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Abstract

Background: Genomic imprinting is an epigenetic mechanism that can lead to differential gene expression
depending on the parent-of-origin of a received allele. While most studies on imprinting address its underlying
molecular mechanisms or attempt at discovering genomic regions that might be subject to imprinting, few have
focused on the amount of phenotypic variation contributed by such epigenetic process. In this report, we give a brief
review of a one-locus imprinting model in a quantitative genetics framework, and provide a decomposition of the
genetic variance according to this model. Analytical deductions from the proposed imprinting model indicated a
non-negligible contribution of imprinting to genetic variation of complex traits. Also, we performed a whole-genome
scan analysis on mouse body mass index (BMI) aiming at revealing potential consequences when existing imprinting
effects are ignored in genetic analysis.

Results: 10,021 SNP markers were used to perform a whole-genome single marker regression on mouse BMI using an
additive and an imprinting model. Markers significant for imprinting indicated that BMI is subject to imprinting. Marked
variance changed from 1.218×10−4 to 1.842×10−4 when imprinting was considered in the analysis, implying that one
third of marked variance would be lost if existing imprinting effects were not accounted for. When both marker and
pedigree information were used, estimated heritability increased from 0.176 to 0.195 when imprinting was considered.

Conclusions: When a complex trait is subject to imprinting, using an additive model that ignores this phenomenon
may result in an underestimate of additive variability, potentially leading to wrong inferences about the underlying
genetic architecture of that trait. This could be a possible factor explaining part of the missing heritability commonly
observed in genome-wide association studies (GWAS).

Keywords: Epigenetics, Genomic imprinting, Genome-wide association studies, Missing heritability, Mouse body
mass index

Background
Genomic imprinting, an epigenetic process, is the prefer-
ential or differential gene expression in a parent-of-origin
fashion [1, 2]. If the expression of the maternally (or pater-
nally) inherited allele is “switched off” (i.e., the allele is
silenced), it is called maternal (or paternal) imprinting
and this complete silence represents the canonical defini-
tion of imprinting. In cases where gene expression is not
completely repressed, the phenomenon is called partial,
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as opposed to complete, imprinting [3, 4]. The regula-
tion of genomic imprinting is not fully understood yet, but
the mechanism is usually thought to be caused by differ-
ential epigenetic modification (mainly DNA methylation
and histone modification) of two parental genomes [5].
The emergence and evolution of genomic imprinting is a
puzzle to geneticists since the functional haploidy caused
by imprinting may increase the risk of being exposed to a
deleterious mutation, unlike the case of Mendelian inher-
itance where there is always a “backup” compensation
from the other allele. Although many hypotheses have
been offered (e.g., all articles in the journal Heredity, vol.
113, issue 2, Aug. 2014 were on evolutionary theories of
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imprinting), only the parent-offspring conflict hypothe-
sis that relates imprinting to nutrient resources allocation
of alleles with different parent-of-origin has been widely
accepted [6, 7]. Despite of pending questions on themech-
anisms and evolution of imprinting, it is widely believed
that imprinting can affect many complex traits [8], includ-
ing economically important traits in agricultural animal
and plant species [9–12] as well as human diseases like
the Prader-Willi (PWS) and Angelman (AS) syndromes
[13, 14]. Thus, relating phenotypes of complex traits to
(epi)genetic variants is of interest.
Studies of complex traits often aim at partitioning phe-

notypic variance into different components. In classical
quantitative genetics (e.g., [15]), the phenotypic variance
is partitioned into the sum of genotypic and environ-
mental variances, and the genotypic variance is further
subdivided into additive and dominance variances. If
two or more loci are involved, there could also be an
epistatic variance component. The ratio between the addi-
tive genetic and the phenotypic variances (σ 2

A and σ 2
P ,

respectively) defines the narrow sense heritability (h2).
Therefore, h2 is usually interpreted as the proportion
of phenotypic variance explained by additive variance.
This parameter is also the expected fraction of the selec-
tion differential transmitted from the parental to the off-
spring generation, and is crucial in artificial selection [15].
Hence, knowledge of h2 is important in genetic improve-
ment programs for predicting breeding values of selection
candidates, and it has been conventionally estimated using
kinship information under a linear mixed effect model
specification [16].
In recent years, the advent of SNP (single nucleotide

polymorphisms) markers made it possible to perform
genetic analysis at the DNA level as well as to carry out
genome-wide association studies (GWAS), with the goal
being finding genomic regions that potentially have an
effect on a complex trait of interest. In GWAS, additive
variation has attracted most attention while dominance
has been largely ignored, as it is deemed not to contribute
to heritable variation under a classical quantitative genet-
ics framework (e.g., [15, 17]). However, unlike dominance
or epistasis involving dominance, an imprinting effect is
thought to be transmissible over generations [2, 18]. This
suggests that imprinting may contribute to the additive
genetic variance and that ignoring existing imprinting
may lead to erroneous inference of genetic variation. In
what follows, therefore, we first make a brief review of a
one-locus genetic model with consideration of imprint-
ing. This model was proposed in three different studies
published in the same year [18–20]. We then discuss the
contribution of genomic imprinting to genetic variation
by means of a stylized analysis based on this imprinting
model. A GWAS-like analysis on body mass index (BMI)
in a sample from a mouse population was conducted

to assess potential consequences if existing imprinting
is ignored in genetic analysis. This paper ends with a
discussion on our findings and related issues.

