nematode life cycle that is
required for infection of the insect. This stage is
analogous to the Caenorhabditis elegans dauer stage
and the developmentally arrested infective third stage
larva (L3) of many mammalian parasitic nematodes
[10]. IJs gain entry to the insect through natural open-
ings or by penetrating the cuticle. Once inside, the IJ
resume development and expel Photorhabdus into the
hemolymph where the bacteria begin to divide. After
2-3 days of bacterial growth the insect succumbs to
the infection with the concomitant conversion of the
internal organs and tissues into bacterial biomass, facili-
tated by a wide range of toxins, virulence factors and
hydrolytic enzymes produced by the bacteria [11, 12].
For two to three generations the developing nema-
todes feed on the bacterial biomass until the insect
carcass is consumed, whereupon adult development is
suppressed and the IJ stage accumulates. These non-
feeding IJ containing their mutualistic bacteria emerge
into the soil to seek new hosts [13]. We and others
have previously shown that Heterorhabditis is a po-
tent pathogen of Drosophila, and have begun using
the Drosophila-Heterorhabditis model system to under-
stand the molecular interplay between insect immune
function and nematode parasitic strategies [14—18].

Whole genome mRNA sequencing (RNA-Seq) tech-
nologies have been a significant advance for high-
throughput transcriptome analyses, as they can gener-
ate hundreds of millions reads in a single sequencing
run [19, 20]. RNA-Seq is more sensitive, quantitative
and efficient, and it has higher reproducibility com-
pared to previously used hybridization-based micro-
array techniques [21]. RNA-Seq has already produced
exciting and novel information in the study of various
diseases [22, 23]. This powerful tool is becoming in-
creasingly attractive for investigating the transcrip-
tional profiles in model and non-model organisms
[24, 25]. Recent works have started to report the use
of RNA-Seq (Illumina or 454-pyrosequencing) for the
comprehensive understanding of the transcriptional
regulation of genes that participate in pathogen viru-
lence and host innate immune processes [26].

Here we have infected Drosophila melanogaster adult
flies with symbiotic Heterorhabditis (nematodes carrying
Photorhabdus), axenic Heterorhabditis (nematodes lack-
ing Photorhabdus), and Photorhabdus bacteria alone and
used RNA-Seq to analyze the transcriptional response
of flies to the pathogens, either separately or together.
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Our goal was to identify the number and nature of
Drosophila genes that are differentially regulated upon
infection with the nematodes and their associated bac-
teria. We find that distinct types of genes are regulated
during infection of the fly by each of the two patho-
gens. Therefore these results indicate that different sets
of genes are involved in the interaction between the fly
and the nematodes or their bacteria, and that the fly
employs distinct strategies to fight infection against Het-
erorhabditis nematode parasites and their mutualistic
Photorhabdus bacteria.

Results

Heterorhabditis nematodes and Photorhabdus bacteria
produce distinct transcriptomic profiles in Drosophila

We generated complete transcriptomes from Drosophila
wild-type adult flies infected by the insect pathogenic
nematodes Heterorhabditis and their mutualistic bacteria
Photorhabdus, separately or together. We examined gene
transcription for two time-points, 12 and 30 h post-
infection with the pathogens (Fig. 1). These time-points
correspond to the initial entry and spread of the patho-
gens in the fly (12 h post-infection) and to the establish-
ment of disease (30 h post-infection) [27]. The numbers of
sequence reads mapped to 80.28 % of the D. melanogaster
genome (Fig. 1a). Similarly, the high number of reads
sequenced had more than 90 % coverage of the D. mela-
nogaster genome (Additional file 1: Figure S1). The quan-
titative real-time RT-PCR (qRT-PCR) analysis of randomly
selected genes (CG34040, CG64267, CG9468, CG11909,
CG6524, CG17571, CG10374) using gene-specific primers
(Additional file 1: Table S1) validated the RNA-Seq data
(Additional file 1: Figure S2). We found upregulation for
CG34040, CG64267, CGI11909 and downregulation for
CG9468, CG6524, CG17571, CG10374 although the level
of transcription detected was higher by RNA-Seq with the
exception of the gene CG11909.

The highest number of differentially expressed genes
was observed in flies infected by Photorhabdus at 30 h
post-infection (Fig. 1b). Strikingly, we found that the vast
majority of fly genes (82 %, 2555 genes) were downregu-
lated at 12 h post-infection with Photorhabdus, and
similar numbers of genes were upregulated or downreg-
ulated at 30 h after infection with the bacteria (2763 and
2845 genes, respectively). At 12 h post-infection with
axenic Heterorhabditis, there were 1125 upregulated
genes (47 %) and 1238 downregulated genes (53 %).
Similarly, infection with symbiotic nematodes upregu-
lated 819 genes (48 %) and downregulated 871 genes
(52 %). We also found that axenic nematodes at 30 h
post-infection downregulated a higher number of fly
genes (67 %, 2868 genes) compared to those downregu-
lated by symbiotic worms (51 %, 2002 genes) (Fig. 1b).
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A Treatment Total Reads Total Mapped % Mapped
Axenic Heterorhabditis 12 h 45,041,420 40,029,364 88.87
Axenic Heterorhabditis 30 h 50,571,032 42,923,471 84.88
Symbiotic Heterorhabditis 12h | 44,051,504 33897250 7695
Symbiotic Heterorhabditis 30h | 49774514 43885757 8817
Photorhabdus 12h | 63072174 | 54395098 | 86.24
Photorhabdus 30h | 52780430 | 27460332 | 5203
Uninfected control 54,792,878 46,476,934 84.82
Average 80.28
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Fig. 1 Infection of adult flies with Heterorhabditis nematodes or their Photorhabdus bacteria elicits distinct transcriptomic profiles. a Transcriptome
summary (number of reads and percentage mapped to the D. melanogaster genome) from flies infected by Heterorhabditis axenic or symbiotic
nematodes, or Photorhabdus bacteria at 12 and 30 h post-infection. b Differential gene transcription (upregulated/downregulated genes) in flies
at 12 h and 30 h post-infection with Heterorhabditis axenic or symbiotic nematodes, or Photorhabdus bacteria alone. ¢ CUFFLINKS analysis of
differentially expressed transcripts between the 12 and 30 h time-points in flies infected by Heterorhabditis axenic or symbiotic nematodes, or
Photorhabdus bacteria alone. d Venn diagrams showing the number of Drosophila genes that are differentially expressed (upregulated or
downregulated) at 12 h only or at 30 h only or at both time-points after infection with Heterorhabditis axenic or symbiotic nematodes, or their
Photorhabdus bacteria alone. Expression patterns are indicated (UP/UP: gene upregulation at both 12 and 30 h, DOWN/UP: gene downregulation
at 12 h and upregulation at 30 h, DOWN/DOWN: gene downregulation at both time-points, UP/DOWN: gene upregulation at 12 h and
downregulation at 30 h)

To identify the numbers of differentially expressed gene
isoforms induced by each pathogen at each time-point, we
performed Cufflinks analysis [28]. We found 273 gene iso-
forms upregulated by Photorhabdus, whereas infection by
axenic or symbiotic nematodes upregulated fewer gene
isoforms in the fly (131 and 52, respectively) (Fig. 1c).
However, the largest number of downregulated gene iso-
forms was found in flies infected by symbiotic or axenic

worms (618 and 154, respectively) and fewer (114) in flies
infected by Photorhabdus (Fig. 1c).

To determine the number of genes that are transcrip-
tionally regulated upon infection with Heterorhabditis
and Photorhabdus, we performed pairwise multiple com-
parison analyses. We found that the number of differen-
tially regulated genes at 12 and 30 h post-infection
varied among the different types of infection (Fig. 1d).
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We focused on the group of genes that were regulated at
both time-points and observed: (i) several genes that were
downregulated at 12 h post-infection and upregulated at
30 h post-infection (28 genes in flies infected by axenic
worms, 482 in flies infected by symbiotic worms and 97 in
flies infected by the bacteria); ii) a higher number of upreg-
ulated genes in flies infected by axenic worms (528 genes)
compared to those upregulated by symbiotic worms (265
genes) and the bacteria alone (256 genes); iii) a smaller
number of genes that were upregulated at 12 h and down-
regulated at 30 h by infection with axenic nematodes, sym-
biotic nematodes, or Photorhabdus alone (82, 139 and 107
genes, respectively; (iv) a large number of genes that
remained transcriptionally downregulated upon infection
with symbiotic worms, axenic worms or the bacteria alone
(963, 577, and 481, respectively). These results suggest that
a large set of genes is differentially regulated in Drosophila
adult flies during the early and late stages of infection by
Heterorhabditis nematodes and their mutualistic Photo-
rhabdus bacteria.

Heterorhabditis and Photorhabdus infection leads to
changes in specific molecular pathways and biological
activities in Drosophila
To identify the molecular pathways and biological activ-
ities regulated by the nematodes and their bacteria, we
performed Database for Annotation, Visualization and
Integrated Discovery (DAVID) analysis by interrogating
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) databases [29-32] (Fig. 2). At 12 h
after infection with axenic or symbiotic nematodes, there
was a significant change in the transcription of a large set
of genes, which generated distinct pathway categories
(KEGG). For instance, we found that axenic and symbiotic
nematodes elicited the enrichment of genes involved in me-
tabolism of xenobiotics by cytochrome P450 and glycolysis,
while symbiotic nematodes elicited the enrichment of genes
involved in lysosome function and apoptosis signaling
(Additional file 1: Figure S3; Additional file 2: Dataset S1).
We also found that a large number of genes within cer-
tain pathways (such as limonene and pinene, tyrosine deg-
radation, arginine and proline metabolism, biosynthesis of
unsaturated fatty acids, drug metabolism, folate biosyn-
thesis, glutathione metabolism and glycosylation) were
transcriptionally altered following infection of flies with the
nematodes and their bacteria (together or alone) for 30 h
(Fig. 2a,b,c). We further found downregulation of orni-
thine decarboxylase related genes in all three types of
infections, which might suggest the induction of anti-
inflammatory responses in the fly (Additional file 2:
Dataset S1). There was also strong downregulation of
a large number of genes in the ubiquitin/proteasome
degradation pathways in Photorhabdus infected flies,
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but not in flies infected by axenic or symbiotic nema-
todes (Additional file 2: Dataset S1).

PANTHER analysis pointed towards pathways that
were not identified by KEGG analysis (Fig. 2d,e,f). Infec-
tion of flies with the two pathogens for 30 h affected the
androgen/estrogen/progesterone biosynthesis pathway,
which includes genes that take part in lipid metabolism,
steroid hormone metabolism, and cholesterol meta-
bolism. Infection with axenic or symbiotic nematodes
caused the enrichment of genes involved in asparagine/
aspartate biosynthesis. Infection with symbiotic worms
or Photorhabdus bacteria alone induced the enrichment
of genes involved in ubiquitin-proteosome degradation
of proteins, pyruvate metabolism and pentose-phosphate
pathway. Therefore pathway analyses reveal certain mo-
lecular/biological signatures in the fly and provide hints
on the physiological events that take place during infec-
tion with the nematodes and their associated bacteria.

