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Abstract

Background: Evidence is accumulating that perturbation of early life microbial colonization of the gut induces
long-lasting adverse health effects in individuals. Understanding the mechanisms behind these effects will facilitate
modulation of intestinal health. The objective of this study was to identify biological processes involved in these
long lasting effects and the (molecular) factors that regulate them. We used an antibiotic and the same antibiotic in
combination with stress on piglets as an early life perturbation. Then we used host gene expression data from the

and the resident microbial species.

expression.

in the gut.

Stress, Pig intestine

gut (jejunum) tissue and community-scale analysis of gut microbiota from the same location of the gut, at three
different time-points to gauge the reaction to the perturbation. We analysed the data by a new combination of
existing tools. First, we analysed the data in two dimensions, treatment and time, with quadratic regression analysis.
Then we applied network-based data integration approaches to find correlations between host gene expression

Results: The use of a new combination of data analysis tools allowed us to identify significant long-lasting
differences in jejunal gene expression patterns resulting from the early life perturbations. In addition, we were able
to identify potential key gene regulators (hubs) for these long-lasting effects. Furthermore, data integration also
showed that there are a handful of bacterial groups that were associated with temporal changes in gene

Conclusion: The applied systems-biology approach allowed us to take the first steps in unravelling biological
processes involved in long lasting effects in the gut due to early life perturbations. The observed data are
consistent with the hypothesis that these long lasting effects are due to differences in the programming of the gut
immune system as induced by the temporary early life changes in the composition and/or diversity of microbiota
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Background

Evidence is accumulating that perturbations of the early
life colonization of the gastro-intestinal (GI) tract by
microbes induce long-lasting health effects in individuals
[1, 2]. Though these effects have been studied and
documented, the system components involved in the
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induction and maintenance of such long-lasting effects
have not yet been studied in detail. This is because the
GI tract itself is a complex and dynamic system with
variable interactions between the host tissue, resident
microbiota and nutritional factors. The host tissue is
comprised of different cells with different functions,
varying from the digestion and uptake of nutrients to
providing resistance towards toxic components in the
diet. The mucosal layer of the GI tract separates the
lumen of the digestive tract from the rest of the body
and contains the largest repertoire of immune cells that
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display a pleiotropy of immune signalling and response
functions. In addition, the mucosal layer also generates
endocrine responses to the lumen of the gut and to the
rest of the body. The lumen of the GI tract harbours a
complex ecosystem of a huge number and a large variety
of micro-organisms, collectively called “microbiota” [3].

Gut microbiota play an important role in modulating
diverse gastrointestinal functions, ranging from enzymatic
digestion to modulation of immune responses [4—10]. In
turn, the host immune system has a regulatory effect on
the composition and diversity of the microbiota [11], by
mechanisms known as immune exclusion [12]. Early life
colonization of the gut with microbiota is an important
driver for the development and ultimate functionality of
the GI tract in mammalians [8, 13, 14]. Long-lasting ef-
fects on the host due to disruption of early life colonisa-
tion of the gut have been demonstrated on the level of
disease susceptibility, immune parameters [15] and the
composition and diversity of microbiota [16]. Early life
environmental factors, such as caesarean delivery [17],
breastfeeding [18—20], exposure to stress [21, 22], and the
use of antibiotics [23, 24] influence the microbial colon-
isation of the gut and affect the development and pro-
gramming of the mucosal and systemic immune system
[16, 25]. Such early life factors may also result in vari-
ation of the abilities of the microbiota to ferment carbo-
hydrates into short-chain fatty acids [26] and/or to
ferment indigestible proteins in later stages of life.

The effect of the use of antibiotics on the physiology of
the host is believed to be due to the primary effect of anti-
biotics on the loss/change in bacterial (sub)-populations,
especially in the GI tract [27]. The spectrum of the anti-
biotic and its mode of action determines the effects it has
on the gut microbial community [27]. Some reports in this
area also suggests that antibiotics have a direct effect on
the immune system of the host [27, 28]. For young piglets
it has recently been demonstrated that an antibiotic
treatment at day 4 after birth causes changes in microbial
populations and in tissue gene expression patterns in the
small intestine [29, 30]. Stress is another factor that can
influence the functionality of the GI tract by a temporary
secretion of hormones. Such short term hormonal
secretions may cause several long lasting effects on the
GI immune system [31-33] and on microbiota com-
position [34]. This has led to studies focusing on the
brain-gut-enteric microbiota axis [35-37]. The effect
of stress on the GI tissue is most obvious in changes of
morphology and functions of the gut [38—40].

The first objective of this study was to develop a work-
flow that can be used to analyse biological data in two
dimensions simultaneously, over time and between treat-
ments. The second objective was to apply this workflow
on two types of gut-related data as measured in an ex-
periment with pigs exposed to an early life perturbation,
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followed by effect measurements at three different time-
points later in life. Using these methods we endeavour
to identify gut system components that contribute to in-
duction and maintenance of long lasting effects of early
life perturbations. We aim to find major host- and
microbe-related components that propagate or regulate
these long term effects. Such components may form po-
tential targets to modulate early life events that affect
later life immunologic performance. We used piglets as
a model and the exposure to an antibiotic and/or stress
on day four after birth as the perturbations. We mea-
sured whole genome gene expression profiles of intes-
tinal tissues and provided community scale data on the
composition and diversity of microbiota on three differ-
ent time-points, taken during different stages of the life-
span of pigs, neonate, adolescent and full grown adult.
In order to take into account the extreme changes in the
physiology and morphology of the animal, we simultan-
eously studied the effect of the treatment and the time.
Once the gene expression and microbiota data were ana-
lysed separately, we integrated both to obtain information
on their possible interactions.