A one-locus imprinting model
In a standard quantitative genetic model without imprint-
ing, three genotypic values −a, d and a can be assigned
to three possible genotypes A2A2, A1A2/A2A1 and A1A1
respectively, in a biallelic locus. With imprinting, on the
other hand, the resulting parent-of-origin effect makes the
two reciprocal heterozygotes different from each other.
Hence, the four genotypes A2A2, A1A2, A2A1 and A1A1
should be all uniquely identifiable and four different geno-
typic values are needed in this case. This constitutes the
basic configuration of a model incorporating imprinting.
Three studies have proposed this model concurrently

[18–20], with the only difference being in parameteri-
zation. In [18], genotypic values −a, d1, d2 and a are
assigned to the four genotypes as shown in Fig. 1 (mater-
nally inherited allele written first). If p and q are the allele
frequencies of A1 and A2 alleles, respectively, these four
genotypes will have frequencies q2, pq, qp and p2 if Hardy-
Weinberg equilibrium holds, and basic statistics gives the
mean and variance of the genetic values as μG = a(q −
p)+2pqd and σ 2

G = 2pq(a+d(q−p))2+ (2pqd)2+2pqi2.
Shete and Amos [19] adopted the same parameterization
as [18], but also set d = (d1+d2)/2 as dominance effect in
the conventional sense and i = (d2−d1)/2 as the imprint-
ing effect, so that d1 = d − i and d2 = d + i, which
was also suggested by [20]. These two parameterizations
are equivalent since they are linearly related. However, the
parameterization a, d and i of [19] keeps the conventional
dominance effect parameter d and defines a new parame-
ter i as imprinting effect, which simplifies understanding
because the imprinting effect is defined explicitly. Thus,
we adopt this parameterization.

Paternal andmaternal effects of allele substitution
When A1A2 and A2A1 are not treated distinctly, α =
α1 − α2 = a + (q − p)d is the average effect of gene sub-
stitution with α1 and α2 being the allelic effects of A1 and
A2 alleles, respectively; here p = Pr(A1) and q = 1 − p.
This value can be derived either by calculating the differ-
ence between the genotypic mean of individuals with at

Fig. 1 Genotypic values of the four possible genotypes in a biallelic
locus with imprinting [18]
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least one A1 (A2) allele and the population mean in a ran-
domly mating population, as shown in [15], or via a linear
regression approach as described in [17].
When imprinting is considered, however, two such sub-

stitution effects are needed since the same allele could
have a different effect when it is inherited from the father
or the mother, due to the fact that the expression of
one allele is repressed in case of imprinting. Spencer [18]
adopted the approach in [15] and analytically deduced
the eight breeding values (four genotypes with each act-
ing as a sire or a dam) in an idealized population. Using
the relationship between breeding value and substitution
effect shown in [15], two parental substitution effects
were obtained. Shete and Amos [19], on the other hand,
followed the approach in [17] with the linear model

Gj = μ + I♂α♂ + I♀α♀ + δj, (1)

where Gj = {−a, d − i, d + i, a} is the genotypic value
of each of the four genotypes; I♂ and I♀ are (0,1) indica-
tor variables denoting the number of A1 alleles inherited
from a specific parent (e.g., I♂ = 0 and I♀ = 1 denotes
that the genotype is A1A2 with the maternally inherited
allele written first); δj is the model residual, interpreted as
dominance deviation in [17]. In Model 1, α♂ and α♀ are
the substitution effects in two parental lines. Both [18, 19]
arrived at α♂ = a+i+(q−p)d and α♀ = a−i+(q−p)d as
paternal and maternal allele substitution effects, respec-
tively. Note that

(
α♂ − α♀)

/2 = i, the imprinting effect,
and

(
α♂+α♀)

/2 = α, the average gene substitution effect
in the standard sense. de Koning et al. [20] presented the
same result.

Contribution of imprinting to genetic variation
The potential role of epigenetics on complex traits has led
to studies of the impact of epigenetic variation on phe-
notypic and genetic variations. For example, in a recent
in silico study, it was shown that epigenetic modifica-
tion of one allele at a biallelic locus can result in an 11%
of total genetic variance attributed to epigenetic varia-
tion at moderate allele frequency even if u, the epigenetic
modification rate, is as low as 0.01 [21]. The propor-
tion of genetic variance explained by epigenetic variation
could be as large as 18% if u increases to 0.5. This can
be explained by viewing the epigenetic modification as
producing an epi-mutation that has a similar effect as
a regular mutation event if the epi-mutation persists a
relatively long time in a population, i.e., if transmissible
between generations.
Transmissible variation is very important in breeding

programs, since it determines the mean performance of
the offspring generation after applying artificial selec-
tion to the parental generation. In a quantitative genetics
context, transmissible variation consists of the additive

genetic variance σ 2
A, which defines narrow sense heritabil-

ity h2 through the ratio σ 2
A/σ 2

P as stated above, where σ 2
P

is the phenotypic variance. Additive genetic variance has
been traditionally estimated using phenotypic records and
pedigree information with likelihood-based or Bayesian
methods [16, 22–26], but in the genomic era, one can usu-
ally estimate the substitution effect of an allele at some
known locus and use an estimate of 2pqα2 as the addi-
tive variance contributed by that locus, if Hardy-Weinberg
equilibrium holds.
If imprinting is involved in the analysis, the two parental

substitution effects α♂ and α♀ can be used to calculate the
additive genetic variance in a similar way as in the addi-
tive model. Here, the paternal and maternal contributions
to the additive variation can be separated due to different
substitution effects of a paternally inherited and mater-
nally inherited allele. According to [18, 19], the additive
variance under imprinting is given by

σ 2
A = σ 2

A♂ + σ 2
A♀ = pqα2♂ + pqα2♀

= 2pq(a + (q − p)d)2 + 2pqi2
(2)

if a 1:1 sex ratio is assumed. Note that the first term in
Eq. 2 is the additive variance under an additive model
without imprinting; and when imprinting is considered,
an extra term 2pqi2 is added to σ 2