Heterorhabditis and Photorhabdus infection regulates the
transcription of a wide range of protein-coding genes in
the fly genes

To identify the major protein families and biological pro-
cesses associated with the fly genes that are differentially
regulated by Heterorhabditis and Photorhabdus infection,
we conducted gene ontology (GO) analysis [33] (Fig. 3a).
At late stages of infection with the pathogens there was a
substantial increase in the number of protein-coding genes.
For example, we found a dramatic increase in the expres-
sion of hydrolase genes upon infection with the nematodes
and their bacteria. At 30 h post-infection with the patho-
gens the top 15 protein categories included hydrolases, nu-
cleic acid binding proteins, oxido-reductases, transferases,
transporters, proteases, transcription factors, receptors, en-
zyme modulators, signaling molecules, cytoskeletal pro-
teins, ligases, transfer/carrier proteins, calcium-binding
proteins and kinases.

GO analysis also showed that infection with axenic
worms strongly downregulated a large number of genes
associated with metabolic process at both 12 and 30 h
post-infection (356 and 700 genes, respectively) (Fig. 3b).
However, the number of similar genes that were upregu-
lated upon infection with axenic worms increased from
252 to 442. Genes involved in proteolysis and G-protein
coupled receptor (GPCR) signaling were strongly down-
regulated at 30 h, while all 7 genes associated with pepti-
dyl hydroxylation were downregulated at 12 h post-
infection. We further found that only 23 immunity-
related genes were upregulated at 30 h and 9 genes at
12 h, while 29 genes involved in chitin metabolic process
were downregulated at 30 h post-infection.

GO analysis further revealed that infection of flies for
30 h with symbiotic nematodes downregulated several
genes involved in proteolysis, response to stimulus,



Castillo et al. BMC Genomics (2015) 16:519

Page 5 of 21

KEGG

oc
L
- -
[
S
o

Axenic Heterorhabdlitis

Drug metabolis

Number of genes
o o 3 & 8 % 8 & &
ism| I
Folate biosynthesis | I

Glycerophospholipid metabolism|
, serine and threonine metabolism| N

Tyrosine metabolism

Galactose metabolism| I
Gilutathione metabolisn| I

One carbon pool by folate | I_——

Phenylalanine metabolisr|

Glycolysis / Gluconeogenesis (I
Starch and sucrose metabolism |IEEEEE—_—2u—

Limonene and pinene degradatio

Arginine and proline metabolisi
Biosynthesis of unsaturated fatty acids |

Fructose and mannose metabolism| I

Glycine

D

Axenic Heterorhabditis

Symbiotic Heterorhabditis

30

25

20

15

o

Proteasome (I
Pyruvate metabolism I
Tyrosine metabolism |

Drug metabolism|

Folate biosynthesis |
Fructose and mannose metabolism |

Nitrogen metabolism| I

Pentose phosphate pathway (I

Galactose metabolism |

Glutathione metabolisr{II—
Glycolysis / Gluconeogenesis (IIII———"

Glyoxylate and dicarboxylate metabolism |

Citrate cycle (TCA cycle) (I

Phenylalanine metabolis |

Arginine and proline metabolis
Biosynthesis of unsaturated fatty acids (I

Limonene and pinene degradatiol

Metabolism of xenobiotics by cytochrome P450 (I

E

Symbiotic Heterorhabditis

C

70

Photorhabdus

60

50

40

30

Proteasome (I
Pyruvate metabolism| I

Drug metabolism I

Fatty acid elongation in mitochondrig [l
Folate biosynthesis | NN

Glutathione metabolisn| N

Limonene and pinene degradatiol
Propanoate metabolism| I

Oxidative phosphorylation) IEE—

Other glycan degradation| I
Pentose and glucuronate interconversions | I

Arginine and proline metabolisi
Biosynthesis of unsaturated fatty acids | I

=]
re}
<
o
®
£
<
<
3}
£
=
[
>
a3
@«
L
=
Rl
2
[}
]
X
-
S
=
@2
©
o
8
15}
=

Photorhabdus

F

30

h

30h

Ribosome| I

Starch and sucrose metabolism| IS

Valine, leucine and isoleucine degradatio

.Androgen/estrogene/progesterone biosynthesis .Androgen/estrogene/progesterone biosynthesis .Androgen/estrogene/progesterone biosynthesis

.Asparagine and aspartate biosynthesis
. Blood coagulation

.De novo purine biosynthesis

. Formyltetrahydroformate biosynthesis
. Hydroxytryptamine degredation

Serine glycine biosynthesis

.Apoptosis signaling pathway
.Asparagine and aspartate biosynthesis
. Glycolysis
. Parkinson disease
. Pentose phosphate pathway
Pyruvate metabolism
. TCA cycle
. Ubiquitin proteosome pathway

.Arginine biosynthesis

. Pentose phosphate pathway
. Pyruvate metabolism

. Ubiquitin proteasome pathway

Fig. 2 Infection of adult flies with Heterorhabditis nematodes or their Photorhabdus bacteria induces diverse physiological responses. Representative
KEGG pathway categories in flies infected by a Heterorhabditis axenic nematodes, b Heterorhabditis symbiotic nematodes, or € Photorhabdus
bacteria at 30 h post-infection. The number of genes represents those that were only found associated with a particular pathway. Representative
PANTHER pathway categories in flies infected by d Heterorhabditis axenic nematodes, e Heterorhabditis symbiotic nematodes, or f Photorhabdus

bacteria at 30 h post-infection

chitin metabolic process, cell surface receptor signal
transduction, and lipid metabolic process (Fig. 3c). In
addition, Photorhabdus infection resulted in substantial
increase in the number of upregulated and downregu-
lated genes involved in proteolysis, oxidation-reduction
and responses to stress at both 12 and 30 h time-points
(Fig. 3d,e). At 12 h, we identified downregulated genes

with putative function in Notch signaling, peptidyl amino
acid modification, cell recognition, and lymph gland devel-
opment (Fig. 3d). At 30 h, there was a strong downregula-
tion of genes involved in oxidative phosphorylation, lipid
metabolic processes and ribosome function; the latter
might be an indication of transcriptional repression
(Fig. 3e). We further found upregulation of genes involved
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(See figure on previous page.)

Fig. 3 Infection of adult flies with Heterorhabditis or Photorhabdus trigger the expression of diverse proteins. a Representative protein-based Gene
Ontology (GO) groups for genes differentially induced by Heterorhabditis axenic or symbiotic nematodes, or Photorhabdus bacteria alone at 12 and
30 h post-infection with the pathogens. Each bar represents a subset of the most representative non-redundant upregulated and downregulated
genes. Numbers of upregulated and downregulated genes upon infection with Heterorhabditis axenic (b), symbiotic (€) nematodes, or Photorhabdus
bacteria (d, e) at 12 h and 30 h post-infection with the pathogens. Each bar includes genes that fall into the same molecular function category. GO
analysis was performed using the global list of differentially expressed genes for each infection type and time-point

in responses to hypoxia and insulin receptor signaling
pathway. These data show that infection of the fly with
Heterorhabditis nematodes and their Photorhabdus bac-
teria causes significant changes in the expression of a large
number of protein-coding genes that are involved in key
biological processes in the fly. Some of the differentially
expressed genes might be important in the regulation of
immune function against the pathogens.

The transcriptome of flies infected by symbiotic
Heterorhabditis is a combination of the transcriptomes
from flies infected by axenic nematodes and
Photorhabdus

To contrast the transcriptional profiles induced by the
nematodes and their bacteria at 12 h and 30 h post-
infection, we performed a quadrant plot analysis to iden-
tify the genes that are differentially expressed at those
two time-points (Additional file 1: Figure S4). We gener-
ated three clusters containing differentially regulated genes
at both time-points compared to uninfected treatments,
genes regulated at 12 h only, and those regulated at 30 h
only. Infection with axenic nematodes for 12 h strongly
downregulated the genes CG34424 (5-formyltetrahydrofo-
late cyclo-ligase), CG13071 (unknown), CG33264 (Or69a),
CG31748 (Gr36¢), whereas infection with symbiotic nema-
todes mostly downregulated genes with unknown function
such as CG43184, CG7327, CG8960 and CG42755. Simi-
larly, Photorhabdus infection caused downregulation of sev-
eral unknown genes, such as CG13427, CG42367 (insect
cuticular protein) and CG13711. A complete list of the 25
most strongly downregulated genes upon infection with the
two pathogens is shown in Additional file 1: Figure S5. We
further identified the 25 most strongly upregulated genes in
flies infected by axenic nematodes, symbiotic nematodes or
the bacteria only (Additional file 3: Dataset S2).

At 12 h post-infection with axenic worms, we detected
increased expression of several genes in the Notch signal-
ing pathway (Fig. 4a). Among this group of genes, the
negative regulator Twin of M4 or Barbu showed the high-
est level of expression followed by a putative CCAT-
binding transcription factor, the gene Enhancer of split
mgamma, a basic Helix-Loop-Helix transcription factor
related to Myc, Brother of Bearded A, which has been pre-
viously implicated in the fly immune response against bac-
terial infection [34], Amalgam, which codes for an Ig-like
C2-type domain-containing protein involved in antigen

binding and cell adhesion [35], and the putative enzyme
CG31002 that possesses glucuronosyltransferase activity.
Interestingly, we found no increased expression of anti-
microbial peptide (AMP) genes (Fig. 4a); only Attacin C
and Drosomycin 2 were upregulated upon infection with
symbiotic nematodes (Fig. 4c) and Photorhabdus bacteria
(Fig. 4e), respectively. At 30 h post-infection with axenic
nematodes, we found increased expression of the AMP
genes Attacin and Drosocin, a Gram-Negative Binding
Protein (GNBP)-like gene and several cuticle-related genes
such as Tweedle, Cuticular protein 78E and two genes
with chitin-binding domains (CG7017 and CG6933)
(Fig. 4b). We also found several highly expressed enzymes
including a trypsin-like cysteine protease, a putative
AMP-dependent synthetase (CG4830), and a putative lip-
ase (CG5665).