Methods

Experimental design

The animal experiment consisted of one control group
and two treatment groups, each consisting of 48 piglets
derived from 16 different sows (TOPIGS20 (GY x NL)).
Each litter contained 4 piglets of each treatment and
control group. Litter-mates stayed with their sow until
weaning at day 25. After weaning, the same number of
piglets of each treatment and control group were housed
together in pens. All pens were located in the same com-
partment. The first treatment group (Trl) was given a
dose of Tulathromycin (0.1 ml, 2.5 mg/kg body weight)
on the 4™ day after birth and then left undisturbed until
the time of tissue sampling after sacrifice. The same dose
of the antibiotic was given to the second treatment
group (Tr2) on the 4™ day after birth but these piglets
were also subjected to stressful conditions on the same
day. The stress was in the form of handling of the piglets,
which is common practice in intensive pig husbandry sys-
tems (eg, weighing, nail clipping). The control group (Ctrl)
was not disturbed for the entirety of the experiment until
the time of sacrifice for sampling.

Sampling was done on three time-points, day 8 after
they were born, day 55 and day 176. On each of these
days, 16 piglets from each treatment group and derived
from 16 different sows were sacrificed and samples were
collected for microarray and microbiota analysis. Further
details of the experiment have been described elsewhere
[29]. The experiment was approved by the institutional
animal experiment committee “Dier Experimenten Com-
missie (DEC) Lelystad” (2011077.b), in accordance with
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the Dutch regulations on animal experiments. Additional
file 1: Figure S1 gives an overview of the experimental
design.

Sample preparation and data generation

For transcriptome analysis, jejunal tissues scrapings were
taken and RNA was extracted from the samples for
microarray analysis as described in [29]. For microbiota
analysis luminal contents were taken from the same lo-
cation of the jejunum as the tissue scrapings and micro-
bial DNA was extracted. The microbial composition was
detected by the Pig Intestinal Tract Chip (PITChip) [41]
version 2.0. The PITChip is a phylogenetic microarray
with 3299 oligonucleotides based on 16S rRNA gene se-
quences of 781 porcine intestinal microbial phylotypes
[42, 43]. The protocol for hybridization and generation
of data was performed essentially as described before
[29, 44]. More details on sample preparation is given in
previous descriptions of this experiment [29] and the
data is available in GEO [45] with the accession number
GSE53170 [46].

Gene expression analysis

Microarray normalization and quality control

Background correction and quantile normalisation was
performed on the microarray data (GSE53170) using the
R package LIMMA [47] from Bioconductor [48]. After
quality control, six microarray samples were removed
from the original 72 samples and all further analysis
were done on the remaining 66 microarray samples.
Data points below the 5 percentile of intensities were
removed, this resulted in 25,915 genes from 66 micro-
array samples. Details of the applied analysis pipeline are
given in Additional file 2: Figure S2.

Identification of differences in gene expression profiles

To identify genes with significant expression profile dif-
ferences over time between the experimental groups, we
used maSigPro [49] from Bioconductor. The time profile
(expression over the three time-points) from each treat-
ment was compared to that of the control. Quadratic
regression was used to retrieve genes with time profiles
significantly different for the treatments versus the con-
trol group. The calculations were done with the default
settings of the function maSigPro. With three time-
points there are three regression coefficients calculated
for each gene’s expression profile. At least one of these
coefficients has to be significant (with FDR corrected
p-values less than 0.05) for the gene to be included in
the result. The first coefficient (f1) denotes the difference
in the first time point (day 8) between one treatment
group and the control. The second one (2) indicates the
difference in slope between the first two time points. The
third coefficient ($3) shows difference in curvature of the
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expression patterns and can thus capture long term differ-
ences between treatment and control expression patterns
of the same gene. Each treatment is compared against
the control group and this gives two lists, TrlvsCtrl
(Antibiotic vs Control) and Tr2vsCtrl (Antibiotic +
Stress vs Control). For the rest of the analysis three
lists of genes were used; genes unique to TrlvsCtrl
(OnlyTrl); gene unique to Tr2vsCtrl (OnlyTr2) and
the overlapping genes (Tr1&Tr2).

GO (Gene Ontology) enrichment analysis [50], with
focus on the sub-ontology Biological Process, was per-
formed using the R package topGO [51]. The Fisher
test was applied to obtain significantly enriched GO
terms, only the terms with p-values below 0.01 were
included.

Functional interaction networks

Functional interaction networks among groups of genes
selected from the data, were built using the Cytoscape
[52] Reactome FI (Functional Interaction) application
[53-55] and visualised with the organic layout. The
network was built from information in the Reactome FI
database such that nodes are genes and edges are inter-
actions, either known or predicted. Modules in the
networks were identified using community structure de-
tection as described in [56]. Using inbuilt functions in
the Reactome FI app, GO enrichment analysis was per-
formed on each of the identified modules. The final net-
works consisted of modules with more than 5 nodes and
with significantly enriched GO terms. The topological
features of these final networks were determined using
the NetworkAnalyzer [57] tool in Cytoscape. Hubs were
defined to be the nodes in the top 40 % of the degree
distribution, where the degree is the number of connec-
tions of each node. These hubs were analysed using in-
formation from www.genecards.org.

Analysis of microbiota

Microbial populations from the jejunum were analysed
using the PITChip.2 [41], which provides information on
three levels of taxonomic resolution, level 1 is similar to
the phylogenetic family, level 2 corresponds mostly to
the genus level and level 3 is more the species level
Level 2 data provided population percentages for 151
microbial genus groups. Initial exploratory analysis was
done on the microbial data with the R package micro-
biome (http://microbiome.github.io/) and the MySQL
database as described by Rajilic-Stojanovic [44]. Microbial
groups that do not differ between control and treatment
piglets were filtered out with a threshold of 0.01. A two-
way ANOVA analysis of the temporal patterns with the
package maSigPro was used to obtain only the groups that
change with treatment or time, with a statistical signifi-
cance threshold of 0.05.
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Integration of gene expression and microbiota data

The mixOmics R package [58, 59] was used to integrate
gene expression and microbiota abundance data and to
perform regression analysis of these two data types. The
genes used were those selected using the method de-
scribed in section Gene expression analysis, which leads
to the identification of genes whose temporal expression
profiles were significantly different between the control
vs. the treatment group. The bacterial groups used for
integration were also different either across time or be-
tween treatments. We set the microbial information as
the independent variable and the gene expression data
as the dependent variable. Interchanging the two set of
parameters did not affect the results significantly. We
only used the significant genes from the gene expression
analysis as input for the data integration. Subsequently
three networks were built using sparse Partial Least
Squares for each of the gene lists OnlyTrl, OnlyTr2
and Tr1&Tr2. The first two networks were based on six
variables (treatment and control in three time-points)
and the third one on nine variables (two treatments and
the control in three time-points).