A. Same as in an addi-
tive case, σ 2

A under imprinting can be derived by taking the
variance of breeding values of all eight genotypes (4 pos-
sible genotypes and 2 sexes) [18], and hence both 2pq(a+
(q − p)d)2 and 2pqi2 represent the transmissible variance
over generations. Therefore, for the sake of clarify, we will
call 2pq(a + (q − p)d)2 + 2pqi2 as the additive genetic
variance, because this is the variance between breeding
values under imprinting. Parts 2pq(a + (q − p)d)2 and
2pqi2 are referred to as Mendelian (i.e., the unimprinted
part) and imprinting variances, and are denoted by σ 2

Men
and σ 2

Imp, respectively [27]. Since i enters into the additive
genetic variance, imprinting contributes to narrow sense
heritability, as well as to total genetic variance σ 2

G, when
present.
The ratio σ 2

Imp/σ
2
G defines the proportion of total

genetic variance explained by imprinting. This ratio is, to
some extent, equivalent to the definition of R2

e in [21],
with the only difference being that these authors were
interested in a broader concept of epigenetic mechanism
while here we are interested in imprinting only.We graph-
ically illustrate how imprinting can impact the evaluation
of marked variance, and its consequences if ignored. We
set a = 2 and let the imprinting effect i vary between 0
(no imprinting) and a (complete imprinting) according to
the previously described imprinting model. Four different
values were assigned to the dominance effect d: 0, 1

4a,
1
2a
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and a, representing from no dominance to complete dom-
inance. Allele frequency p for the A1 allele varied from 0
to 1.
As shown in Fig. 2, R2

e = σ 2
Imp/σ

2
G increases with i, d and

p. When d = 0, R2
e does not vary with p since in this case

R2
e = 2pqi2

2pqa2 + 2pqi2
= i2

a2 + i2
.

Under dominance, allele frequency drives R2
e from small

values at lower allele frequency to large values at higher
frequency, with more pronounced effects with larger val-
ues of d. When imprinting effects are small (e.g., i < 1

4a),
it seldom accounts for more than 10% of the genetic
variance, unless p is close to 1 and d is close to a.
Figure 3 shows how narrow sense heritability changes

with (imprinting model) or without (additive model) con-
sideration of imprinting at the four values of d. The
environmental variance was set to σ 2

e = 4 across all sit-
uations and it was assumed that there was no interaction
between environmental and genetic factors; a, i, d and
p were as before. The additive variance obtained with
imprinting was always larger than when an additive model
was employed, as expected by construction. If we denote
“epigenetic heritability” as h2e [21] and that without con-
sideration of imprinting as h2, the difference between h2e
and h2 is maximum when imprinting is at its highest level.
This is not surprising because the larger i is, the higher
the proportion of additive variation (i.e., σ 2

A) accounted
for by imprinting is (Eq. 2). Thus, if imprinting is present,
the standard additive model would capture only part of

the additive variance, resulting in an underestimate of the
potentially markable variation.

Mouse data analysis – materials andmethods
The preceding discussion on the quantitative imprint-
ing model applies to a single locus only and does not
guide on how imprinting would contribute to heritability
of a complex trait, presumably affected by multiple loci
and with many of these not imprinted at all. Also, it is
unknown how imprinting affects estimates of heritability
when it is ignored in the estimation procedure. Hence, a
real data analysis was performed to evaluate the impact of
imprinting on a quantitative trait.
Previous studies have suggested that obesity-related

traits could be affected by imprinting in both humans
[28, 29] and mice [30]. Hence, mouse body mass index
(BMI, defined as body weight divided by the square
of tailless body length), considered to be a good indi-
cator of obesity status, was chosen as the target trait
in this analysis. The mouse dataset (build 37), gener-
ated for a series of studies on obesity and diabetes,
was downloaded from The Wellcome Trust Centre
for Human Genetics website (http://mus.well.ox.ac.uk/
mouse/HS/). This population was obtained by cross-
ing eight inbred strains followed by 50 generations of
approximately random mating. BMI measurements were
pre-corrected for body weight, season, month and day
for a total of 1,940 F2 individuals (168 full-sib families),
with more than 12,000 genotyped SNP markers located
on 19 autosomes. BMI values seemed normally dis-
tributed with mean −0.4568 (nagative values were due to

Fig. 2 Proportion of genetic variance contributed by imprinting as a function of allele frequency (p), dominance level (d), and imprinting effect (i)

http://mus.well.ox.ac.uk/mouse/HS/
http://mus.well.ox.ac.uk/mouse/HS/
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Fig. 3 Narrow sense heritability with consideration of imprinting (h2e , red surface) or without it (h2, blue surface) as a function of allele frequency (p)
and imprinting effect (i) at various level of dominance

pre-correction on original data) and variance 0.0357.
Additional descriptions of the data are in the website and
in [31].
To test the effect of imprinting, one must be able to

distinguish two heterozygous genotypes, which is impos-
sible if conventional coding systems used in GWAS or
whole-genome prediction studies (e.g., genotypes A2A2,
A1A2/A2A1 and A1A1 coded as −1, 0, and 1, respec-
tively) are adopted, because A1A2 and A2A1 are not
differentiated. To make A1A2 and A2A1 distinguishable,
marker genotypes (in the form of AA, AB, BB) were fed
into BEAGLE 3.3.2 [32, 33] for sporadic missing geno-
type imputation and haplotype phase inference. This
software can perform haplotype inference of unphased

(unknown parental origin) genotypic data using linkage
information between marker genotypes, with or with-
out pedigree information, and give an inferred phased
(known parental origin status) genotype as an output.
With phased genotype, markers can be coded as described
below. After filtering markers with minor allele frequency
(MAF) less than 0.05, 10,021 markers were kept for
analysis.
One objective of this study is to assess the consequences

of “erroneously” using an additive model without con-
sidering imprinting in GWAS if imprinting does affect
that trait. Therefore, the data was analyzed using regres-
sion models with or without imprinting, as described
below. First, according to the imprinting model (Fig. 1),
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the following matrix can be used to associate different
genetic effects with the four possible genotypes [3, 34, 35]:

S =

Ia Id Ii⎛
⎜⎜⎝

1 0 0
0 1 1
0 1 −1

−1 0 0

⎞
⎟⎟⎠

←− A1A1
←− A2A1
←− A1A2
←− A2A2

, (3)

where Ia, Id, and Ii are vector indicators for the additive
(a), dominance (d), and imprinting (i) effects in the four
genotypes, respectively. Using this coding matrix, models
with an additive effect only, additive and dominance, and
additive plus dominance plus imprinting can be written in
matrix form as:

y = 1μ + Xb + Iaβ1 + Zu + Qc + e,
(4)

y = 1μ + Xb + Iaβ1 + Idβ2 + Zu + Qc + e,
(5)

y = 1μ + Xb + Iaβ1 + Idβ2 + Iiβ3 + Zu + Qc + e,
(6)

where y is an n-element vector containing the observa-
tions;μ is the populationmean common to all individuals;
X is the incidence matrix relating the vector y to the vec-
tor of fixed effects b (sex, litter size and cage density);
β1, β2 and β3 are regression coefficients that are inter-
preted as additive, dominance, and imprinting effects,
respectively; u is the vector of infinitesimal additive effect
with associated incidence matrix Z, and it is assumed

that u ∼ N
(
0,Aσ 2

u
)
, where A is the additive relation-

ship matrix calculated from the pedigree and σ 2
u is the

infinitesimal additive genetic variance; c, with associated
incidencematrixQ, is the vector of normally and indepen-
dently distributed random effects represented by different
cages in which an individual is raised, and it is assumed
that c has a zero mean and homogeneous variance σ 2

c ; e is
the vector of model residual, whose elements are assumed
to be normally and independently distributed with zero
mean and homogeneous variance σ 2

e .
A likelihood ratio test (LRT) between Models 6 and 5

tests the significance of β3, which represents the imprint-
ing effect i; a LRT between Models 5 and 4 tests the
significance of β2, the dominance effect d; and a LRT
between Model 4 and a null model without marker infor-
mation tests the significance of β1, interpreted here as the
allelic substitution effect α. This procedure of data analy-
sis is graphically represented in Fig. 4. The main objective
of this study was to compare a model with imprinting with
the common GWAS strategy used today (i.e., considering
additive but not dominance effect) to evaluate the extent
to which imprinting affects inference on marked variance.
The marked variance ignoring imprinting was assessed as

σ̂ 2
SNP =

∑
j∈Box 2

σ̂ 2
Men,j =

∑
j∈Box 2

2p̂jq̂jα̂2
j , (7)

using only markers falling in Box 2 of Fig. 4, where p̂j
and q̂j = 1 − p̂j are maximum likelihood estimates of

Fig. 4Workflow for data analysis
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allelic frequency at marker locus j. With consideration of
imprinting, the marked variance would be

σ̂ 2
SNP =

∑
j∈Box 2

σ̂ 2
Men,j +

∑
j∈Box 1

(
σ̂ 2
Men,j + σ̂ 2

Imp,j

)

=
∑

j∈Box 2
2p̂jq̂jα̂2

j +
∑

j∈Box 1
2p̂jq̂j

(
α̂2
j + î2j

)
,

(8)

using “imprinted markers” (Box 1) and “unimprinted
markers” (Box 2). In both cases, linkage equilibrium
between markers was assumed.
In order to deal with potential problems raised by mul-

tiple testing in single marker regression, the p-value for
individual testing was set to 1.316 × 10−5 to obtain a
0.05 genome-wide type I error rate using the Šidák’s cor-
rection. The effective number of independent tests used
in the multiple testing correction was calculated using
LD information between markers based on the method
described in [36]. LD (measured by r, the pairwise hap-
lotypic Pearson’s correlation coefficient) between marker
pairs across the whole genome was calculated using the R
package genetics [37]. Models were fitted using R package
pedigreemm [38, 39] with variance components of ran-
dom effects estimated via restricted maximum likelihood
(REML).

Results and discussion
Significant markers andmarked variance
After data cleaning, 10,021 SNP markers were kept for
the whole genome scan using methods described in
the previous section. As a result, 7 markers were addi-
tively significant, and 11 markers were significant for an
imprinting effect, either from the paternal side or from the
maternal side. The latter suggests the markers are linked
with imprinted genes or QTLs. Therefore, all discussions
of “imprinted markers” hereafter should be interpreted

accordingly. Because many adjacent markers showed co-
significance due to high LD (r2 between markers > 0.99),
information redundancy exists for these markers. In order
to assess the variance explained by each genomic region,
we chose only one marker from each highly correlated
marker cluster. After this filtering, only 3 markers were
additively significant and 6 were significant for imprint-
ing, 4 of which were paternally imprinted and 2 were
maternally imprinted (Table 1). Imprinting direction (i.e.,
maternal imprinting or paternal imprinting) was deter-
mined from the signs of α̂ and î. This is because, according
to the imprinting model and the genotype codes, the
maternal and paternal allelic substitution effects are writ-
ten as α − i and α + i. Since reduced expression induced
by imprinting indicates a smaller absolute value of the
parental substitution effect, a maternal imprinting is then
suggested if α̂ and î have the same sign, and a paternal
imprinting is suggested if these two estimates have differ-
ent signs. This depends on how the four genotypes are
coded and one may obtain a reversed result if imprint-
ing is coded oppositely. With these “uniquely” significant
markers, marked variance was then computed according
to Eqs. 7 and 8. We found that σ̂ 2

