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Abstract

Background: Next-Generation Sequencing (NGS) technologies have rapidly advanced our understanding of human
variation in cancer. To accurately translate the raw sequencing data into practical knowledge, annotation tools,
algorithms and pipelines must be developed that keep pace with the rapidly evolving technology. Currently, a
challenge exists in accurately annotating multi-nucleotide variants (MNVs). These tandem substitutions, when
affecting multiple nucleotides within a single protein codon of a gene, result in a translated amino acid involving
all nucleotides in that codon. Most existing variant callers report a MNV as individual single-nucleotide variants
(SNVs), often resulting in multiple triplet codon sequences and incorrect amino acid predictions. To correct
potentially misannotated MNVs among reported SNVs, a primary challenge resides in haplotype phasing which is to
determine whether the neighboring SNVs are co-located on the same chromosome.

Results: Here we describe MAC (Multi-Nucleotide Variant Annotation Corrector), an integrative pipeline developed
to correct potentially mis-annotated MNVs. MAC was designed as an application that only requires a SNV file and
the matching BAM file as data inputs. Using an example data set containing 3024 SNVs and the corresponding
whole-genome sequencing BAM files, we show that MAC identified eight potentially mis-annotated SNVs, and
accurately updated the amino acid predictions for seven of the variant calls.

Conclusions: MAC can identify and correct amino acid predictions that result from MNVs affecting multiple
nucleotides within a single protein codon, which cannot be handled by most existing SNV-based variant pipelines.
The MAC software is freely available and represents a useful tool for the accurate translation of genomic sequence
to protein function.
Background
As the use of Next-Generation Sequencing (NGS) tech-
nologies for studying human disease continues to grow,
defects in the cancer genome and their association with
disease progression and treatment options are being re-
ported at an astonishing rate. Single nucleotide variants
(SNVs), one of the most prevalent mutation types, often
occur in cancer related genes and can result in amino
acid changes and nonfunctional proteins. Accurate pre-
diction of any possible downstream consequences to the
amino acid residue is one critical analytical requirement
for any robust NGS pipeline. Without accurate variant
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annotation, further exploitation of the NGS data in both
research and clinical contexts can be compromised [1].
It has been observed that certain cancers present a sig-

nature pattern of MNVs where substitution mutations
occur at consecutive bases [2]. This phenomenon may
reflect pathological history such as tobacco usage or
ultraviolet light exposure [3–6]. Although MNVs can be
identified by common variant callers, development of
corresponding annotation tools has been lagging behind.
Most existing variant callers report a MNV as individual
SNVs [7, 8]. As a result, the predicted amino acid change
is likely incorrect when a MNV occurs at multiple bases
within the same protein codon (Fig. 1 A1-3). Existing
annotators can predict the amino acid change for MNVs,
but must rely on user-provided, mostly manually cu-
rated, MNV data sources. For mutations automatically
called by SNV-based pipelines, there is a pressing need
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A1. example of two SNVs on the same reads (TP53 codon 285)

A2. aa change based on SNVs (incorrect) A3. aa change based on MNV (correct)

B1. example of two SNVs on separate reads (OR6Y1 codon 252)

B2. aa change based on SNVs (correct)

mutation amino acid change

chr17.7577084 T>A E285V

chr17.7577085 C>G E285Q

mutation amino acid change

chr1.158517140 G>A V252V

chr1.158517142 C>T V252I

mutation amino acid change

chr17.7577084 TC>AG E285L

Fig. 1 Amino acid predictions for two neighboring SNVs scenarios. (A1) Two consecutive SNVs in gene TP53 codon 285. The fact the two SNVs
are present on the same read suggests they are originated from the same chromosome. (A2) Incorrect annotation based on prediction of
individual SNVs. The first and second SNVs were predicted to introduce E285V and E285Q, respectively. (A3) The correct amino acid change based
on MNV is E285L. (B1) Two SNVs are located in gene OR6Y1 codon 252 but on different reads, suggesting they originated from separate
chromosomes. (B2) The two SNVs in B1 were correctly predicted to introduce V252V and V252I based on individual SNVs. The sequencing reads
are displayed in IGV viewer [14]
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for automated tools to identify and fix any incorrectly
annotated MNVs.
The challenge in distinguishing a MNV from neighbor-

ing SNVs from separate chromosomes resides in haplotype
phasing and the ability to determine the combination of
alleles found on the same chromosome (Fig. 1, A1 vs B1).
Retrieving haplotype information from NGS reads is not
entirely new, but most published methods specialize in
germline polymorphisms and typically rely on population
genetics information [9]. To date there has been no pub-
lished program to identify MNVs from existing SNV calls
and to restore incorrectly predicted amino acids.
Here we present MAC, a software designed to auto-

matically correct MNV annotation generated from any
existing SNV-based variant pipeline. By processing a list
of previously detected SNVs and the corresponding raw
data in Sequence Alignment/Map (SAM/BAM) format
[8], MAC builds a multigraph containing SNVs with
haplotype phase and codon information to identify
connected components defined as a Block of Mutation
within Codon (BMC), a structural unit containing a
potentially mis-annotated amino acid. For every BMC,
MAC further extracts every existing haplotype and
annotates it using a user-specified variant annotator.
For convenience, we have precompiled MAC to work
with three popular annotators: ANNOVAR, SnpEff
and VEP [10–12]. To be flexible with other annotators,
MAC also provides a ‘no-annotation’ mode. Under this
mode, MAC will output raw haplotype phase information
which can be used as the input for any user preferred
annotation tool. The accessibility of this tool, together with
its flexibility and robustness, should facilitate accurate
annotation of these infrequently occurring but potentially
significant variant subtypes.