The resulting un-directed network connects the mi-
crobial groups and the genes that have absolute correl-
ation values above 0.8. A positive high edge weight hints
to a positive regulatory relationship while a low (nega-
tive) weight indicates a possible repression relationship.
Networks were visualised using Cytoscape 3.1.0. Enrich-
ment analysis was done on the gene neighbours of the
bacterial groups via topGO. Fisher’s test was applied on the
results and only terms with p-values lesser than 0.01 were
further analysed. The functionality of the bacterial groups
was determined with the help of experts in the field.

Results

Genes, gene networks and hubs

For gene expression analysis, the temporal profiles of the
samples from each treatment group were compared with
those of the control group. We used quadratic regres-
sion analysis to obtain two gene lists: one for TrlvsCtrl
(1643 genes) and another one for Tr2vsCtrl (1562
genes). These lists are in Additional file 3. The genes in
these lists show significant differences in their gene ex-
pression profiles over time between the control and
treatment groups. Additional file 4: Figure S4 shows the
temporal expression profiles of some genes, showcasing
different possible behaviours under different conditions.
For example, the expression profiles over time of CHIT1
differs for all three conditions while the profiles of some
other genes, such as GRB2 and MAPK14, show most
difference in only one treatment compared to the Ctrl
In other cases, such as ERBB4, MX2 and RELA, signifi-
cant differences in expression are restricted to a single
time point. Based on the B3 coefficients (explained in
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the Methods section Gene expression analysis), 60 % of
the OnlyTrl and OnlyTr2 gene-lists have genes with
long lasting differences between the treatment and con-
trol. The Tr1&Tr2 list has 91 % of the genes that have
significant long term differences. The three gene lists;
OnlyTrl, Tr1&Tr2 and OnlyTr2 consist of genes that
have gene expression profiles over time that are signifi-
cantly different in the treatment compared to the control
group. These lists are used for the follow-up of the ana-
lyses. On these three lists, functional analysis was done
using GO enrichment analysis for biological processes with
topGO. A summary of the results is presented in Fig. 1.

In order to verify the results of the topGO analysis
and to get insight into networks of genes potentially
involved in the induction and maintenance of the long-
lasting effects, a network based analysis was used. The
Reactome Functional Interaction (FI) database was used
to build three functional interaction networks, one for
each list of genes. In any of the explored gene sets, about
30 % of the genes were represented in the FI networks.
More than 50 % of the nodes had significant long-term
differences from the control, with the Tri&Tr2 FI
network having the biggest fraction (94 %). Within each
of the FI networks, we were able to identify several topo-
logical modules. We identified 9 modules with signifi-
cant biological function in the OnlyTrl network, 10
modules in the Tr1&Tr2 network, and 6 modules in the
OnlyTr2 network. The modules are depicted by differ-
ent colours in Fig. 2. Subsequently GO enrichment ana-
lysis for Biological Processes was performed on the
genes in each of the identified modules. The GO terms

e N

TrlvsCtrl

T cell
activation,
Lipoprotein
assembly,
Epithelial
cell
proliferation

Fig. 1 Summary of GO Enrichment analysis results from topGO.
Biological processes (Gene Ontology terms) are given based on
manual interpretation of the most significantly enriched terms
obtained with topGO. The two circles represent the Tr1vsCtrl and
Tr2vsCtrl comparisons. Numbers denote the number of input genes
in topGO, these genes are have significantly different time profiles in
the treatment vs the control groups. In the yellow, green and purple
fields enriched processes are given for OnlyTr1, Tr1&Tr2, and

OnlyTr2, respectively
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(See figure on previous page.)

Fig. 2 Functional Interaction networks (a, b, ). Genes are represented as nodes in the networks, all these genes have time profiles that are
significantly different in the treatment than in the control. The edges represent interactions between genes as determined by Reactome. Arrows
represent directed interactions, bar-headed arrows indicate inhibition reactions. Dotted lines indicate predicted relationships. Network A was built
from OnlyTr1 genes, network B from the common or overlapping genes (Tr1&Tr2) and network C from OnlyTr2 genes. Colours in the network
represent the network segmentation into modules. The text denotes the GO term that was most enriched for the genes in that module and the
number in brackets denotes the number of genes associated with that particular GO term. Octagonal nodes are related to the GO term at the set
p-value threshold. The nodes with a larger diameter are hubs in the networks. High resolution images of the individual networks are given as
Additional file 5: Figure S5, Additional file 6: Figure S6 and Additional file 7: Figure S7. The nodes of the Tr1&Tr2 network were rearranged for

better visualisation of the modules; the network in the original structure is in Additional file 8: Fig. 4 Additional file 9: Fig. 5

with the highest enrichment score for each module are
shown in Fig. 2. The results of GO enrichment by both
methods for the same gene lists are notably different
especially in the OnlyTr2 list. Information on the vari-
ous topological parameters of the three networks can be
found in the Additional file 10.