SNP with and without
consideration of imprinting was 1.218 × 10−4 + 0.624 ×
10−4 = 1.842 × 10−4 and 1.218 × 10−4, respectively. The
variances explained by the infinitesimal and random cage
effects were 3.816×10−4 and 4.742×10−4 for the imprint-
ing model, and 3.805 × 10−4 and 4.747 × 10−4 for the
additive model, respectively. Residual variance was about
1.869 × 10−3 for both cases. Since there were estimates
of variance components (i.e., σ̂ 2

u , σ̂ 2
c and σ̂ 2

e ) for every
marker, the estimates reported here were the average over
10,021 estimates. Small standard deviations of REML esti-
mates in both models indicated that estimates were fairly
precise. Variance components estimates are presented in
Table 2 along with their asymptotic standard deviations.
Values in Table 2 indicated that marked variance was

Table 1 Significant markers and imprinting status when imprinting was accounted for

Marker Chr. Closest QTLa Statusb p-valuec α̂ (×10−3) î (×10−3)

rs3697020 2 T2dm3 (within) A 1.476×10−6 11.63 ± 2.41 -

rs3676388 2 T2dm2sa (within) A 9.357×10−6 −9.99 ± 2.26 -

rs3726626 15 W3q6 (within) A 2.987×10−6 9.30 ± 1.97 -

rs3662117 2 Gnf1 (within) M 4.061×10−6 2.51 ± 2.61 6.20 ± 2.10

rs6212614 3 Orgwq5 (within) M 6.197×10−6 2.11 ± 1.96 4.18 ± 1.59

rs13476734 2 T2dm3 (within) P 1.302×10−5 −1.36 ± 2.05 4.59 ± 1.79

rs6371982 3 W10q3 (within) P 5.055×10−6 1.05 ± 1.94 −4.36 ± 1.59

rs3665109 3 W10q3 (within) P 8.690×10−6 −1.82 ± 1.92 4.00 ± 1.62

gnf04.110.360 4 W10q10 (within) P 9.365×10−6 1.79 ± 1.96 −4.17 ± 1.62

aInformation from the Mouse Genome Informatics website (http://www.informatics.jax.org/)
bA: additively significant; M: maternal imprinting; P: paternal imprinting
cp-value threshold was set to 1.316 × 10−5 to ensure a 0.05 whole-genome type I error rate with Šidák’s correction

http://www.informatics.jax.org/
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Table 2 Variance components estimates (×10−4) using models with (Imp) or without (Add) imprinting effect

Model σ̂ 2
SNP σ̂ 2

u (infinitesimal) σ̂ 2
c (cage) σ̂ 2

e (residual)

Imp 1.842 3.816 ± 0.762 4.742 ± 0.344 18.687 ± 1.36

Add 1.218 3.805 ± 0.793 4.747 ± 0.360 18.694 ± 1.37

increased by 50% in this GWAS-like whole genome scan
if variation due to imprinting was considered. In other
words, if existing imprinting was not accounted for, about
one third marked variation would be lost, potentially lead-
ing to wrong conclusions in genetic analysis using SNP
markers.

Interpretation of detected markers
In this study, we found 3 markers that are additively
related to mouse BMI, all of which are related to a cer-
tain QTL that has an effect on mouse body weight or
diabetes. Particularly, marker rs3697020 is located in a
diabetes related QTL T2dm3 (type 2 diabetes mellitus
3, chromosome 2) that is also highly interactive with
obesity [40]; marker rs3676388 is located in another dia-
betes related QTL T2dm2sa (type 2 diabetes mellitus 2
in SMXA RI mice) on the same chromosome [41]; lastly,
marker rs3726626 is located in a body weight related QTL
W3q6 (weight 3 weeks QTL 6) on chromosome 15 [42].
Although the main effect of QTL T2dm3 and T2dm2sa
is related to the development of type II diabetes in mice,
both are highly correlated with obesity status in mice
[40, 41], which is commonly considered as a high risk of
developing diabetes. Since the data used here was gener-
ated for a series of studies on mice diabetes, it was not
surprising that markers associated with diabetes-related
QTL were detected.
All 6 presumably imprinted markers detected in our

analysis are located in the vicinity of QTLs associated with
body weight or growth. For example, marker rs3662117 is
inGnf1 (growth and fatness 1), a QTL located on chromo-
some 2 that has a large impact on growth and body com-
position [43]. Marker rs6212614 resides in Orgwq5 (organ
weight QTL 5, chromosome 3), a QTL affecting organ
weight in mouse [44]. This pleiotropic QTL has an impact
on limb bone length as well, such that it may potentially
affect body length and hence influence body mass index.
Markers rs6371982, rs3665109, and gnf04.110.360 are
located in W10q3 (weight 10 weeks QTL 3) and W10q10
(weight 10 weeks QTL 10) on chromosomes 3 and 4
respectively, which are two QTLs affecting mouse body
weight at the age of 10 weeks [42]. Interestingly, mark-
ers rs3697020 and rs13476734 are both in QTL T2dm3,
but one is additively significant and the other has a strong
imprinting effect. Since the distance between these two
markers is large (about 5 Mb), it is possible that these

two markers are capturing different signals (see below).
Same as the additive markers, locations of these presum-
ably imprinted markers indicated that variation on BMI is
likely an inherited feature of variation on body weight and
body length via the major QTLs.
We also checked whether these 6 presumably imprinted