The transcriptome of flies infected by symbiotic nema-
todes was a combination of the transcriptomes obtained
from flies infected by axenic worms and the bacteria
alone. At 12 h post-infection, the gene Fat body protein
1 was expressed at high levels, followed by the non-
coding RNA Iab-8 that was previously shown to be
involved in the regulation of developmental processes
[36] (Fig. 4c). We also observed upregulation of several
genes coding for ionotropic receptors and the odorant
receptor 59a. At 30 h post-infection with symbiotic
worms we found increased expression of genes encond-
ing structural components of the cuticle (chitin), such as
Lcep65Ag3, the Cuticular protein 67Fb and the adult cu-
ticular protein Accessory gland protein 54A1 (Fig. 4d).
The gene Niemann-Pick type C-2d was also expressed at
high levels. Interestingly, this gene codes for a sterol bind-
ing protein with Immunoglobulin E-set and MD-2-related
lipid recognition domains with a potential function in im-
mune recognition and defense. In addition, there were sig-
natures of transcriptional regulation, as evidenced by the
increased expression of the transcription factor E(spl) region
transcript mdelta and the uncharacterized putative zinc-
finger transcription factor CG14983. We further detected
the expression of CG16704, which encodes a putative pro-
tein with Proteinase 12 and Kunitz protease inhibitor do-
mains that could be involved in coagulation response or
other proteolytic cascades, several subunits for H+ ATPase
pumps, a putative transporter (CGI14605), autophagy-
specific gene Atg8b, Tweedle M, a putative member of the
small GTPase family (CG17819) and Jonah 65Aii protease.
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Fig. 4 Heterorhabditis and Photorhabdus induce the expression of diverse subsets of genes in Drosophila adults. The 25 most strongly induced
genes upon infection with a, b Heterorhabditis axenic nematodes, ¢, d Heterorhabditis symbiotic nematodes and e, f Photorhabdus bacteria at

12 h and 30 h post-infection. X-axis represents the relative Log-Fold Change (LFC) for each gene after normalization against uninfected controls.
All genes have a fold-change higher than 2 (LFC=0.58 corresponds to 2-fold-change difference)

Photorhabdus induced a distinct transcriptional profile
in the fly compared to the nematodes. At 12 h post-
infection we identified a large number of genes with un-
known function or identifiable protein domains (Fig. 4e).
For example, the gene CG12998 with unknown function
was expressed at the highest level, followed by CG18179
that codes for a putative peptidase. Other genes that

were upregulated at the early phase of infection with
Photorhabdus included genes coding for cuticular
proteins (Adult cuticle protein 1 and Adult cuticle
protein 65Aa) and Jonah proteases. We also found a
CD36 antigen domain-containing gene (CG2736) and
the microRNA (miRNA) Mir-2494 stem loop. At 30 h
post-infection with the bacteria, there was increased
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expression of detoxification genes (Cytochrome P450-4e3),
the cytokine Unpaired-3 (component of the Janus kinase/
signal transducers and activators of transcription or JAK/
STAT pathway) [37], various Tweedle genes and two Osiris
genes (Fig. 4e). These results indicate that infection with
Heterorhabditis nematodes and Photorhabdus bacteria dif-
ferentially regulates several Drosophila genes, many of
which have an uncharacterized function in the fly.

Heterorhabditis nematodes and Photorhabdus bacteria
differentially regulate signature genes in Drosophila flies
We used the 12 h and 30 h time-points as replicates to
perform General Linear Model (GLM) analysis of genes
that are differentially expressed upon infection with Het-
erorhabditis nematodes and their mutualistic Photorhab-
dus bacteria, separately or together (Fig. 5 and Additional
file 4: Dataset S3). For this, we first compared normalized
genes (against uninfected controls) that were differentially
expressed upon infection with the pathogens. We then
built models to identify the group of genes whose expres-
sion levels were significantly affected after comparing the
different infection treatments (Axenic Heterorhabditis vs.
Symbiotic Heterorhabditis, Symbiotic Heterorhabditis vs.
Photorhabdus, and Axenic Heterorhabditis vs. Photorhab-
dus). Therefore we exclusively selected those genes that
showed a significant (2-fold) change in expression (upreg-
ulation or downregulation).

We first compared the expression of genes that were af-
fected when comparing all three types of infections using
the two time-points as replicates (Fig. 5a). We found that
most genes associated with Heterorhabditis nematodes
(Axenic vs. Symbiotic) were significantly downregulated
whereas most genes associated with Photorhabdus (Symbi-
otic Heterorhabditis vs. Photorhabdus and Axenic Hetero-
rhabditis vs. Photorhabdus) were significantly upregulated.
We observed that several genes encoding AMP (Attacin-B,
Attacin-D, Attacin-C, Cecropin-C, Diptericin, Drosocin,
Drosomycin-2, Metchnikowin) as well as Lysozyme X were
downregulated in nematode-infected flies and upregulated
by the bacteria. Other genes including the stress-related
genes Turandot (Tot), elevated during infection (edin), the
Peptidoglycan Recognition Protein gene PGRP-SBI, a
galactose-specific C-type lectin (Lectin-37 Da), and the
DNA binding transcription factor Sox21a, which have been
shown previously to participate in the Drosophila immune
response [38—43], were also strongly upregulated by Photo-
rhabdus but not by Heterorhabditis infection. Interestingly,
two genes that are involved in metabolic processes, an
AMP-dependent synthetase/ligase and the putative ATP-
binding Pugilist, were upregulated in response to Hetero-
rhabditis infection and downregulated upon Photorhabdus
infection.

We then compared the expression of filtered genes that
were differentially regulated when comparing Axenic
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vs. Symbiotic nematode infections and Axenic Hete-
rorhabditis vs. Photorhabdus infections (Fig. 5b). We
observed contrasting gene expression levels between
the two comparisons. We also found that although
most of the highly regulated genes have an unknown
function, gene Lcp65AgI that is involved in the struc-
ture of chitin-based cuticle was predominantly upreg-
ulated in flies infected by Heterorhabditis nematodes
[44], whereas gene Niemann-Pick type C-1b that is
involved in central nervous system development was
highly upregulated by Photorhabdus infection [45].

Finally, we contrasted the expression of those genes that
were significantly affected when comparing Symbiotic
Heterorhabditis vs. Photorhabdus infections and Axenic
Heterorhabditis vs. Photorhabdus infections (Fig. 5c).
These comparisons provide insights into the expression of
the Drosophila genes that are mainly upregulated upon
Photorhabdus infection, since downregulation of genes in
the comparison Axenic vs. Symbiotic Heterorhabditis was
less than 2-fold. Again we found that AMP genes (Atta-
cin-A, Cecropin Al, Cecropin B, Diptericin B and Listeri-
cin) were upregulated more than 2-fold by Photorhabdus
infection. We also found that the JAK/STAT pathway
cytokines Unpaired-2 and Unpaired-3 were also signifi-
cantly upregulated by the bacteria as well as the secreted
recognition protein PGRP-SD. Other upregulated genes
included Serine Protease Immune Response Integrator that
is involved in the response against bacterial infections
[46], the putative regulators of proteolysis Serpin 88Eb
and Peptidase M13, the MAP kinase P38c that has been
shown to function in the intestine to regulate lipid me-
tabolism and immune homeostasis [47], Sugarbabe that
encodes a zinc finger protein responsible for the regula-
tion of insulin gene expression in the neurosecretory cells
[48], Glutathione S Transferase D2 that regulates detoxifi-
cation [49], Yellow-F that encodes an enzyme responsible
for catalyzing the conversion of dopachrome into 5,6-
dihydroxyindole in the melanization pathway [50], and
Gustatory Receptor 94a that is a candidate taste receptor
in Drosophila [51]. Downregulated genes by Photorhabdus
included Jonah 99 Ci with putative endopeptidase activity,
Lip3 with putative lipase activity, Artichoke that encodes a
leucine-rich repeat extracellular matrix protein required
for normal morphogenesis and function of ciliated sensilla
in Drosophila [52], and Magro that encodes a lipase A
homolog that is secreted from the anterior gut into
the intestinal lumen to digest dietary triacylglycerol and
hydrolyze cholesterol esters [53].

Infection with Heterorhabditis and Photorhabdus alters the
transcription of key immune genes in the fly

To identify which immune-related pathways in the fly
are regulated upon infection with Heterorhabditis and
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cAMP Response Element Binding Protein A (Interpro)

Insect Allergen-Related (Interpro)

Ankyrin repeat-containing domain (Interpro)
lincRNA.347

Peptidase M13

Proteinase Inhibitor Propeptide (Interpro)
Carbohydrate Binding Domain (Interpro)
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Glycine Cleavage T-Protein/YgfZ (Interpro)
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NAD(P)-Binding Domain (Interpro)
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3-Hydroxyacyl-CoA Dehydrogenase Activity (Interpro)

Alpha/Beta Hydrolase-Domain (Interpro)
Peptidase S28-Like (Interpro)
Lysosomal a-Mannosidase VI (Interpro)
Alpha-Mannosidase Activity (Interpro)
Inositol Oxygenase-Like (Interpro)
Sorbitol Dehydrogenase-1 (Interpro)
Alpha/Beta Hydrolase Domain (Interpro)

General Linear Regression Model (GLM), adjusted P value < 0.05

@ > 2-Fold Up-regulated
@ > 2-Fold Down-regulated
< 2-Fold down-regulated

Ax=Axenic; Sym=Symbiotic; Ph=Photorhabdus

1.25E-03 9.2752E-03
3.42E-03 3.3073E-03
7.43E-04 6.7272E-03
4.58E-03 2.5567E-02
3.86E-02 2.8566E-02
2.11E-03 2.0643E-03
1.08E-02 4.0994E-02
7.76E-03 1.9590E-02
1.56E-03 5.4654E-03
3.64E-02 3.0289E-02
1.01E-02 1.2202E-02
2.70E-02 1.7493E-02
1.61E-02 2.5681E-02
1.54E-02 3.4301E-03
6.72E-03 4.4076E-03
1.11E-02 5.4654E-03
3.11E-02 1.5681E-02
2.32E-04 3.6455E-04
2.12E-02 6.8272E-03
1.57E-02 5.5863E-03
1.39E-02 6.1961E-03
1.56E-02 7.0141E-03
2.62E-03 2.1024E-03
4.26E-03 6.2079E-03
3.64E-05 1.6298E-05
6.09E-06 1.4048E-04
1.90E-07 1.4453E-06
5.52E-08 5.0682E-07

Fig. 5 Differential gene expression analysis using DESeq and GLM analysis to compare the different infection types. a Filtered list of genes that are
common between all three infection types (p < 0.05); b Filtered list of genes that are common between the Axenic Heterorhabditis vs. Symbiotic
Heterorhabditis and Axenic Heterorhabditis vs. Photorhabdus comparisons; ¢ Filtered list of genes that are common between the Symbiotic Heterorhabditis
vs. Photorhabdus and Axenic Heterorhabditis vs. Photorhabdus comparisons. The figure contains Drosophila genes with significantly altered expression upon
infection of adult flies with the nematodes and their associated bacteria (separately or together), and their corresponding adjusted p-values for the two
models used: one to determine the common genes between Heterorhabditis (Axenic/Symbiotic) infections and Photorhabdus infections, and a second to
determine the common genes between Axenic Heterorhabditis infection and Photorhabdus infection after adjusting for the two time-points. Selected genes
included those that appeared in all three comparisons. Red: LFC 2 2-fold downregulation; Yellow: LFC < 2-fold downregulation and Green: LFC = 2-fold

upregulation
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Photorhabdus, we generated a heat map to illustrate
differences in gene expression levels across all types
of infections and time-points (Fig. 6a). We included
members of known immune signaling pathways [Tumor
Necrosis Factor (TNF), JAK/STAT, Immune Deficiency
(IMD), Toll, Jun-N-terminal Kinase (JNK), and Vascular
Endothelial Growth Factor (VEGF)], genes involved in
hematopoiesis, putative immune recognition receptors,
scavenger receptors, lysozymes and several genes with
putative immune function.

In the IMD pathway [54], the PGRP genes PGRP-LB
and PGRP-LC were strongly induced by Photorhabdus
and symbiotic Heterorhabditis, but not by axenic nema-
todes. PGRP-SCla was upregulated by symbiotic worms
and downregulated by axenic worms and the bacteria
alone, whereas PGRP-SB2 was downregulated by all three
pathogens. The transcription factor Relish was strongly in-
duced by both nematodes and bacteria. AMP genes regu-
lated by the IMD pathway were induced at different levels
by the pathogens. For example, Cecropin A1/A2 levels de-
creased at 30 h by Photorhabdus and axenic nematodes,
but not by symbiotic nematodes. Attacin C and Drosocin
were upregulated at high levels by Photorhabdus infection
and at low levels by axenic and symbiotic worms. Simi-
larly, several members of the Immune-induced molecules
(IIM) family were differentially regulated by infection with
the nematodes and their bacteria. Genes [IMI1-4 were
strongly upregulated upon infection with all three patho-
gens, while IIM2 and 3 expression decreased at 30 h post-
infection with Photorhabdus.