The results from topGO show that the OnlyTrl and
Tr1&Tr2 genes are mainly involved in innate and adap-
tive immune processes, whereas the OnlyTr2 list is
dominated by genes involved in developmental pro-
cesses. Compared to the topGO analysis, the enrichment
analysis from Reactome FI provided more detailed func-
tional information. It showed that the genes in all three
lists are involved in immune processes with dominance
of adaptive immune processes in OnlyTrl and innate
immune processes in OnlyTr2. The overlapping gene
list Tr1&Tr2 included immune signalling functions,
interferon and interleukin genes, that are speculated to
contribute to both types of immunity [60—62].

The network analysis provided insight into genes with
potential high level regulatory activity, i.e. genes in the
network with high number of connections/edges. A list
of these potential high level regulators or hubs and a gist
of their known biological functions is given in Table 1.
The temporal expression patterns of three of these 17
genes are shown in Fig. 3 (all 17 of them can be found

in the Additional file 11: Figure S11). Except for the two
hubs of the OnlyTr1 FI network, all the hubs have long
term differences in expression between the treatment
and control based on the B3 regression coefficient. The
hubs in all the three networks can be roughly assigned
to three functional categories: immune, cell cycle or pro-
liferation, and genes involved in ubiquitination. There
are two genes that are not part of these three clusters,
MAPK14 and RPS3, where the latter is an important
component of the ribosome. MAP kinases act as an inte-
gration point for multiple biochemical signals, involved
in a wide variety of cellular processes like proliferation,
differentiation and development. They are activated by
environmental stresses or cytokines.

All the hubs in the OnlyTr1 are either immune or cell
cycle/proliferation related genes. This is reflected in the
positioning of these genes in the network. They are
found in the two modules related to immunity; T-cell
co-stimulation and leukocyte migration (Fig. 2). The
genes in the ubiquitin cluster are from the Tr1&Tr2 and
OnlyTr2 networks; they code for ubiquitin itself
(UBA52) and also for proteins that perform the conjuga-
tion and ligation of ubiquitin to other proteins. These
hubs in the Tr1&Tr2 network are in the module for
protein ubiquitination; this module has the highest num-
ber of hubs. Other hubs in this network are from four
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Fig. 3 Gene expression patterns of important hubs. In Fig. 3 each graph depicts the temporal expression pattern of a single gene. These
temporal changes are shown under three different conditions: Ctrl (red line), Tr1 (green line), and Tr2 (blue line). The x-axis indicates the time in
days. The expression values (y-axis) are scaled such that the average expression of each gene is 0 and the standard deviation is 1
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modules as shown in Fig. 2. In the OnlyTr2 network,
there are two hubs, UBA52 and STAT1.

Microbiota temporal changes

The relative contribution of the microbiota was filtered
as described in Methods and was left with 125 microbial
groups which represent 99 % of the population. The
relative contribution values of these 125 groups were
used in the regression analysis to identify groups that
can be further related to gene expression levels. After a
two-way ANOVA analysis in maSigPro, there were 46
microbial groups that showed significant differences over
time or treatment compared to the control. Some bacter-
ial groups like Brachyspira show different contributions in
different conditions but some groups like Bacillus et rel
show major differences only at one time point and one
treatment. Additional file 12: Figure S12 shows these
temporal changes for all the 46 groups.

Integration of microbiota and gene expression analysis
By performing statistical integration of both the micro-
biota and host gene expression datasets, (mixOmics R
package), we tracked changes in jejunal gene expression
which follow the changes in microbial populations as de-
termined on the same location in the gut. The changes
will reflect the similarity or dissimilarity of a pair of data
points across time. The resulting similarity matrix was
used to connect the microbial groups and the expression
of genes into a network. The first network, OnlyTrl,
was built with 498 genes in 6 conditions (Ctrl, Trl with
3 time-points each) and 46 level2 microbial groups in
the same conditions. The second network (Tr1&Tr2)
was built with 1145 genes and the same 46 microbial
groups, and the conditions were the control and both
Trl and Tr2 at the 3 time-points, this gave rise to 9 con-
ditions. The third one had again 6 conditions (Ctrl and
Tr2 in 3 time-points) with 417 genes and the same 46
bacterial groups. The networks represent the correlation
between the microbiota and the gene expression data
and are shown in Fig. 4.

There are a total of 22 bacterial groups involved in the
three networks, among these, 7 are found in all three
networks (Table 2). Most of these bacterial groups share
the same temporal pattern of relative contribution
(shown in Additional file 13) and are characterized by an
increase in abundance over time. Of the 22 bacterial
groups in the three correlation networks, only six are
known to be possible pathobionts and their abundance,
though increasing with time, remains low at all time-
points and treatments. The other 16 bacterial groups are
known for being beneficial to the intestine by producing
short chain fatty acids or reducing toxic substances
(Table 2). Four of the bacterial groups show a decrease
in abundance, and are found in the OnlyTr2 correlation
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network. Three bacterial groups had consistently large
number of gene neighbours: Eubacterium et rel, Faecali-
bacterium et rel and Ruminococcus bromii. These three
groups also share several gene neighbours in all the three
networks and are quite central in the network as indicated
by network parameters (Additional file 14).

Network topological features also revealed that in all
three networks, 40 to 55 % of the host genes were neigh-
bours of a single bacterial group. The rest of the genes
highly correlate with more than one bacterial group, and
a maximum of 8 bacterial groups. About 60 % of the
genes are shared between at least two bacterial groups.
The maximum radiality (indicative of how connected
the nodes are to all the other nodes, with values ranging
from 0 to 1) was 0.8 to 0.9. This is apparent from the
visualization of the networks in Fig. 4 which shows only
a few nodes in the centre connected to most of the other
nodes. In the three correlation networks, 60—80 % of the
edges have negative correlation values.

The GO terms that appeared enriched in the gene list
of each of the correlation networks are mostly related to
four broad functions, metabolic processes, transport of
substances, translation, and some immune processes
(shown in Additional file 15). Most of these genes are
negatively correlated with the bacterial groups; this indi-
cates general reduction of the expression levels of these
genes across time. But these genes exhibit significant
treatment effects, especially long term effects which are
not reflected in the temporal patterns of the bacterial
groups with which they are highly correlated.