markers are located in any known imprinted regions. It
was found that 5 out of 6 are in the genomic region
of reported imprinted genes or iQTLs (imprinted QTL).
Specifically, markers rs6371982 (chromosome 3, 16.96
cM) and rs3665109 (chromosome 3, 19.81 cM) are both
in the range of iQTL Wti3.1 (chromosome 3, 3.79∼32.75
cM), which has a significant effect on most mouse body
weights from week 1 to 9 and is expressed from the mater-
nally inherited allele [3]. Marker rs6212614 (chromosome
3, 60.92 cM) is located in the range of another weight
related iQTL Wti3.2 (chromoeome 3, 60.71 cM), which
was also reported in [3]. Marker rs13476734 (chromo-
some 2, 60.01 cM) is adjacent to a maternally expressed
imprinted gene Gatm (glycine amidinotransferase, 60.63
cM) [45]. This gene encodes a metabolic enzyme involved
in creatine synthesis, which plays an important role in
embryonic and fetal growth as well as brain function-
ing [46]. Marker rs3662117 (chromosome 2, 75.95 cM)
is adjacent to a paternally expressed protein coding gene
Mcts2 (malignant T cell amplified sequence 2, 75.41 cM)
[45], which influences the choice of polyadenylation (poly
A) site for transcripts of the host gene H13 in an allele-
specificmanner [47]. However, no strong evidence regard-
ing the effect ofMcts2 on body weight, obesity, or diabetes
has been reported. Besides these five markers, marker
gnf04.110.360 (chromosome 4, 56.49 cM) does not fall in
any known imprinted region. However, it is located in a
genomic region that is predicted to harbor three mater-
nally expressed genes [48]. These genes are 4931406I20Rik
(53.44 cM), Krc (55.51 cM), and Grik3 (58.91 cM). There
are also two genes adjacent to this interval that are pre-
dicted to be paternally expressed (Ftl2 and AU040320),
but the positions of these two genes are outside of the
maternally expressed region (58.94 cM and 60.94 cM,
respectively). Therefore, these two intervals are likely two
adjacent clusters that have different imprinting directions,
and the imprinting direction of this marker detected in
our study matched with previous findings. Unfortunately,
no evidence indicating association between body weight
and these three genes has been reported.
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Our analysis indicated that in this particular data set,
markers associated with mouse BMI through either addi-
tivity or imprinting can be effectively detected, and the
functions of the genes or QTLs harboring these mark-
ers supported our discovery on the marker-trait associ-
ation. Elevated estimates of marked variances suggested
that, by incorporating imprinting effects in to a quantita-
tive genetic model, the proportion of phenotypic variance
explained by significant markers increased noticeably.
In addition to three markers detected using the addi-
tive model, six markers were deemed associated with an
imprinting effect when the phenomenon was accounted
for; the directions of the imprinting effects of all six
markers were consistent with previously reported stud-
ies. This indicated that the imprinting model detected
extra variation that the additive model was not able to
capture, so a higher estimate of marked variance was
obtained. However, this result was achieved by adding
variances contributed by markers from distinct single
marker regression models, which may give a misleading
picture of the variance captured by markers because LD
between themmay overemphasize the contribution of sig-
nificant markers [49]. Although only one marker in each
high LD cluster was kept for calculating marked variance
in order to reduce bias, caution still needs to be exer-
cised when interpreting this variance since it was obtained
from unshrunken estimates of marker effects with simple
regression approaches.

Validation of imprinting detection – a simulation
Besides a potential inflation of marker-explained variance
stemming from LD between markers, it should also be
noted that the detection of imprinting relies mainly on
the comparison between heterozygotes, which might be
confounded by dominance under some circumstances.
For example, even though columns Id and Ii in the S
matrix (Eq. 3) are ideally orthogonal, there might be a
large collinearity if heterozygotes are mostly say, A1A2,
and hence hampering estimability of either the domi-
nance or the imprinting effect. If, on the other hand, the
two heterozygote types have similar frequencies in the
population, both dominance and imprinting effects are
identifiable and the estimates of the two effects would
be uncorrelated, ideally. Thus, the results presented in
the previous section would be more convincing if the
detection of imprinting was not affected by dominance.
In order to test for potential confounding between

imprinting and dominance, we performed the follow-
ing simulation. First, a population of 5,000 unrelated
individuals was created. For each individual, we gener-
ated 500 biallelic loci in linkage equilibrium, with allele
frequencies varying over {0.05, 0.10, 0.15, . . . , 0.90, 0.95}.
One hundred out of the 500 loci were randomly selected
to have additive effects generated from a standard normal

distribution. Within these 100 loci, 50 and 10 were ran-
domly chosen to have dominance and imprinting effects,
respectively, both generated from a standard normal dis-
tribution. Note that some loci may have all three true
effects since we did not force the two sets of loci with
either dominance or imprinting effects to be mutually
exclusive. Genotypic values at each of the loci that had an
effect were created according to Fig. 1, given the geno-
type at that locus. Environmental effects were drawn from
a normal distribution with zero mean and variance equal
to the variance among genotypic values so the heritability
was roughly 0.5.
We fitted Models 5 and 6 to the simulated data, as well

as the following model where the dominance effect was
not accounted for

y = 1μ + Xb + Iaβ1 + Iiβ3 + Zu + Qc + e. (9)

The reason for fitting Model 9 is that, because Id and Ii
are orthogonal, we expect the estimate of β3 (represent-
ing i) from this model should be equal to that obtained
from Model 6, conditional on the additive effect β1. We
then compared the estimates of imprinting effects from
Models 6 and 9 and dominance effects from Models 6
and 5. As shown in Fig. 5, regardless of whether esti-
mated separately or jointly, the dominance and imprinting
effects were uncorrelated to each other, reflecting that the
population is under Hardy-Weinberg equilibrium. When
using the real mouse data, the same picture emerged
(Fig. 6). Therefore, inferences on the imprinting effect in
this current data set are unlikely to be confounded by
dominance.
Apart from a potential confounding between imprint-