In the Toll pathway [55], we found differential expres-
sion of several known pattern recognition receptors.
These included GNBP-3 that was highly expressed by
axenic and symbiotic nematodes at both time-points and
by Photorhabdus at 12 h post-infection, PGRP-SA and
PGRP-SD that were upregulated by symbiotic nematodes
at 30 h and Photorhabdus at 12 h, and PGRP-LD that
was downregulated by all pathogens at both time-points.
We also found that the cytokine Spaetzle was expressed
by infection with symbiotic nematodes and Photorhab-
dus at 30 h post-infection and the Toll immune-
regulated protein Fondue was expressed by all types of
infection, whereas Metchnikowin was upregulated by in-
fection with Photorhabdus at both time points.

In the JAK/STAT pathway [56], the receptor Dome-
less, the STAT transcription factor and the effector
gene Virus-induced RNAI (Vir-1) were strongly in-
duced by both types of Heterorhabditis nematodes
and their Photorhabdus bacteria at both time-points.
Tot genes and genes encoding thioester-containing
proteins (TEPs), which participate in opsonization of
microbes [57], were differentially expressed by the
pathogens. These data suggest that Heterorhabditis
and Photorhabdus may induce different stress responses
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and cellular immune reactions during infection of Dros-
ophila adult flies.

In the JNK pathway [58], which controls genes that
participate in wound healing and cellular immune pro-
cesses including hemocyte proliferation and differenti-
ation [59], we found that both axenic and symbiotic
Heterorhabditis as well as Photorhabdus infection upreg-
ulated Kayak (the Drosophila Fos homolog), while infec-
tion with symbiotic nematodes and the bacteria alone
upregulated Basket (the Drosophila ]NK homolog) at 12
and 30 h post-infection, respectively.

Among the genes involved in hematopoiesis, we found
that Serpent was upregulated by infection with axenic
nematodes at 12 h and by infection with symbiotic nem-
atodes and Photorhabdus at 30 h post-infection. Among
the genes in other categories, we found several genes in-
volved in melanization, such as Serine protease-7, which
is upregulated by infection with symbiotic nematodes
and Photorhabdus, while Gram-positive specific serine
protease and Black cells were downregulated by infection
with symbiotic nematodes and their bacteria. We further
found that transcription of lysozyme-coding genes was
also altered after infection with the pathogens.

Heterorhabditis and Photorhabdus affect several immune
processes in the fly

We then determined immune system functions de-
rived from the immune response GO categories in
flies infected for 30 h by axenic Heterorhabditis, sym-
biotic Heterorhabditis or Photorhabdus bacteria alone.
We found that infection with axenic nematodes up-
regulated 37 genes and downregulated 78 genes in
the GO category “response to stimulus” (Fig. 6b). Up-
regulated genes included several Heat shock protein
genes (Hsp22, Hsp23, Hsp68, Hsp70, Hsp73, Hsp74),
PGRP-SD, and Nuclear Factor-kappa-B (NF-xB) pl10.
Downregulated genes included Lectin-46Ca, PGRP-LE,
PGRP-SCla/b, PGRP-SC2, Toll 7, TEP I, and several
lysozyme genes. The second most affected category
included genes involved in “stress response”. Here we
found 34 upregulated and 30 downregulated genes.
We also observed that infection with axenic nema-
todes affected the expression of genes involved in
oxidative stress (Peroxiredoxin, Peroxidasin, Glutathi-
one peroxidase, Stress-activated protein kinase JNK,
Hsp22 and several Glutathione S-transferases). Strik-
ingly, axenic nematode infection downregulated all
genes in the cell adhesion category. Some of those
included Down Syndrome Cell Adhesion Molecule
(DSCAM) 3 isoform, Epidermal growth factor receptor,
Pointed and Fasciclin 2. Genes that regulate kinase
activity including the stress-activated protein kinase
JNK and several members of the Stellate gene family
were also downregulated.
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(Log Fold-Change = 0.58 corresponds to 2-fold-change difference)

Fig. 6 Expression of immune-related genes in Drosophila flies infected by Heterorhabditis nematodes or their Photorhabdus bacteria. a Heat map showing
immune-related genes that are differentially expressed by Heterorhabditis axenic nematodes, symbiotic nematodes and Photorhabdus bacteria at 12 h
and 30 h post-infection. Genes selected from the Gene Ontology (GO) analysis correspond to the immune response category and have a positive
expression level as an indication of their upregulation upon infection with the pathogens. Selected genes were assigned to the following immune
pathways or immune-related groups: TNF, JAK/STAT, TOLL, JNK, IMD and VEGF pathways; immune induced molecules, PGRPs with unknown function,
hematopoiesis, scavenger receptors, lysozymes and others. GO immune response categories identified in flies infected by b Heterorhabditis axenic
nematodes, ¢ Heterorhabditis symbiotic nematodes, or d Photorhabdus bacteria at 30 h post-infection. The Y-axis corresponds to the number of

genes for each GO category and their relative level of expression (upregulation or down-regulation). All genes have a fold-change higher than 2

Infection with symbiotic Heterorhabditis also regulated
Drosophila genes involved in response to stimulus
(Fig. 6¢). We found 38 upregulated and 50 downregulated
genes. Upregulated genes included genes coding for
Hsp and several PGRPs (PGRP-SD, PGRP-SA, PGRP-LF,
PGRP-LB), the NF-xB subunit p110, a metallopeptidase
(CG11865) with predicted metalloendopeptidase activity
and genes with disulphide-knot and trypsin-like cysteine/
serine peptidase domains (CG9733 and CR30374). Down-
regulated genes included PGRP-SB2, Tepl, several lyso-
zyme genes, and several genes involved in GPCR signaling
(neurotransmitter receptors, Methuselah receptors and di-
uretic hormone receptors). Interestingly, we found that
most genes involved in proteolysis were downregulated by
the symbiotic worms as well as genes coding for proteases
(e.g. FBgn005236, CG30288, CG33459), and in particular
those that share common endopeptidase activity domains.

A large number of fly genes was affected by Photo-
rhabdus infection (Fig. 6d). In the “response to stimulus”
category, 102 genes were upregulated and 51 were
downregulated. Upregulated genes included several
PGRPs (PGRP-SB1, PGRP-SA, PGRP-LF, PGRP-LC, PGRP-
LB, PGRP-SC2, PGRP-LA) and several genes involved in
the activation and signaling of immune pathways such as
NF-kB subunit pl110, Puckered, Pelle, Kayak, Toll4, TNF-
receptor associated factor 4, Domeless, Hopscotch, MAP
kinase-activated protein kinase 2, and Mitogen-activated
protein kinase ERK. In addition, TEPI, and TEPIV, Serine
protease 7, Multidrug-Resistance like protein 1 and several
Methuselah genes were also upregulated. Genes down-
regulated by Photorhabdus infection included several
receptors (PGRP-LD, PGRP-SCla/b, Fibroblast-growth
factor receptor homolog 2, Methuselah-9 and GNBP-3)
as well as several lysozyme genes.

At 12 h post-infection, we found that infection with
axenic and symbiotic Heterorhabditis differentially regu-
lated genes involved in metabolic and proteolytic pro-
cesses; however their number was substantially reduced
compared to those regulated by nematode infection at
30 h post-infection. Also, infection with symbiotic worms
upregulated several genes involved in oxidative stress and
regulation of hypoxia. In general, we found a higher ratio
of upregulated/downregulated immune genes in flies in-
fected by symbiotic worms at 12 h compared to the 30 h

time-point. In sharp contrast, there was a lower ratio of
upregulated/downregulated genes involved in metabolism
and response to stress in flies infected by Photorhabdus as
well as downregulation of GPCR signaling and adhesion
genes (Additional file 1: Figure S6).

Discussion

Heterorhabditis nematodes and their mutualistic Photo-
rhabdus bacteria, are excellent tools to probe the genetic
and molecular basis of anti-nematode and antibacterial
immunity in insects [7]. Here we have shown that sev-
eral types of genes in Drosophila are differentially regu-
lated upon infection with these pathogens. Our goal was
to identify the number and nature of genes that are up-
regulated or downregulated in adult flies by Heterorhab-
ditis and Photorhabdus infection. We have found that
infection by the two pathogens regulates different sets of
genes and the signaling pathways they control in the fly.
This implies that the nematodes and their associated
bacteria may employ distinct strategies to interfere with
innate immune defense mechanisms in the fly.

A recent genome-wide transcriptional analysis of
Drosophila larvae infected by Heterorhabditis symbi-
otic nematodes identified significant upregulation of
several immune genes as well as genes with putative
immune function, while genes with lower induction
fell into three specific pathways: the oocyte matur-
ation pathway, the Wnt signaling pathway and the
ubiquitin-mediated pathway [18]. Another transcrip-
tomic analysis of Drosophila neotestacea adult flies
infected by the nematode parasite Howardula aoro-
nymphium reported upregulation of several genes
with putative immune function (lectins, fibrinogen-
like domain-containing proteins, clotting activity, chitin
metabolism), but failed to detect significant upregulation
of specific immune-related genes [60]. Here we find that
infection of D. melanogaster adult flies with axenic or
symbiotic Heterorhabditis nematodes, or Photorhabdus
bacteria alone generates distinct transcriptional profiles.
RNA-Seq transcriptional analysis of the fly response to
Heterorhabditis suggests that nematode infection leads to
major changes in the transcription of a large number of
Drosophila genes, several of which are involved in vital
physiological functions in the fly. Although the exact
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pathological effects of Heterorhabditis and Photorhabdus
on Drosophila adult flies are currently unknown, we
would expect that migration/replication of the pathogens
within the fly as well as secretion of virulence factors or
secondary metabolites would result in a more general
metabolic stress response to the pathogens.

Increased stress response to Heterorhabditis and Photo-
rhabdus is also evident by the upregulation of Hsp
genes upon infection with the pathogens. Upregulation
of Hsp genes could potentially serve as part of a core
stress response program in the fly against nematode-
bacteria complexes. Here we also find that the induc-
tion of Tot genes, which are mainly induced under
stress conditions and participate in Drosophila stress
tolerance [38, 39], differs among the different types of
infection. This indicates that Heterorhabditis and Pho-
torhabdus might induce different stress responses dur-
ing infection of the fly. The regulation of proline and
glutathione metabolism pathways in the fly could indi-
cate a potential role in protection against increased
cellular stress or mechanical injury (e.g. tissue disrup-
tion, cell death) in response to infection with the
nematodes and their bacteria [61, 62]. The identifica-
tion of genes coding cysteine proteases, synthetases
and lipases that are associated with lipid metabolism
also suggests that these enzymes might be involved in
the response of the fly to internal tissue damage or
form a defense mechanism against the pathogens [63].