In each correlation network, 20 % of the genes are
found in the FI networks from gene expression data
alone. A separate topGO analysis shows that the genes
in each of the correlation networks are enriched for GO
terms that are related to four broad categories of
biological processes. These categories are, Metabolic
Process, Transport, Translation and Immune Processes.
In the OnlyTrl and Tr1&Tr2 correlation networks, the
genes associated with the most significant GO terms are
mostly (70 and 80 %) negatively correlated with the mi-
crobial groups. But in the OnlyTr2 correlation network,
these genes are mostly (60 %) positively correlated with
the microbial groups. More than 50 % of the genes in
the three networks have significant long term differences
from the control.

Discussion

In this paper we describe a workflow and a set of
methods capable of analyzing and integrating different
types of data in two dimensions, treatment and time.
These methods were then used for the identification of
gut system components that contribute to the induction
and maintenance of long-lasting effects in the GI tract
as induced by perturbations at a young age. To this end
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(See figure on previous page.)

Fig. 4 Correlation networks of changes in gene expression patterns and microbiota composition: Blue nodes represent genes and the pink ones
represent bacterial groups; pink nodes with a cyan boundary are nodes common in the three networks. The edges represent positive (green) and
negative (red) correlation between a gene and a bacterial group. Networks (a), (b) and (c) were built by correlating the gene lists OnlyTr1,
Tr1&Tr2 and OnlyTr2 respectively with the 46 microbial groups resulting from the regression analysis. All the nodes (bacterial groups and genes)
have a significantly different expression profile in time or treatment compared to the control. High resolution images of the individual networks
are given as Additional file 10: Figure S10, Additional file 8: Figure S11 and Additional file 12: Figure S12

we combined multiple, freely available tools and ad-
vanced statistical analytical tools. We used temporal
gene expression patterns, obtained using microarray
technology, to identify genes and biological processes
that are affected over time by the early life perturbation
with antibiotic and/or stress treatments. In addition, we
used community-scale analysis of gut microbiota from
the same location of the gut to identify changes in
microbiota profiles over time due to the perturbations.

With this approach we have taken the first steps in
unravelling the genomic and microbial networks that
contribute to long-lasting responses of early life pertur-
bations in the gut. The results reveal that there are sig-
nificant long-lasting differences in the system of the GI
tract between the different perturbations groups, mainly
at the gene expression level. The data presented are con-
sistent with the hypothesis that observed long lasting
effects on gene expression are most probably due to dif-
ferences in the programming of the gut immune system
as induced by the temporary early life changes in the
composition and/or diversity of microbiota in the gut.
Furthermore, we were able to identify potential key
regulator genes (hubs) for the long-lasting effects and
we have identified microbial groups that are potentially
associated with the observed changes in intestinal gene
expression.

In the following sections of this Discussion we explain
the rationale behind choosing these methods for our
particular biological question. In the sections “Biological
relevance of the hubs”, “Crosstalk between host and
microbe components” and “Understanding the long last-
ing changes in the host” we examine the biological rele-
vance of the results. The other sections mainly deal with
methodology aspects.

Experimental approach

Intestinal gene expression and microbiota profiles were
generated on three different time-points; day 8 (neonatal),
55 (young adult), and 176 (adult). Day 8 was chosen be-
cause it is known that immediately after perturbations, as
used here, changes occur in the pattern of microbial col-
onizing of the gut as well as in the GI tract mucosal
gene expression [27, 28, 34]. The second measurement
at day 55 was chosen because the microbiota would
have stabilised by then after weaning (around day 28).
Weaning is an extremely turbulent process [63—65] that

brings about several temporary changes which are not
the focus of our study. The last measurement was on
day 176 after birth which coincides with the time of
slaughter of these pigs.

Intestinal bacterial composition and gene expression
patterns change over the lifetime of an animal due to
changes in nutritional, environmental and physiological
factors [64, 66, 67]. Obviously, these normal develop-
mental changes could also be detected in this study;
however we were particularly interested in deviations
from the normal developmental patterns due to the early
life perturbations. Previous work on subsets of these
data [29, 30] showed that there are significant differ-
ences between the control and treatment groups at each
time point. In the analysis described here, we incorpo-
rated the information across time and between treat-
ments by the use of a quadratic regression analysis
(maSigPro R package). In addition, we studied the
behaviour of the microbiota over time and looked for
correlations with gene expression patterns using the
mixOmics R package, because it is known that the
microbiota and gut mucosal tissue respond to each other
in various ways [68, 69].

Analysis of treatment effect on temporal gene expression
For analysis of data derived from three time-points and
two treatments, a regression analysis is better suited
than a pairwise comparison with linear models, PCOA
or hierarchical clustering which was done in earlier work
by Schokker et al. [29, 30]. The resulting gene lists from
TrlvsCtrl and Tr2vsCtrl are separated into three lists to
be able to look at the biological processes common to
both the gene lists which is expected to be due to the ef-
fect of the antibiotic. With the resulting three gene lists,
we performed GO enrichment analysis with two differ-
ent methods: topGO and Reactome. An important dif-
ference between the two methods is that Reactome is
manually curated with experimentally verified informa-
tion; whereas topGO only uses gene annotation informa-
tion that is, in many cases, automatically generated
without further manual verification. As expected, the
Reactome analysis resulted in richer information and
encompassed most of the results from the topGO
analysis. The network format of Reactome also allows
for more informative visualization and further analysis
using the topology. For these reasons we decided to
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Table 1 Description of the 17 hubs in the three functional interaction networks