ing and dominance, we were also interested in testing
whether the LRT that was applied to test for significant
imprinting effect would pick up any unexisting imprinting
effect as a false discovery. To do this, we took the same
simulated population as described above but generated
the genotypic values by including only simulated additive
and dominance effects (i.e., without adding the simulated
imprinting effect). We denote this data as the Dom data
and referred to the one with true imprinting effects as the
Imp data. Then we fitted Models 4 and 9 to the Dom data
to evaluate how imprinting could be detected in a pop-
ulation not affected by imprinting and compared to the
result obtained when the same procedure was applied on
the Imp data. As a result, one locus showing significant
imprinting effect was detected in the Imp data (p-value
3.49 × 10−16) and none were detected using the Dom
data, as expected. As a comparison, the smallest p-value
obtained when testing for imprinting using the Dom data
was 0.0043, ranked only in the 9th place if imprinting was
tested using the Imp data. Considering that there were
only 10 loci with a true imprinting effect in the simula-
tion, a locus with p-value ranked in the 9th place would
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Fig. 5 Paired scatter plot of estimated dominance and imprinting effects using simulated imprinting data. Dom5S and Dom6S are estimated
dominance effects using Models 5 and 6, respectively; Imp9S and Imp6S are estimated imprinting effects using Models 9 and 6, respectively

not be detected if the significance threshold was set appro-
priately. Therefore, it seemed unlikely that a locus would
be spuriously claimed as “imprinted” if the true imprint-
ing was absent. Also, the existence of imprinting did not
have a large impact on detecting an additive effect, since
the detected additive loci using either Dom or Imp data
were largely overlapping (Fig. 7).
Through simulation, we corroborated that, in gen-

eral, imprinting would not be erroneously claimed if it
does not exist and would not be confounded by dom-
inance in a population under Hardy-Weinberg equilib-
rium. Therefore, it is likely that the higher estimate of

marker-explained variance in the mouse population was
indeed due to imprinting. Hence, the failure of captur-
ing variation attributed to existing imprinting using an
additive model may lead to an underestimate of marked
variance.

Elevated marked variance – just because of more markers?
We found that incorporating genomic imprinting in
GWAS produced a larger estimate of phenotypic variance
accounted for by significant markers. However, when we
estimated the marked variance under imprinting, addi-
tively significant markers were also included. Therefore,
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Fig. 6 Paired scatter plot of estimated dominance and imprinting effects using real mouse data. Dom5R and Dom6R are estimated dominance
effects using Models 5 and 6, respectively; Imp9R and Imp6R are estimated imprinting effects using Models 9 and 6, respectively

one may argue that, by construction, the marked vari-
ance under imprinting would always be larger as long
as markers significant on imprinting are detected (Eq. 7
versus 8). Because an objective was to assess how imprint-
ing affects the estimate of marked variance, the following
evaluation was considered: we took all markers listed in
Table 1, but instead of using a “correct” model, we used
a “wrong” model to re-estimate the variance accounted
for by these markers, i.e., if one marker was detected
as imprinted, we now use an additive model to estimate
the marked variance, and vice versa for the additively

significant markers. The results of this procedure are in
Table 3.
When markers are imprinted, as indicated in Table 1,

“erroneously” using an additive model produced a much
lower estimate of marked variance (decreased by 85%).
This is because the variance of a locus under the imprint-
ing model is 2pq(a + (q − p)d)2 + 2pqi2 (Eq. 2), where
the term 2pqi2 ( �= 0 if imprinting exists) is due to imprint-
ing. If an additive model was used, this term would be
lost, producing a lower estimate of marked variance. If a
marker shows additivity but not imprinting, on the other
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Fig. 7 Venn’s diagram illustrating simulation results. The total number of loci was 500 (E) and 100 had a true effect. 46 loci were detected as additive
(A plus C) using the Dom data, and 41 were found (B plus C) using the Imp data. The same model testing procedure found 38 additive loci in
common (C) using two data sets, indicating that imprinting does not have a big impact on detecting additive loci. One locus was found to be
imprinted (D) using the Imp data and none were detected using the Dom data

hand, it would be expected that i = 0 and hence apply-
ing an imprinting model on an additive marker would not
increase the variance. However, in practice, it is unlikely
that the estimate of i is exactly zero, and hence using a
“wrong” model on an additive maker may give a slightly
higher variance. However, the difference is negligible
(1.218 × 10−4 versus 1.231 × 10−4, Table 3).

Can imprinting explain missing heritability?
As stated before, heritability is an important parameter
in genetic analysis and is usually taken as 2pqα2/σ 2

P at a
single locus. In GWAS, summation of 2pqα2 across all sig-
nificant markers gives the total marked additive genetic
variance under the assumption of linkage equilibrium
between markers. The ratio between this total marked
variance and phenotypic variance σ 2

P is usually referred to
as the “bottom up” heritability in GWAS [50, 51]. How-
ever, marked additive genetic variance differs from addi-
tive genetic variance (e.g., [52, 53]). Therefore, one needs

Table 3 Marked variance when marker effects were estimated
using the correct (italic) and the wrong models

Detected Model used to estimate Marked variance (×10−4)
marker (No.) marker effects

Additive (3)
Additive 1.218

Imprinting 1.231

Imprinted (6)
Additive 0.091

Imprinting 0.624

to be cautious when interpreting this “marked” variance,
and it is often observed in GWAS that heritability esti-
mated using only statistically significant markers is much
lower than pedigree derived heritability, termed as “top-
down” estimate in some literature (e.g., [50]). This issue
is commonly known as the “missing heritability” problem
[54]. For example, human height is a trait with estimates of
heritability from family studies as high as 0.8 [55, 56], but
the variation captured by significant SNP markers from
GWASmay take only a proportion of 5 ∼ 10% of the total
[57–59].
Finding sources of missing heritability has been a topic