Photorhabdus bacteria are members of the Enterobac-
teriaceae family, and as such are closely related to med-
ically important pathogens including Escherichia coli,
Salmonella and Yersinia spp., potentially sharing com-
mon mechanisms [64]. Although transcriptomic analyses
of the Drosophila response to Salmonella or Yersinia
pathogens have not been performed thus far, previous
transcriptomic studies have reported that systemic infec-
tion with E. coli bacteria resulted in the activation of
target genes in Toll and Imd pathways [65, 66]. In par-
ticular, the authors found several Relish-dependent and
Spaetzle-dependent genes that were significantly upregu-
lated upon infection with E. coli, as well as genes coding
for AMP, putative microbial pattern-recognition pro-
teins, proteases and their inhibitors [65]. Other genes
were assigned to functions related to phagocytosis, mela-
nization and coagulation, wound healing, produciton of
reactive oxygen species and ion sequestration [66]. In
another study, injection with a pathogenic strain of
Pseudomonas aeruginosa led to significant transcrip-
tional upregulation of genes related to stress, hemocyte-
proliferation, putative catabolism genes and genes pre-
dicted to regulate proton transport; whereas downregulated
genes included serine proteases, tissue morphogenesis
and olfactory genes, GPCR and some humoral immunity
genes [67, 68].
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Here we found that flies infected by Photorhabdus
generated the highest number of sequence reads. This
could reflect the ability of these pathogens to interfere
with gene transcription in the fly. This assumption is
supported by our findings showing that infection with
Photorhabdus downregulates most Drosophila genes at
early times post infection. Given that the bacteria are re-
leased by their nematode vectors within a few hours
after the worms gain access to the insect [13], our re-
sults indicate that a potential strategy of Photorhabdus
to overcome the insect immune response could be the
induction of an early strong transcriptional downregula-
tion of key genes in the fly. Current results also indicate
that Photorhabdus can affect gene transcription in Dros-
ophila at late times of infection when flies have started
to succumb to the bacteria. In particular, a signature
pattern unique to Photorhabdus-infected flies was the
enrichment of 60 downregulated genes involved in ribo-
somal function and structure. This could be an indica-
tion of translational repression during the late phase of
infection that could form a Photorhabdus tactic to en-
hance immunosuppression in the fly [49]. We further
found that infection with Heterorhabditis and Photo-
rhabdus, separately or together, downregulates several
genes that participate in folate biosynthesis. Given that
folate plays a crucial role in DNA and protein synthesis
and cell-mediated/humoral immune responses are espe-
cially affected by folate deficiency [69, 70], this could
probably imply that the nematodes and their bacteria
have the ability to interfere with DNA synthesis and nu-
cleotide biogenesis in the fly. Should this be the case, the
pathogens could utilize the host-cell machinery to their
advantage in facilitating their survival, spread and repli-
cation in the fly. Also, in agreement with previous find-
ings that Photorhabdus bacteria interact with the insect
gut [71, 72], here we found that infection of flies with
Photorhabdus differentially regulates several genes that
are mainly expressed in the Drosophila gut and partici-
pate in immune homeostasis in this tissue [73-75].

Our RNA-Seq analysis detects upregulation of a large
number of AMP genes in flies infected by Photorhabdus.
AMP are important molecules in host defense [76]. In
Drosophila most AMP appear in the hemolymph within
a few hours after microbial challenge, their concentra-
tions increase rapidly and some persist for several hours
[77]. These results suggest that AMP may play a role in
the immune response of Drosophila against Photorhab-
dus by slowing down bacterial replication and spread in
the fly; however, AMP upregulation proves ultimately an
ineffective defense against those pathogens since flies
succumb to Photorhabdus infection within a few days.
We have previously reported that infection with a low
number of Photorhabdus cells fails to upregulate AMP
expression in infected flies [17]. Given that in the
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current study we have injected flies with 5-7 times more
bacterial cells compared to the previous study, we sus-
pect that Photorhabdus induces AMP gene transcription
in a dose-dependent manner. This will be a subject for
future investigations. In contrast to our current findings,
a previous study has reported that infection with the
pathogenic bacteria P. aeruginosa significantly downre-
gulates the transcription of AMP genes in Drosophila
adult flies during the initial stages of infection, which
probably forms a mechanism that facilitates replication
of the pathogen in the insect hemolymph, which is a
hostile environment for bacterial growth, and promotes
bacterial survival and pathogenesis in the host [67, 68].

Information on molecules with anti-nematode activity
in insects is currently lacking [7]. The use of the Dros-
ophila-Heterorhabditis model together with RNA-Seq
can provide important clues for potential molecules that
might act against nematode infection in insects. TEPs
are well-conserved proteins that participate in the im-
mune response of animals against bacteria and parasitic
protozoans [57, 78]. Recent studies in Drosophila
showed that TEPs are not involved in the defense against
certain bacterial and fungal pathogens [79]. It was
hypothesized that TEPs are likely to participate in the
immune function against pathogens attacking the fly
through the cuticle, such as nematode parasites. In
addition, a recent transcriptomic study on Drosophila
larvae reported that certain TEPs were differentially reg-
ulated upon infection with symbiotic worms [18]. Our
RNA-Seq data show that Tepl was downregulated
whereas Tepll and TepIV were strongly upregulated at
early and late times after infection with the nematodes
and their bacteria. These findings suggest that different
TEP molecules may participate in the immune function
of Drosophila larvae and adult flies against nematode
infection. Future research will focus on the functional
characterization of TEP anti-nematode and antibacterial
properties in Drosophila in response to Heterorhabditis
and Photorhabdus as well as to other nematode-bacteria
complexes.

Recent progress in understanding the molecular basis
of organismal responses to hypoxia has led to the identi-
fication of hypoxia-inducible transcription factors (HIF)
and their hydroxylation by the prolyl hydroxylase en-
zymes [80]. The prolyl hydroxylation process is central
to the regulation of hypoxia-induced genes during in-
flammation. In addition, recent findings have empha-
sized the regulatory role for HIF in the hypometabolism
of insects [81]. Here we found significant downregula-
tion of genes encoding prolyl hydroxylase enzymes in
flies infected by Heterorhabditis axenic nematodes. This
indicates that flies might be able to diminish metabolic
functions or alter their metabolic state through the
prolyl hydroxylation mechanism in order to withstand
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nematode attacks by diverting energy resources to en-
hance their immune response against the parasites. Simi-
larly, because glycosylation is a key process in the
generation of extracellular matrix components and mu-
cins [82], upregulation of glycosyltransferase enzymes
upon infection of the fly with axenic Heterorhabditis
could function as a mechanism to repair tissue damage
that is likely caused by nematode infection.

Infection of adult flies with axenic or symbiotic Het-
erorhabditis upregulates genes coding for glutamate
ionotropic receptors and putative sodium channels,
which have previously been reported to participate in
nociception [83—85]. This indicates potential changes in
this neural function of the fly during nematode infection,
since ionotropic receptors are involved in sensing pu-
tative external and internal cues [86]. It was recently
reported that class IV neurons are required for a noci-
ceptive behavioral response of Drosophila larvae against
infections by parasitoid wasps, and such neural reactions
are mostly elicited by attacks during which the cuticle is
penetrated by the wasp [87]. Therefore, it is possible that
Drosophila employs similar neural mechanisms to
process noxious stimuli in response to tissue damage or
other potent chemical/mechanical stimulation caused by
nematode invasion or migration in the fly. This could
represent a neuronal function of Drosophila to sense the
presence of certain chemical cues or metabolites
produced by the nematodes [64]. It has been shown pre-
viously that entomopathogenic nematodes secrete pepti-
dases and peptidase inhibitors that may target and
degrade insect tissues or actively suppress important
host immune defenses, such as prophenoloxidase activa-
tion and melanization [7, 88, 89]. Interestingly, the H.
bacteriophora genome encodes 19 putative peptidase
and 9 peptidase inhibitors [90]. In mammals, it has been
shown that biogenic amines that are produced during
pathological conditions can be detected by trace amine-
associated receptors, a class of GPCR, present in eryth-
rocytes [91].

Although recognition molecules that detect bacterial,
fungal and viral pathogens have been identified in Dros-
ophila [92], it is currently unknown whether and how
the fly immune system detects the presence of nematode
parasites, and what specific molecules could be res-
ponsible for this function. Here we have found that in-
fection with Heterorhabditis nematodes significantly
upregulates genes (e.g. Acp54AI1, Cpr78E, Cpr67Fb,
Lcep65Agl, Lep65Ag3 and Tweedle family genes) coding
for structural components of chitin-based cuticle [44, 93].
Notably, Cpr78E and Tweedle family genes encode pro-
teins that are secreted by ectodermal tissues including
epidermis, foregut and tracheae and previously they were
shown to contribute to cuticle formation. Sequence ana-
lysis predicts that they possess chitin-binding activity,
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which renders these proteins as potential candidate rec-
ognition molecules for detecting nematode invasion in
the fly or migration of the parasites within fly tissues
[94-96]. Interestingly, oral infection of D. melanogaster
larvae with Erwinia carotovora carotovora 15 bacteria
resulted in the regulation of several genes encoding
chitin-binding proteins and in particular Tweedle genes
in the tracheae. This was attributed to the interaction
between the bacteria and the chitinous layer that pro-
tects the tracheae [97].

Conclusions

Taken together, transcriptome profiling through RNA-
Seq provides an excellent approach for the precise
assessment of transcript levels and transcript isoforms in
the Drosophila model of infection and immunity. RNA-
Seq analysis of Drosophila adult flies infected by Hetero-
rhabditis nematodes and their mutualistic Photorhabdus
bacteria reveals transcriptional changes in the regulation
of a large number of genes, many of which have not
been shown previously to participate in immune pro-
cesses against pathogenic infections. Many of those
genes that are differentially regulated upon Heterorhab-
ditis or Photorhabdus infection are predicted to be in-
volved in metabolic functions, stress responses, DNA/
protein synthesis and neuronal activities. In addition, we
have identified Drosophila genes with potential role in
nematode detection and molecules with potential anti-
nematode properties. Many of those molecules provide
an excellent platform of candidate factors for the func-
tional characterization of the Drosophila immune re-
sponse against nematode-bacterial complexes. Future
studies using the Drosophila-Heterorhabditis-Photorhab-
dus model promise to reveal not only how pathogens
evolve virulence but also how two pathogens (nematode
and bacteria) can synergize to exploit a common host.

Methods

Fly stocks

Oregon R adult flies were used for the transcriptomic ana-
lyses. The strain was kindly provided by Prof. Jean-Marc
Reichhart (UPR9022 of CNRS, Institute of Molecular and
Cellular Biology, Strasbourg, France). Flies were reared
on instant Drosophila diet (Formula 4-24 Drosophila
medium) supplemented with yeast (Carolina Biological
Supply), and maintained at 25 °C and a 12:12-h light:dark
photoperiodic cycle. Equal number of male and female
adult flies aged 4-6 days old were used in infection assays
with the nematodes and their bacteria.

Nematodes and bacteria
Heterorhabditis bacteriophora TTO1 strain entomopatho-
genic nematodes were amplified in fourth instar larvae
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of the wax moth Galleria mellonella using the water
trap technique [98]. To confirm lack of Photorhabdus
bacteria in Heterorhabditis nematodes (axenic), the
worms were homogenized and the lysate was spread on
selective media. Fresh IJ] worms were collected and pre-
pared through pelleting, washing and re-suspending in
sterile distilled water. IJ] nematodes carrying or lacking
Photorhabdus bacteria were used 1-2 weeks after collec-
tion from the water traps. Heterorhabditis numbers were
estimated by counting the average nematode density
present in ten individual 50 pl drops of water using a
stereo-microscope.