Gene symbol Function Summary
OnlyTr1 hubs GRB2 (17) Important link between growth factor receptors on the Cell cycle/ Proliferation
cell surface and Ras signalling
STAT3 (15) In response to cytokines and growth factors, STAT family Immune
members are phosphorylated and translocate to the
nucleus to function as transcription factors
CDC42 (12) A GTP-ase involved in signalling for several processes, Cell cycle/ Proliferation
cell migration, morphology, endocytosis, cell cycle
progression and cell proliferation
CAV1 (11) Encodes a scaffolding protein that is an essential part of Immune
caveolar membranes
FOS (11) The FOS family encodes for leucine zipper proteins. Cell cycle/ proliferation
Regulates cell proliferation, differentiation,
transformation and apoptotic cell death
Tr1&Tr2 hubs MYC (31) Transcription factor that activates growth related genes Cell cycle/ Proliferation
MAPK14 (24) Important for the cascades of cellular responses evoked
by extracellular stimuli leading to direct activation of
transcription factors
RELA (24) Forms a complex with NFKB transcription factor and Immune

regulates the NFKB pathway

UBE2D2 (24)

Ubiquitin conjugating enzyme that catalyses covalent

Ubiquitination

attachment of activated ubiquitin to other ubiquitin

Ubiquitin-protein ligase which accepts ubiquitin from

Ubiquitination

an ubiquitin-conjugating enzyme and then directly

Regulatory subunit of the IKK core complex which

Immune

phosphorylates inhibitors of NFKB and ultimately the

Transcription factor (activator or repressor) that

Regulates signalling from plasma membrane receptors

Cell cycle/ Proliferation

Cell cycle/ Proliferation

to the assembly of focal adhesions and actin stress fibers

Part of the ubiquitin ligase complex (SCF) which

Component of the 40S ribosomal subunit, where

Ubiquitination

recognizes and binds to phosphorylated targets

One of the four genes that code for ubiquitin, and

Ubiquitination

ligases
ITCH (23)
transfers the ubiquitin to targeted substrates
IKBKG (22)
degradation of the inhibitor
SP1 (22)
regulates many cellular processes
RHOA (20)
RPS3 (20)
translation is initiated
FBXW?7 (19)
OnlyTr2 hubs UBA52 (20)
ribosomal components which are part of the
ribosome 60S subunit
STAT1 (12)

In response to cytokines and growth factors, STAT

Immune

family members are phosphorylated and translocate
to the nucleus to function as transcription factors

The number of connections of each gene in their respective network is given in brackets along with the gene symbol. The information about the genes is
adapted from www.genecards.org. The hubs can be clustered into three broad groups, given in the last column, based on their functions. All these genes have

significantly different time profiles in the treatment compared to the control

concentrate our gene expression analysis on the enrich-
ment results from Reactome where ever possible.

Network analysis

In the FI networks OnlyTrl and OnlyTr2, more than
half of the nodes have a significant long-lasting expres-
sion pattern difference in the treatment versus control.
This is significant for most of the nodes in the Tr1&Tr2
FI network which is representative of the action of anti-
biotic. This reveals that most of the long lasting effects

are due to the antibiotic effect in the treatment. These
genes with long lasting differences are spread over all
the modules which indicates that all the biological pro-
cesses in the network (Fig. 2) are different over time.
Several of these processes are essential cellular processes
and some are immune related. This could lead to situa-
tions that the treated animals respond differently to ex-
ternal stimuli compared to control animals. In order to
look further into these long lasting differences we ana-
lyse the hubs of the network.


http://www.genecards.org
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Table 2 Summary of the three correlation networks with information on bacterial groups

Bacterial groups Number of correlated genes in Information
Only Tr1 Tr1& Tr2 Only Tr2

Eubacterium et rel 14 165 128 Anaerobic, Gram positive, broad range of species

Ruminococcus bromii et rel 39 65 63 Anaerobic, Gram positive, keystone species in the gut,
digestion of resistant starch

Faecalibacterium et rel 35 40 43 Obligate anaerobe, Gram negative, produces butyrate,
has anti-inflammatory properties

Campylobacter 1 35 62 Microaerophilic, Gram negative, known pathogen in
humans

Lawsonia intracellularis et rel 15 22 9 Gram positive, Porcine intracellular enteropathogen

Butyrivibrio crossotus et rel 22 1 2 Anaerobic, Gram positive, butyrate producer

Bacteroides distasonis et rel 5 1 5 Obligate anaerobe, Gram negative, reclassified to
Parabacteroides distasonis, produces acetate and
succinate, possible pathogen

Fusobacterium et rel 1 9 Anaerobic, Gram negative, generally butyrate
producers, possible pathogen, potent
lipopolysaccharide

Eubacterium hallii et rel 3 Anaerobic, uses lactate and produces butyrate

Roseburia intestinalis et rel 1 Anaerobic, Gram positive, butyrate producer

Coprococcus eutactus et rel 16 1 Anaerobic, Gram positive, mostly acetate producer

Brachyspira 43 Anaerobic, Gram negative, some known pathogens

Eubacterium biforme et rel 36 Anaerobic, involved in lipid metabolism

Catenibacterium et rel 32 Obligate anaerobes, Gram positive, digest simple
sugars

Turneriella 18 Obligate anaerobes, Gram negative

Bordetella et rel 15 Obligate anaerobes, Gram negative, known to cause
respiratory diseases

Erysipelothrix 11 Facultative anaerobes, porcine pathogens for skin
diseases

Lactobacillus acidophilus et rel 10 Microaerobic, Gram positive, ferments sugars into
lactic acid, probiotic

Desulfovibrio et rel 8 Aerotolerant, Gram negative, reduce toxic substances
like sulphate

Uncultured Prevotella 4 Gram negative, pathogens in respiratory tract, breaks
down proteins and carbohydrates

Oxalobacter et rel 2 Anaerobic, oxalate reducing

Thiocapsa et rel 2 Mostly anaerobic, oxidise sulphur, photosynthetic

The bacterial groups that are part of the networks are listed along with the number of genes with which they are highly correlated. Several genes are shared
between bacterial groups. Both the genes and the bacterial groups are significantly different either in time or treatment between the control. The first seven
groups are common between the three networks. Some general information on these bacterial groups is also given in the last column

Analysis of hubs

Investigating the hubs of networks gives insight into the
entire network function [70] and the nodes in our net-
works are also found to be important for several bio-
logical functions [70-72] as mentioned in the Results. In
most network analysis the degree itself [73] or the de-
gree distribution is used to choose the most connected
hubs [74]. We chose the top 40 % of the degree distribu-
tion as hubs, which is a more lenient threshold than
usual because of the large differences in degree distribu-
tion within the three networks. Nevertheless, we still
were able to identify multiple hubs per network and

extract biological functions for these hubs (Table 1). Of
the three categories that the functions of the hubs can
be classified into, the cell cycle/proliferation category is
more abundant than the other two.