of much interest in genetic and epidemiological stud-
ies. The most obvious and likely explanation for this
phenomenon is that most traits are polygenic and that
markers are in incomplete LD with QTLs as illustrated
in [60]: h2M, the proportion of marker-explained variation,
is always smaller than h2, unless the SNP markers can
explain all genetic variation due to perfect LD between
markers and causal loci (or in rare cases where some SNP
markers are the causal loci themselves), in which case
h2M = h2. Unfortunately, this situation is unlikely to be
encountered in practice. Further, if only genome-wide-
significant (GWS) markers are used in genetic analysis,
the variation captured by the significant markers (h2GWS)
would be even smaller, resulting in a large amount of miss-
ing heritability, measured by h2 − h2GWS [50, 60]. There-
fore, a more appropriate approach could be combining
information from both significant markers and pedigree
that reflects a “major gene model” situation commonly
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observed in complex traits analysis, where markers rep-
resent the major gene part and pedigree represents the
infinitesimal part. Further, although much missing her-
itability can be recovered by simultaneously including
all available dense markers in a statistical model [61],
the upper bound of this improvement is h2M, indicating
that the variation hidden by incomplete LD relationships
between markers and QTLs is “still missing” and difficult
to be restored [60]. The covariance between alleles stem-
ming from LD complicates the variance assessment, and
epistatic effects, i.e., interactions between causal loci are
often ignored. These two issues can also lead to dubious
attributions of genetic variation [49, 62].
Epigenetic variation has been suggested as another

potential source of missing heritability (e.g., [63, 64]).
From the imprinting model introduced above, it is
expected that imprinting may have an impact on addi-
tive genetic variance of a single locus, and hence affect
the bottom up estimate of heritability, as evidenced in our
analysis. Combining the bottom-up and top-down genetic
variation may lead to a less clear result since infinitesimal
effects contributed more to the additive genetic variance
than markers, and the estimates of this component were
close to each other when using two approaches (Table 2).
Nevertheless, incorporating imprinting still resulted in a
10% increase on heritability, as the estimates with and
without consideration of imprinting using variance com-
ponents in Table 2 are

ĥ2Imp = 1.842 + 3.816
1.842 + 3.816 + 4.742 + 18.687

= 0.195,

and

ĥ2Men = 1.218 + 3.805
1.218 + 3.805 + 4.747 + 18.694

= 0.176,

respectively. Thus, a higher estimate of additive variability
was found whether the pedigree information was included
or not. This result indicated that the underestimate of
additive variation by erroneously using an additive model
in the case of imprinting could be a potential source of
missing heritability in GWAS, as discussed in [63, 64].

Imprinting effect and parent-of-origin effect
Our results indicated that existing imprinting effects
should not be ignored in genetic analysis. Meanwhile,
it is also important to make a distinction between the
terms “imprinting effect” and “parent-of-origin effect”.
These terms are often used exchangeably in much of the
epigenetic literature. However, a parent-of-origin effect
referring to different genetic contribution of different par-
ents to offspring is a broader concept than an imprinting
effect. Genomic imprinting is the most important source
of parent-of-origin effects, but not the only one. For exam-
ple, maternal effects observed in swine production is a

well known form of parent-of-origin effect that is not
known to involve any epigenetic mechanisms; reciprocal
effects observed in poultry breeding is another type of
parent-of-origin effect. In the imprinting model that was
adopted in our analysis, all inferences were performed at
the DNA level using SNP markers. Hence, not all “puta-
tively” imprinted loci were necessarily caused by imprint-
ing at the epigenetic level. Moreover, other factors can
lead to the detection of spurious imprinting effect that is
actually caused by other types of parent-of-origin effect
(e.g., [65–67]) or even by linkage disequilibrium between
markers [68]. Therefore, results from this study should be
viewed as parent-of-origin effects instead of imprinting.
On the other hand, if the objective of a certain study is to
determine or verify imprinting status, we recommend that
examination of variation must be taken place at the epi-
genetic level using, for instance, differential methylation
analysis. However, this does not contradict the statement
that an underestimate of additive variability would occur
if existing imprinting was ignored.

Conclusion
Wewere inspired by studies that proposed equivalent one-
locus imprinting models for quantitative genetic analysis.
These studies defined paternal and maternal gene sub-
stitution effects. As such, imprinting does contribute to
additive variance and a partition of additive variance
into unimprinted and imprinted components is available.
This variance decomposition hints that heritable genetic
variation induced by epigenetic mechanisms, especially
genomic imprinting, may have a considerable impact
on the underlying genetic architecture of some complex
traits, but it is largely neglected in many studies. Specifi-
cally, narrow sense heritability, especially marked “bottom
up” heritability in GWAS, may be underestimated if one
ignores imprinting when it is present. We tested this using
a genome-wide association study performed on mouse
BMI data. Results indicated that the portion of phenotypic
variation explained by significant SNP markers increased
drastically when imprinting effects were considered.
Moreover, the imprinting regression model used here

detects differences between paternally and maternally
inherited alleles regardless of whether the biological
mechanism is imprinting or not. Hence, this model might
be capturing other (either genetic or epigenetic) mecha-
nisms that produce nonequivalent contributions of pater-
nal and maternal genomes as well. Therefore, it would
be more appropriate to refer to this model as a model
incorporating parent-of-origin effects, and such that, it
can be applied to a number of situations. For example,
in the human genome, more than 50% of the genes have
shown preferential expression of the paternal or mater-
nal allele due to various mechanisms [69], indicating that
our approach may apply to a wide range of complex
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traits, whenever reciprocal heterozygotes generate differ-
ent genotypic values. Since imprinting is only one of such
mechanisms, it is possible that more (epigenetic) sources
of phenotypic variation and of missing heritability may
be uncovered in the future. Nevertheless, imprinting is
widely considered as the most important source of parent-
of-origin effects, so in order to avoid a possibly wrong
inference on genetic architecture of a complex trait of
interest, imprinting should not be neglected if indication
of the presence of imprinting exists.
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