The Gram-negative insect pathogenic bacteria Photo-
rhabdus Iluminescens subsp. laumondii (strain TTO01)
were used for fly infections. Bacteria were cultured in
Luria-Bertani broth (LB) and incubated for 18-24 h at
30 °C. Bacterial cultures were centrifuged at 4 °C, pel-
leted, washed in 1x sterile phosphate-buffered saline
(PBS) and re-suspended in PBS. Bacterial density was
measured using a NanoDrop™ 2000c (Thermo Fisher
Scientific) and a 10x serial dilution plating technique.

Infection assays

Nematode infection assays in Drosophila adult flies have
been described in detail previously [27]. Briefly, nematode
infections were carried out using nested 5 ml cups (Solo®)
and filter papers (Whatman) that supported 10-15 adult
flies per group. A 500-700 pl solution containing symbi-
otic or axenic Heterorhabditis nematodes was added to
each container (100 IJ/fly). Flies treated for 30 h with ster-
ile water devoid of nematodes were used as negative con-
trols. Infected and control flies were kept at 25 °C. A PBS
suspension (184 nl) containing Photorhabdus bacteria
was injected into Drosophila adult flies at the lateral an-
terior side of the thorax through nano-injection (Nanoject
II - Drummond Scientific). The number of Photorhabdus
cells delivered into each fly was approximately 500-700
colony-forming units (CFUs). Control samples involved
PBS injected flies.

RNA isolation

RNA was extracted from 40 adult flies infected by
Heterorhabditis axenic nematodes, symbiotic nema-
todes, Photorhabdus bacteria only as well as from un-
infected controls. Samples were collected at 12 and
30 h post infection. Total RNA was extracted using
the PrepEase RNA spin kit (USB) following the man-
ufacturer’s instructions. Briefly, flies were homo-
genized using sterile plastic pestles and RNA was
extracted using a silica-based column system includ-
ing a DNAse treatment step for 15 min. Total RNA
was re-suspended in 40 pl of sterile nuclease-free
water. RNA concentration was measured using a
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Nanodrop. RNA integrity and quality were assessed
using a Bioanalyser (Agilent Technologies).

Library preparation and RNA sequencing

Separate libraries for the four experimental condi-
tions (flies infected by Heterorhabditis axenic or
symbiotic nematodes or Photorhabdus bacteria alone
as well as uninfected controls) were prepared using
the TruSeq RNA sample preparation kit V.2 (Illu-
mina) and rRNA-depleted total RNA as template.
Ribosomal RNA present in total RNA samples was
removed prior to library construction using the Ribo-
Zero™ rRNA Removal Kits (Epicentre Technologies).
Briefly, 10 pg of total RNA were obtained through two
rounds of rRNA reduction. For the first round, oligos
from the Human/Mouse/Rat and Gram-Negative Bac-
teria Ribo-Zero™ kits were mixed in equal parts. The
resulting RNA was then taken through a second round of
reduction using the Human/Mouse/Rat Ribo-Zero™ kit.
Depleted RNA was then fragmented and reversed tran-
scribed using random hexamers. Single stranded frag-
ments were end-repaired, and phosphorylated for the
A-tailing step for index adaptor ligation. Fragments
were PCR amplified to create linear fragments containing
adaptor sequences (6 nucleotide indexes) to initiate cluster
generation and sequencing. The DNA was purified between
enzymatic reactions and the size selection of the library was
performed using AMPure XT beads (Beckman Coulter
Genomics). All seven samples were multiplexed and run on
a single lane on a flow cell of an Illumina HiSeq 2000,
resulting in seven libraries with ~25 million paired-end
reads. RNA sequencing was performed at the Institute
for Genome Sciences (University of Maryland School of
Medicine).

Alignment reads and coverage analysis

Seven samples representing the three infection types and
a normalization control were collected at two time
points and processed for sequencing. One hundred and
one base-pair long reads were generated and then intro-
duced into TopHat using the Drosophila melanogaster
Reference Genome version BDGP5 to map out reads to
gene models predicted by the fly genome [99]. Bowtie
was then used to assemble transcripts by mapping and
identifying splice junctions [100]. For quality control,
reads were only allowed to have up to two mismatches
per 30 base pairs, and reads that matched to more than
25 locations were removed from the analysis. For the
coverage analysis, BAM files generated using TopHat
were used to determine the total number of reads, the
number of mapped reads and the percentage of mapped
reads to the Drosophila melanogaster genome, which
allowed direct comparisons of samples among the differ-
ent treatments.
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Differential gene expression analysis

BAM alignments generated by TopHat were then uti-
lized to calculate Reads Per Kilobase of gene per Million
mapped reads values (RPKM), and indexed using in-
house scripts and tools for each individual gene model
and sample. RPKM analysis calculates gene expression
differences by normalizing the read counts for the total
length of the gene and the number of mapped sequen-
cing reads [101]. These RPKM values were then normal-
ized using the 75" quantile normalization to ensure
similar distributions across all samples. The Fold-
Change for each individual gene was calculated using
the normalized RPKM values. The differentially expressed
genes were determined after applying a minimum read
count cut-off of 10, Log fold-change cutoff of 0.58
(minimum one fold-change) and RPKM value greater
than 0.1. RPKM data were used to create quadrant plots
using log fold-changes (LFC) values.

Transcript analysis using CUFFLINKS

BAM files generated using TopHat were uploaded into
the Cufflinks transcriptome identification tool [28], to
assemble aligned RNA-Seq reads into predicted tran-
scripts and calculate relative abundances. RNA-Seq frag-
ment counts were used to calculate FPKM values
(Fragments Per Kilobase of exon per Million fragments
mapped) to estimate transcript abundance.

Differential transcript analysis using Cuffdiff

BAM files generated by TopHat were uploaded onto
Cuffdiff (component of the Cufflinks package) to esti-
mate differential expression between samples (grouped
by experimental condition) at the transcript level. The
statistical model used assumes that the number of reads
produced by each transcript is proportional to its abun-
dances. It also utilizes transcript expression from repli-
cates to estimate variance and calculate the significance
of observed changes in expression. The significance of
differential expression of transcripts belonging to the
same gene across the two conditions (infected vs. unin-
fected) was tested using the negative binomial (NB) dis-
tribution. A cutoff of False Discovery Rate (FDR) less
than 0.05, FPKM > 10 and Log Fold-Change of 0.5 was
used to select significantly differentially expressed tran-
scripts. The data generated by Cuffdiff were used to cal-
culate the distribution of read counts for each transcript,
volcano plots (FDR vs LFC), and F plots (FPKMgampie1 Vs
FPI(MsampleZ)'

Gene ontology analysis (GO)

GO analysis was performed using the list of differentially
expressed genes to search the DAVID web service to as-
sign GO categories to the identified genes. We selected
the Molecular Function, Cellular Compartment, Biological
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Process, Pathway Analysis and Protein Domains categories
for our analysis.

Differential gene expression analysis using DESeq and
General Linear Model (GLM)

The alignment files generated from TopHat were used
to compute read counts for each gene in the reference
annotation (Berkeley Drosophila Genome Project release
5). The read counts were computed for each sample
using the HTSeq (v0.5.3) library available for Python.
The read counts were then used as input for DESeq
(v1.10.1). DESeq is a R bioconductor package which
estimates the variance-mean dependence in count data
from high-throughput sequencing assays, normalizes the
count data for library sizes and dispersion, and tests for
differential expression based on a model using the nega-
tive binomial distribution. The samples were clustered
using the normalized values to identify outliers (if any).
A GLM was used wherein the infection type (Symbiotic
Heterorhabditis, Axenic Heterorhabditis, Photorhabdus
only) and time after infection (12 and 30 h) were treated
as the explanatory variables. The p-values were gener-
ated using the nbinomGLMtest in DESeq and adjusted
using the Benjamin-Hochberg method to control for
false discovery. The significant differentially expressed
genes were identified for multiple comparisons after ap-
plying significance cut-offs (adjusted p-value <0.05 and
absolute (fold-change) > 2, or < 2).

gRT-PCR validation

To validate differentially expressed genes, we selected
seven candidate genes based on significant fold differ-
ences across all samples and analyzed their relative
mRNA levels using qRT-PCR, as previously described
[17]. Five adult flies from each treatment were frozen at
12, and 30 h after infection. Total RNA was extracted
using the PrepEase RNA spin kit (USB) following the
manufacturer’s instructions. RNA samples were re-
suspended in 40 pl of sterile nuclease-free water and
RNA concentrations were measured using a Nanodrop
(Thermo Scientific). Complementary DNA (cDNA) syn-
thesis was synthesized using the High Capacity cDNA
reverse transcription kit (Applied Biosystems). cDNA
samples were diluted 1:10 in nuclease-free water and
1 pl was used as template for qRT-PCR experiments
using the EXPRESS SYBR® GreenER kit with Premixed
ROX (Invitrogen). All experiments were performed on a
Mastercycler’ ep realplex® (Eppendorf) and twin-tec
real-time PCR 96-well plates following the manufac-
turer’s instructions. Annealing temperatures were opti-
mized using gradient reactions. All primers produced
single amplicons as evidenced by dissociation curves
(melting curve analysis). Technical duplicates were run
for each sample and set of primers, and a total of four
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biological samples were used for each treatment. The
cycling conditions included 50 °C for 2 min, 95 °C for
2 min, 40 cycles of 95 °C for 15 sec and an annealing
step for 45 sec. For each sample, the amount of mRNA
detected was normalized to mRNA values of the con-
trol housekeeping gene Ribosomal protein L32 (RpL32,
CG7939). Normalized data were used to quantify the
relative level of a given mRNA according to cycling
threshold analysis (ACt), hence data were expressed as
the ratio 2€TRPL32/2CT(GEeme) Data are presented as a
ratio between infected versus PBS injected flies (nega-
tive controls for bacterial infections) or untreated flies
(negative controls for nematode infections). The list of
primers is given in Additional file 1: Table S1.

Statistical analysis

qRT-PCR results represent the means and standard devi-
ations of relative values from three biological replicates.
Data were statistically analyzed using a one-way analysis
of variance (ANOVA) with a Tukey post-hoc test for
multiple comparisons (GraphPad Prism).

Data access

The raw sequence data that were generated in the course
of this research are made publicly available. Paired-end
sequencing data of the D. melanogaster transcriptomes
have been deposited to the NCBI Gene Expression Omni-
bus (GEO, http://www.ncbinlm.nih.gov/geo/) database
and are available under the accession number GSE61466
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
szetgcuwtvsvhyf&acc=GSE61466.

Additional files

Additional file 1: Text description. Figure S1. Gene coverage density
plot. Figure S2. Quantitative real-time RT-PCR validation. Figure S3.
Infection of Drosophila flies with Heterorhabditis nematodes or their
Photorhabdus bacteria induces diverse physiological responses. Figure
S4. Quadrant plots showing expression patterns in adult flies infected by
nematodes or their bacteria. Figure S5. Infection of Drosophila flies with
Heterorhabditis or their Photorhabdus suppresses the expression of several
genes. Figure S6. Gene Ontology analysis. Table S1. List of primers used
for quantitative real-time RT-PCR validation.