It is intriguing to note that most of the hubs of the
three networks are known for being high level regulators
for several biological processes, which supports the
relevance of this network analysis. The hubs from the
overlapping network, Tr1&Tr2 are involved in diverse
biological processes and signalling/cascading events. The
expression of all the hubs in the OnlyTrl and the
Trl1&Tr2 networks is significantly different over time in
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comparison with their expression pattern in the control
group. We speculate that the treatments directly or in-
directly affect these hubs which then regulate genes to
bring about the long term effects of the treatments. The
hubs in the OnlyTr2 network conspicuously do not have
significant expression level differences over the time
span of the experiment when compared to the control
group. This suggests that the stress component of the
treatment does not affect the animal in the long term as
much as the antibiotic alone does.

Biological relevance of the hubs

Among the hubs, there are two STAT genes, STAT3 and
STAT1, in the OnlyTrl and OnlyTr2 networks respect-
ively. The STAT family of genes are well studied and
have a role in signalling events but also act as transcrip-
tion factors [75]. The STAT1, STAT2, STAT3, STAT4
genes, found to have significantly different temporal ex-
pression patterns in the treatments versus the control, are
especially related to immune reactions [75-77]. This is in
agreement with the results of our functional analysis of
the networks. STAT3 and STAT1 are known to be up-
regulated in cases of bacterial infection [75, 78-80]. In
addition, expression of STAT1 has been reported to be re-
duced in the presence of antibiotics [76, 78, 80, 81]. The
latter is reflected in our data by the temporal expression
patterns shown in Fig. 3. Though the overall expression
patterns of STAT1 among the three groups are similar,
antibiotic treatment and the concomitant change in mi-
crobial communities, has a clear effect on STAT1 expres-
sion, especially at the first two time-points. Expression of
STAT1 on day 8 in Tr2 is, however, quite high compared
to the Ctrl, this could indicate that the stress applied at day
4 counteracts the effect of the antibiotic. STAT3 is known
to be important for survival of embryos [75, 76, 82], it is
important during the early stages of development but is not
found to be essential in adult tissue [76]. This is reflected in
the observed decreasing expression levels of STAT3 over
the three time-points (Fig. 3). The observed contrasting ex-
pression pattern of the STAT1 and STAT 3 hubs, may be
related to the previous observations that STAT1 and
STATS3 counteract each other [80, 83].

Data integration

With regard to the microbiota composition and diver-
sity, this study revealed a more prominent effect of time
than that of treatment. This is in accordance with previ-
ous observations that indicate that the diversity and
composition of intestinal microbiota change consider-
ably over time [84, 85]. As expected, the treatment ef-
fects are strongest at the first time point, taking into
account the efficacy of the used antibiotic [25, 86]. As
soon as the antibiotic wears off, the microbiota returns
to the “normal” state. This is consistent with known
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literature about the resilience of microbial communities
[87, 88].

Since the gene expression data as well as the micro-
biota data change with treatment and time, this presents
an opportunity to correlate these different types of infor-
mation and look into probable relationships and interac-
tions in the jejunum between microbiota and gene
expression of the cells in the mucosal layer. We assumed
that the OnlyTrl and Tr1&Tr2 networks represent the
effect of the antibiotic on the cross-talk between micro-
biota and mucosal cells. The OnlyTr2 correlation net-
work could be interpreted as a representation of the
cross-talk between the host and microbiota in response
to stress, although we did not look at the effect of phys-
ical stress alone. The bacterial groups with the most
gene connections are common to the three correlation
networks. This indicates that the two treatments do not
have drastic effects on the possible host microbiota in-
teractions. The OnlyTr2 correlation network has more
bacterial groups that correlate with genes which suggests
that the physical stress factor alters the cross-talk more
than the antibiotic alone does. The number of known
pathobionts increases in the latter network which could
be an indication of a tendency towards pathology in
stressful conditions.

Crosstalk between host and microbe components

There are three bacterial groups that correlate with a high
number of genes in all the three networks: Eubacterium,;
Ruminococcus bromii; and Faecalibacterium. Eubacterium
is a genus with very diverse species. Ruminococcus bromii
is a species that has been extensively studied for its
ability to breakdown resistant starch [89] to produce
acetate on which other bacterial groups can survive.
Another beneficial bacterial group is Faecalibacterium
which is a relatively new genus with only one species
documented so far, F. parusnitzii and it has been re-
ported to be extremely beneficial to the host. Rumino-
coccus bromii; and Faecalibacterium are reported to
be most abundant in the anaerobic environment of the
colon [90, 91]. Nevertheless, there is evidence that the
small intestine is populated with quite a few of such
fermenters [92]. In our analysis the abundance of
these bacterial groups in the jejunum correlates to the
expression level of a considerable number of genes.
This suggests that they are major players in the cross-
talk in the jejunum. Lawsonia intracellularis and spe-
cies of Campylobacter are found to be correlated with
several genes. These groups are known mammalian
pathogens of the small intestine. It could be specu-
lated that, in these healthy animals, they are involved
in balancing between immune tolerance and immune
responses.
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Understanding the long lasting changes in the host

The results of the regression analysis on gene expression
alone show that there are differences between the three
treatment groups for a long time after the perturbation.
These differences are reflected in immune functions and
cell proliferation related functions. It has been suggested
that stress and antibiotics compromise the immune
system, but in different ways [27, 35, 38]. The action of
antibiotics could change the delicately balanced signal-
ling between microbiota and the intestinal cells. This
change during early stages of development is expected
to influence the development and programming of the
immune system with consequences for the later life
functioning of the immune system. It has been proposed
that macrolides (the type of antibiotic given in this
experiment) work by recruiting immune cells to carry
the antibiotic to the afflicted tissue [93, 94]. This mode
of action will bring about temporary changes in the im-
mune system but cannot explain the observation as de-
scribed here. Stress is known to cause structural changes
in the intestinal tissue [38—40] and may affect the micro-
bial populations [34].