Additional file 2: Gene lists corresponding to the KEGG and
PANTHER pathway analysis for Drosophila wild-type adult flies
infected by Heterorhabditis axenic or symbiotic nematodes or
Photorhabdus bacteria at 12 and 30 h time-points. Gene identity and
description corresponding to pathway categories (KEGG), which are
shown in Fig. 2 (panels a, b and ¢) and Additional file 1: Figure S3.

Additional file 3: Gene lists corresponding to the Quadrant Plot
analysis (Additional file 1: Figure S4) used to generate Fig. 4. The
25 most strongly induced Drosophila genes upon infection of wild-type
adult flies with Heterorhabditis axenic nematodes, Heterorhabditis symbiotic
nematodes or their mutualistic Photorhabdus bacteria at 12 h and 30 h
following immune challenge.

Additional file 4: Complete filtered list of genes obtained from the

General Linear Model analysis (Fig. 5) using Drosophila reads from
Symbiotic Heterorhabditis infections to compare to those from
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Axenic Heterorhabditis infections and Photorhabdus infections.
Additionally, we used Drosophila reads from Axenic Heterorhabditis
infections to compare to those from Photorhabdus infections. The data
from the two time points (12 and 30 h) for each infection type were used
as biological replicates. We used the infection type as the explanatory
variable and each gene is accompanied by its Log2 Fold-Change and p
values. The table shows genes that are differentially regulated with an
absolute 2-fold (or higher) change upregulation or downregulation.

Abbreviations

AMP: Antimicrobial peptide; ANOVA: Analysis of variance; ATP: Adenosine
triphosphate; cDNA: complementary DNA; CFU: Colony-forming units;
DAVID: Database for annotation, visualization and integrated discovery;
DSCAM: Down syndrome cell adhesion molecule; FDR: False discovery rate;
FPKM: Fragments Per Kilobase per Million; GEO: Gene expression omnibus;
GNBP: Gram-negative binding protein; GLM: General linear model; GO: Gene
ontology; GPCR: G-protein coupled receptor; GTP: Guanosine triphosphate;
HIF: Hypoxia-inducible transcription factors; Hsp: Heat shock protein;

[IM: Immune-induced molecules; 1J: Infective Juvenile; IMD: Immune
deficiency; JAK/STAT: Janus kinase/signal transducers and activators of
transcription; JNK: Jun-N-terminal kinase; KEGG: Kyoto encyclopedia of genes
and genomes; LFC: Log fold-changes; miRNA: microRNA; NB: Negative
binomial; NF-kB: Nuclear Factor-kappa-B; PANTHER: Protein analysis through
evolutionary relationships; PBS: Phosphate-buffered saline;

PGRP: Peptidoglycan recognition protein; gRT-PCR: Quantitative real-time
RT-PCR; RNA-Seq: RNA Sequencing; RPKM: Reads Per Kilobase of gene per
Million mapped reads values; rRNA: Ribosomal RNA; TEP: Thioester-
containing Proteins; TNF: Tumor necrosis factor; Tot: Turandot; VEGF: Vascular
endothelial growth factor; Vir-1: Virus-induced RNAT.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

IE and LJT supervised the project. JCC performed the infections and sample
preparation. JCC and US performed the gene expression validation and
control experiments, respectively. JCC, TC, PK and AS performed
computational analyses of the data. JCC and IE wrote the manuscript.

All authors read and approved the final manuscript.

Acknowledgements

This work was supported by a start-up grant from the Department of Biological
Sciences at George Washington University (GWU) and a University Facilitating
Fund from the Columbian Collge of Arts and Sciences at GWU.

Author details

'Insect Infection and Immunity Lab, Department of Biological Sciences,
Institute for Biomedical Sciences, The George Washington University,
Washington DC 20052, USA. *Laboratory of Malaria and Vector Research,
National Institutes of Health, Rockville, MD 20852, USA. Institute for Genome
Sciences, Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD 21201, USA.

Received: 16 October 2014 Accepted: 5 June 2015
Published online: 11 July 2015

References

1. Medzhitov R. Recognition of microorganisms and activation of the immune
response. Nature. 2007,449(7164).819-26.

2. Glavis-Bloom J, Muhammed M, Mylonakis E. Of model hosts and man: using
Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as
model hosts for infectious disease research. Adv Exp Med Biol. 2012;,710:11-7.

3. Brivio MF, Mastore M, Pagani M. Parasite-host relationship: a lesson from a
professional killer. Invertebr Surv J. 2005;2:41-53.

4. Dionne MS, Schneider DS. Models of infectious diseases in the fruit fly
Drosophila melanogaster. Dis Model Mech. 2008;1(1):43-9.

5. Limmer S, Quintin J, Hetru C, Ferrandon D. Virulence on the fly:
Drosophila melanogaster as a model genetic organism to decipher
host-pathogen interactions. Curr Drug Targets. 2011;12(7):978-99.

6.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

Page 19 of 21

Rémet M. The fruit fly Drosophila melanogaster unfolds the secrets of innate
immunity. Acta Paediatr. 2012;101(9):900-5.

Castillo JC, Reynolds SE, Eleftherianos I. Insect immune responses to
nematode parasites. Trends Parasitol. 2011;27(12):537-47.

Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP,

et al. An entomopathogenic nematode by any other name. PLoS Pathog.
2012;8(3):21002527.

Ciche TA, Darby C, Ehlers RU, Forst S, Goodrich-Blair H. Dangerous liaisons:
The symbiosis of entomopathogenic nematodes and bacteria. Biol Control.
2006;38(1):22-46.

Ciche T. The biology and genome of Heterorhabditis bacteriophora.
WormBook. 2007;1-9.

Ffrench-Constant RH, Dowling A, Waterfield NR. Insecticidal toxins from
Photorhabdus bacteria and their potential use in agriculture. Toxicon.
2007;49(4):436-51.

Bode HB. Entomopathogenic bacteria as a source of secondary metabolites.
Curr Opin Chem Biol. 2009;13(2):224-30.

Ciche TA, Ensign JC. For the insect pathogen Photorhabdus luminescens,
which end of a nematode is out? Appl Environ Microbiol. 2003;69(4):1890-7.
Hallem EA, Rengarajan M, Ciche TA, Sternberg PW. Nematodes, bacteria,
and flies: a tripartite model for nematode parasitism. Curr Biol.
2007;17(10):898-904.

Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, et al. Pathogen
entrapment by transglutaminase-a conserved early innate immune
mechanism. PLOS Pathog. 2010;6(2):¢1000763.

Hyrsl P, Dobes P, Wang Z, Hauling T, Wilhelmsson C, Theopold U. Clotting
factors and eicosanoids protect against nematode infections. J Innate
Immun. 2011;3(1):65-70.

Castillo JC, Shokal U, Eleftherianos I. Immune gene transcription in
Drosophila adult flies infected by entomopathogenic nematodes and their
mutualistic bacteria. J Insect Physiol. 2013;59(2):179-85.

Arefin B, Kucerova L, Dobes P, Markus R, Strnad H, Wang Z, et al. Genome-wide
transcriptional analysis of Drosophila larvae infected by entomopathogenic
nematodes shows involvement of complement, recognition and extracellular
matrix proteins. J Innate Immun. 2014,6(2):192-204.

Wang Z, Gerstein M, Snyder M. RNA-Seq;: a revolutionary tool for transcriptomics.
Nat Rev Genet. 2009;10(1):57-63.

Ozsolak F, Milos PM. RNA sequencing: advances, challenges and
opportunities. Nat Rev Genet. 2011;12(2):87-98.

de Klerk E, den Dunnen JT, 't Hoen PA. RNA sequencing: from tag-based
profiling to resolving complete transcript structure. Cell Mol Life Sci.
2014;71(18):3537-51.

Xuan J, Yu'Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic:
promises and challenges. Cancer Lett. 2013;340(2):284-95.

Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex
diseases: recent accomplishments and future perspectives. Eur J Hum Genet.
2013;21(2):134-42.

Daines B, Wang H, Wang L, Li Y, Han Y, Emmert D, et al. The Drosophila
melanogaster transcriptome by paired-end RNA sequencing. Genome Res.
2011;21(2):315-24.

Ekblom R, Galindo J. Applications of next generation sequencing in
molecular ecology of non-model organisms. Heredity. 2011;107(1):1-15.
Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host.
Nat Rev Microbiol. 2012;10(9):618-30.

Castillo JC, Shokal U, Eleftherianos I. A novel method for infecting
Drosophila adult flies with insect pathogenic nematodes. Virulence.
2012;3(3):339-47.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential
gene and transcript expression analysis of RNA-seq experiments with
TopHat and Cufflinks. Nat Protoc. 2012;7(3):562-78.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG
resource for deciphering the genome. Nucleic Acids Res.
2004,32:D0277-80.

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID Bioinformatics Resources. Nat Protoc.
2009;4(1):44-57.

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2009;37(1):1-13.

Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database
coupled with data analysis tools. Methods Mol Biol. 2009;563:123-40.



Castillo et al. BMC Genomics (2015) 16:519

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Thomas PD, Mi H, Lewis S. Ontology annotation: mapping genomic regions
to biological function. Curr Opin Chem Biol. 2007;11(1):4-11.

Ayres JS, Freitag N, Schneider DS. Identification of Drosophila mutants
altering defense of and endurance to Listeria monocytogenes infection.
Genetics. 2008;178(3):1807-15.

Ozkan E, Carrillo RA, Eastman CL, Weiszmann R, Waghray D, Johnson KG,
et al. An extracellular interactome of immunoglobulin and LRR proteins
reveals receptor-ligand networks. Cell. 2013;154(1):228-39.

Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards
KA, et al. abd-A regulation by the iab-8 noncoding RNA. PLoS Genet.
2012;8(5):21002720.

Wright VM, Vogt KL, Smythe E, Zeidler MP. Differential activities of the
Drosophila JAK/STAT pathway ligands Upd, Upd2 and Upd3. Cell Signal.
2011;23(5):920-7.

Ekengren S, Hultmark D. A family of Turandot-related genes in the humoral
stress response of Drosophila. Biochem Biophys Res Commun.
2001;284(4):998-1003.

Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, Lemaitre B. The MAPKKK
Mekk1 regulates the expression of Turandot stress genes in response to
septic injury in Drosophila. Genes Cells. 2006;11(4):397-407.

Gordon MD, Ayres JS, Schneider DS, Nusse R. Pathogenesis of listeria-
infected Drosophila wntD mutants is associated with elevated levels of the
novel immunity gene edin. PLoS Pathog. 2008;4(7):1000111.

Mellroth P, Karlsson J, Steiner HA. Scavenger function for a Drosophila
peptidoglycan recognition protein. J Biol Chem. 2003;278(9):7059-64.

Tanji T, Ohashi-Kobayashi A, Natori S. Participation of a galactose-specific
C-type lectin in Drosophila immunity. Biochem J. 2006;396(1):127-38.
Stroschein-Stevenson SL, Foley E, O'Farrell PH, Johnson AD. Identification of
Drosophila gene products required for phagocytosis of Candida albicans.
PLoS Biol. 2006;4(1):e4.

Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ,
Willis JH. Drosophila cuticular proteins with the R&R Consensus: annotation
and classification with a new tool for discriminating RR-1 and RR-2
sequences. Insect Biochem Mol Biol. 2007,37(8):754-60.

Perrimon N, Smouse D, Miklos GLG. Developmental genetics of loci at the
base of the X chromosome of Drosophila melanogaster. Genetics.
1989;121:313-31.

Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, Takahashi K, et al. Drosophila
immunity: a large-scale in vivo RNAI screen identifies five serine proteases
required for Toll activation. Curr Biol. 2006;16(8):808-13.

Chakrabarti S, Poidevin M, Lemaitre B. The Drosophila MAPK p38c Regulates
Oxidative Stress and Lipid Homeostasis in the Intestine. PLoS Genet.
2014;10(9):21004659.

Varghese J, Lim SF, Cohen SM. Drosophila miR-14 regulates insulin production
and metabolism through its target, sugarbabe. Genes Dev. 2010,24(24):2748-53.
Tang AH, Tu CPD. Biochemical characterization of Drosophila glutathione
S-transferases D1 and D21. J Biol Chem. 1994;,269(45):27876-84.

Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J. Identification
of Drosophila melanogaster yellow-f and yellow-f2 proteins as
dopachrome-conversion enzymes. Biochem J. 2002;368(1):333-40.
Clyne PJ, Warr CG, Carlson JR. Candidate taste receptors in Drosophila.
Science. 2000;287(5459):1830-4.

Andrés M, Turiégano E, Gopfert MC, Canal |, Torroja L. The extracellular matrix
protein artichoke is required for integrity of ciliated mechanosensory and
chemosensory organs in Drosophila embryos. Genetics. 2014;196(4):1091-02.
Sieber MH, Thummel CS. Coordination of Triacylglycerol and Cholesterol
Homeostasis by DHR96 and the Drosophila LipA Homolog magro. Cell
Metab. 2012;15(1):122-7.

Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the
humoral immune response. Dev Comp Immunol. 2014;42(1):25-35.

Lindsay SA, Wasserman SA. Conventional and non-conventional Drosophila
Toll signaling. Dev Comp Immunol. 2014;42(1):16-24.

Myllyméki H, Ramet M. Jak/STAT pathway in Drosophila immunity.
Scand J Immunol. 2014;79(6):377-85.

Blandin S, Levashina EA. Thioester-containing proteins and insect immunity.
Mol Immunol. 2004;40(12):903-8.

Delaney JR, Stoven S, Uvell H, Anderson KV, Engstrom Y, Mlodzik M.
Cooperative control of Drosophila immune responses by the JNK and
NF-kappaB signaling pathways. EMBO J. 2006;25(13):3068-77.

Rios-Barrera LD, Riesgo-Escovar JR. Regulating cell morphogenesis: the
Drosophila Jun N-terminal kinase pathway. Genesis. 2013;51(3):147-62.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Page 20 of 21

Hamilton PT, Leong JS, Koop BF, Perlman SJ. Transcriptional responses in a
Drosophila defensive symbiosis. Mol Ecol. 2014;23(6):1558-70.

Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular
redox environment and protects mammalian cells against oxidative
stress. Free Radic Biol Med. 2008;44(4):671-81.

Phang JM, Liu W. Proline metabolism and cancer. Front Biosci.
2012;17:1835-45.

Mclntire CR, Yeretssian G, Saleh M. Inflammasomes in infection and
inflammation. Apoptosis. 2009;14(4):522-35.

Ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, et al.
Photorhabdus: towards a functional genomic analysis of a symbiont and
pathogen. FEMS Microbiol Rev. 2003;26(5):433-56.

Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, et al.
A genome-wide analysis of immune responses in Drosophila. Proc Natl
Acad Sci USA. 2001;98(26):15119-24.

De Gregorio E, Spellman PT, Tzou P, Rubin GM, Lemaitre B. The Toll
and Imd pathways are the major regulators of the immune response in
Drosophila. EMBO J. 2002;21(11):2568-79.

Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW,

et al. Profiling early infection responses: Pseudomonas aeruginosa eludes
host defenses by suppressing antimicrobial peptide gene expression.
Proc Natl Acad Sci USA. 2005;102(7):2573-8.

Sonnleitner E, Valentini M, Wenner N, Haichar FZ, Haas D, Lapouge K.
Novel targets of the CbrAB/Crc carbon catabolite control system
revealed by transcript abundance in Pseudomonas aeruginosa. PLoS
One. 2012;7(10):e44637.

Dhur A, Galan P, Hercberg S. Folate status and the immune system.
Prog Food Nutr Sci. 1991;15(1-2):43-60.

Courtemanche C, Elson-Schwab |, Mashiyama ST, Kerry N, Ames BN.
Folate deficiency inhibits the proliferation of primary human CD8+ T
lymphocytes in vitro. J Immunol. 2004;173(5):3186-92.

Silva CP, Waterfield NR, Daborn PJ, Dean P, Chilver T, Au CP, et al.
Bacterial infection of a model insect: Photorhabdus luminescens and
Manduca sexta. Cell Microbiol. 2002:4(6):329-39.

Eleftherianos |, Ffrench-Constant RH, Clarke DJ, Dowling AJ, Reynolds SE.
Dissecting the immune response to the entomopathogen Photorhabdus.
Trends Microbiol. 2010;18(12):552-60.

Royet J. Epithelial homeostasis and the underlying molecular
mechanisms in the gut of the insect model Drosophila melanogaster.
Cell Mol Life Sci. 2011,68(22):3651-60.

Davis MM, Engstrém Y. Immune response in the barrier epithelia:
lessons from the fruit fly Drosophila melanogaster. J Innate Immun.
2012/4(3):273-83.

Kuraishi T, Hori A, Kurata S. Host-microbe interactions in the gut of Drosophila
melanogaster. Front Physiol. 2013;4:375.

Imler JL, Bulet P. Antimicrobial peptides in Drosophila: structures, activities
and gene regulation. Chem Immunol Allergy. 2005;86:1-21.

Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Ann
Rev Immunol. 2007;25:697-743.

Blandin SA, Marois E, Levashina EA. Antimalarial responses in Anopheles
gambiae: from a complement-like protein to a complement-like pathway.
Cell Host Microbe. 2008;3(6):364-74.

Bou Aoun R, Hetru C, Troxler L, Doucet D, Ferrandon D, Matt N. Analysis of
thioester-containing proteins during the innate immune response of Drosophila
melanogaster. J Innate Immun. 2011;3(1):52-64.

Thompson AA, Binham J, Plant T, Whyte MK, Walmsley SR. Hypoxia, the HIF
pathway and neutrophilic inflammatory responses. Biol Chem.
2013;394(4):471-7.

Gorr TA, Wichmann D, Hu J, Hermes-Lima M, Welker AF, Terwilliger N, et al.
Hypoxia tolerance in animals: biology and application. Physiol Biochem
Zool. 2010;83(5):733-52.

Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ. A new role for mucins in
immunity: insights from gastrointestinal nematode infection. Int J Biochem
Cell Biol. 2012;45(2):364-74.

Fundytus ME. Glutamate receptors and nociception: implications for the
drug treatment of pain. CNS Drugs. 2001;15(1):29-58.

Szekely JI, Torok K, Mate G. The role of ionotropic glutamate receptors in
nociception with special regard to the AMPA binding sites. Curr Pharm Des.
2002;8(10):887-912.

Numazaki M, Tominaga M. Nociception and TRP Channels. Curr Drug
Targets CNS Neurol Disord. 2004;3(6):479-85.



Castillo et al. BMC Genomics (2015) 16:519

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate
receptors as chemosensory receptors in Drosophila. Cell. 2009;136(1):149-62.
Robertson JL, Tsubouchi A, Tracey WD. Larval defense against attack from
parasitoid wasps requires nociceptive neurons. PLoS One. 2013;8(10):.e78704.
AbuHatab M, Selvan S, Gaugler R. Role of proteases in penetration of insect
gut by the entomopathogenic nematode Steinernema glaseri (Nematoda:
Steinernematidae). J Invert Path. 1995,66(2):125-30.

McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic
diseases. Annu Rev Pathol. 2006;1:497-536.

Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, et al. A lover and a
fighter: the genome sequence of an entomopathogenic nematode
Heterorhabditis bacteriophora. PLoS One. 2013;8(7):e69618.

Babusyte A, Kotthoff M, Fiedler J, Krautwurst D. Biogenic amines activate
blood leukocytes via trace amine-associated receptors TAART and TAAR2.

J Leukoc Biol. 2013;93(3):387-94.

Ligoxygakis P. Genetics of immune recognition and response in Drosophila
host defense. Adv Genet. 2013;83:71-97.

Cornman RS. Molecular evolution of Drosophila cuticular protein genes.
PLoS One. 2009/4(12):e8345.

Rebers JE, Willis JH. A conserved domain in arthropod cuticular proteins
binds chitin. Insect Biochem Mol Biol. 2001;31(11):1083-93.

Cornman RS, Willis JH. Annotation and analysis of low-complexity protein
families of Anopheles gambiae that are associated with cuticle. Insect Mol
Biol. 2009;18(5):607-22.

Tang L, Liang J, Zhan Z, Xiang Z, He N. Identification of the chitin-binding
proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem
Mol Biol. 2010;40(3):228-34.

Gendrin M, Zaidman-Rémy A, Broderick NA, Paredes J, Poidevin M, Roussel
A, et al. Functional analysis of PGRP-LA in Drosophila immunity. PLoS One.
2013;8(7):269742.

White GFR. A method for obtaining infective nematode larvae from
cultures. Science. 1927:66(1709):302-3.

Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics. 2009;25(9):1105-11.

Langmead B. Aligning short sequencing reads with Bowtie. Curr Protoc
Bioinformatics. 2010, Chapter 11:Unit 11.7.

Aanes H, Winata C, Moen LF, @strup O, Mathavan S, Collas P, et al.
Normalization of RNA-sequencing data from samples with varying mRNA
levels. PLoS One. 2014;9(2):e89158.

Page 21 of 21

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Heterorhabditis nematodes and Photorhabdus bacteria produce distinct transcriptomic profiles in Drosophila
	Heterorhabditis and Photorhabdus infection leads to changes in specific molecular pathways and biological activities in Drosophila
	Heterorhabditis and Photorhabdus infection regulates the transcription of a wide range of protein-coding genes in the fly genes
	The transcriptome of flies infected by symbiotic Heterorhabditis is a combination of the transcriptomes from flies infected by axenic nematodes and Photorhabdus
	Heterorhabditis nematodes and Photorhabdus bacteria differentially regulate signature genes in Drosophila flies
	Infection with Heterorhabditis and Photorhabdus alters the transcription of key immune genes in the fly
	Heterorhabditis and Photorhabdus affect several immune processes in the fly

	Discussion
	Conclusions
	Methods
	Fly stocks
	Nematodes and bacteria
	Infection assays
	RNA isolation
	Library preparation and RNA sequencing
	Alignment reads and coverage analysis
	Differential gene expression analysis
	Transcript analysis using CUFFLINKS
	Differential transcript analysis using Cuffdiff
	Gene ontology analysis (GO)
	Differential gene expression analysis using DESeq and General Linear Model (GLM)
	qRT-PCR validation
	Statistical analysis
	Data access

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