The above described changes are not expected to last
over a long period of time; intestinal cells have a large
turnover [95, 96] almost every 4 to 5 days. Yet we find
changes that persist for 51 and even 172 days after the
perturbation of the gut system. This suggests that the
programming and development of the immune system
occurred differently between the different treatment
groups. Since the microbial composition at day 8 signifi-
cantly differed between the treatments groups we believe
that the difference in immune programming and devel-
opment is due to differences in the early life crosstalk in
the gut between microbes and host. This line of thinking
is agreement with the conclusions in several other recent
studies in this area [2, 97]. It is also in line with our own
observation that the microbiota composition returns to
the normal state briefly after the perturbation. Memory
cells of the mucosal immune system could play an im-
portant role in the programming of the mucosal im-
mune system [30, 67, 98]. Furthermore even though
stress was not expected to play a very prominent role in
changing the system in the long term, we see that in
some instances, it counteracts the effects of the anti-
biotic. The mechanism behind this is yet to be fully
understood.

Pigs are regarded as a useful model for research into
modulation of the human gut, especially with regard to
microbiota-host immune interactions [99]. This ex-
periment was designed to disturb the pattern of early
colonization of the gut by microbiota with known ef-
fects later in life [25]. The factors used for perturbation
were, treatment with an antibiotic or an antibiotic with
stress at day 4 after birth. Both human neonates as well
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as piglets in intensive husbandry systems may be ex-
posed to such factors. Therefore our results may be
relevant for both humans and piglets.

Conclusions

We used an early life intestinal perturbation in piglets
and demonstrate long lasting effects, as measured on the
intestinal gene expression level. We provide substantial
evidence that several biological processes of the gut
mucosal tissue are in a different state between the ex-
perimental groups over a long period of time. However,
the regression analysis did not identify significant differ-
ences among the temporal patterns of the bacterial
species, and the treatments do not seem to affect long
term changes in the microbiota. We conclude that the
difference in immune programming and development
is due to differences in the early life crosstalk in the
gut between microbes and host, resulting from the per-
turbations. Since we identified potential high-level reg-
ulators of long term changes in the gut, we are one
step closer to identifying the underlying mechanisms.
Although the treatments did not lead to phenotypical
manifestations, like weight differences between the an-
imals, the exposure of pigs to stressors like pathogen
challenges could bring out immune variations between
the groups. Studying these subtle differences may help
to develop strategies to modulate the process of
immune development and programming. The results
of this paper are supportive for the recent notion that
antibiotics should be used more carefully in neonatal
humans and animals.
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Additional file 1: Figure S1. Experimental Design. The figure shows
the timeline of the experiment, and each line shows a different group of
animals. The red line represents the control group, the blue line the
Antibiotics alone (Tr1) and the green line the group given Antibiotics and
Stress (Tr2). The pink block represents the intervention of the groups and
the light blue boxes represent times of sampling. The boxes at the
bottom represent the distribution of the groups among the sows, the
pigs were housed in the same manner after weaning.
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Additional file 2: Figure S2. Microarray Analysis. Workflow of the
microarray analysis with the specific details.

Additional file 3: Figure S3. Types of Differences in Time Profiles. Each
graph depicts the temporal expression pattern of a single gene. These
temporal changes are shown under three different conditions: Ctrl (red
line), Tr1 (green line), and Tr2 (blue line). The x-axis indicates the time in
days, the y-axis has expression values scaled such that the average
expression of each gene is 0 and the standard deviation is 1.

Additional file 4: Figure S4. Expression of FI network hubs. Expression
profiles of 17 hubs of the three FI networks. Each graph depicts the
temporal expression pattern of a single gene. These temporal changes
are shown under three different conditions: Ctrl (red line), Tr1 (green
line), and Tr2 (blue line). The x-axis indicates the time in days, the y-axis
has expression values scaled such that the average expression of each
gene is 0 and the standard deviation is 1.

Additional file 5: Figure S5. Original Tr1&Tr2 FI network. Network
formed with genes that have significantly different time profiles between
both treatments vs the control group.

Additional file 6: Figure S6. Temporal changes in composition of
bacterial groups used in the correlation networks. Each graph represents the
compositional changes of selected bacterial groups over time. The bacterial
groups were chosen based on an ANOVA analysis. The time in days is on the
x-axis, the log values of the contribution of the bacterial groups is on the
y-axis. Each of the 46 graphs have a different scale on the y-axis due to the
extreme differences between contributions of each of the bacterial groups.

Additional file 7: Figure S7. OnlyTr1 Reactome Fl network.
Additional file 8: Figure S8. Tr1&Tr2 Reactome Fl network.
Additional file 9: Figure S9. OnlyTr2 Reactome Fl network.
Additional file 10: Figure S10. OnlyTr1 correlation network.
Additional file 11: Figure S11. Tr1&Tr2 correlation network.
Additional file 12: Figure S12. OnlyTr2 correlation network.
Additional file 13: List of significant genes in different conditions.
Additional file 14: Information on the Reactome FI networks.
Additional file 15: Information on the correlation networks.
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