Implementation
MAC is implemented in Perl and can be run on any
Linux/Unix-like environment with installation of Perl
and Bio-SamTools package. An overview of the MAC
pipeline is provided below.
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Input
MAC requires (i) a list of previously called SNVs and (ii)
the corresponding BAM file. To be flexible with all exist-
ing pipelines, the SNV list can be generated from any
caller and only basic information is required: mutan/mu-
tant alleles.

Selection of the annotator by the user
The overall process of correcting MNV annotations oc-
curs as two steps: 1) haplotype phasing, and 2) deter-
mining the protein codon (Fig. 2). MAC can be run with
either ‘no-annotation’ mode or one of three pre-
compiled genetic variant annotating tools (ANNOVAR,
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approach is to provide explicit haplotype phasing infor-
mation so that the users have more flexibility in annota-
tor selection.

Output
The report of MAC is based on the identified BMCs.
Each BMC may contain multiple haplotypes and each
row corresponds to one haplotype in a certain BMC.
The following columns are included: 1) BMC ID consist-
ing of all SNVs in the BMC; 2) an index number of the
haplotype in current BMC; 3) the status of each SNV in
the current haplotype: mutant, non-mutant, or un-
known; 4) the number of unique NGS reads supporting
current haplotype; 5) corrected annotation including
gene, mRNA transcript and amino acid change for any
haplotype containing at least one SNVs.

Results
To evaluate the MAC software, a test data set containing
3024 somatic SNVs detected by whole genome sequencing
in breast cancer specimens (Wei et al., in preparation) was
used (Fig. 2). After initial sequencing read extraction and
grouping, 56 Block of Mutations (BMs) were identified
containing 129 total SNVs. The sizes of the 56 BMs, in
terms of the numbers of SNVs, range from 2 SNVs (44), 3
SNVs (9), 4 SNVs (2) to 6 SNVs (1). Upon manual review,
the BM with 6 SNVs is located near a structural variation
and appears to fit the previously described phenomenon
of “Kataegis” [13], a pattern of confined hypermutation
co-localized with structural variations in cancer (data not
shown). A total of 4 BMCs were identified after selecting
for SNVs with overlapping codons. All 4 BMCs are di-
nucleotide variations, and a mini BAM file containing all
these 4 BMCs is available in the MAC package. A detailed
comparison for the 4 identified dinucleotide variations
shows that the MNV-based amino acid change prediction
is different from the amino acid change predicted in the
SNV-based set (Table 1). Specifically, 7 of the 8 SNVs were
predicted to cause different amino acid change after re-
annotation. In one particular case of ZNF407, a missense
Table 1 Results of SNV- and MNV- based amino acid predictions in

Mutation SNV annotationa

1 chr6.12121325.C > G P433A (missense)

2 chr6.12121326.C > G P433R (missense)

3 chr17.7577084.T > A E285V (missense)

4 chr17.7577085.C > G E285Q (missense)

5 chr6.44376224.C > G A316G (missense)

6 chr6.44376225.G > C A316A (silent)

7 chr18.72775594.T > A L1973I (missense)

8 chr18.72775595.T > A L1973a (nonsense)
aThe underscores indicate difference between SNV- and MNV- annotations
MNV was annotated as nonsense in the previous SNV-
based annotation.
One of these 4 identified MNVs resides in the tumor

suppressor gene TP53. The two SNVs occur at consecu-
tive base pairs (chr17.7577084 and chr17.7577085), both
in codon 285 glutamic acid (E) in TP53 (NM_000546)
(Fig. 1, A1). The first SNV (chr17.7577084) was predicted
to replace glutamic acid (E) by valine (V), while the sec-
ond SNV (chr17.7577085) was predicted as a change to
glutamine (Q) (Fig. 1, A2). However, neither of these two
predictions was correct because these two mutations are
co-located on the same chromosome. The actual amino
acid product, after translating the two SNVs simultaneously,
is leucine (L) (Fig. 1, A3). Therefore, to accurately assess
the functional change of this TP53 mutation and
others, it is important to determine the exact haplotype
prior to annotating the amino acid change.

Conclusions
We developed MAC, a program to support users of
SNV-based callers to restore potentially incorrect amino
acid change predictions by MNVs. The current approach
employed by most NGS variant pipelines, i.e. treating a
MNV as unrelated SNVs and annotating each variant
separately, often leads to inaccurate results. Despite the
overall low prevalence in most cancers, MNVs can
happen at much higher frequency in certain cancer
types. Accurate MNV annotation is especially important
for correctly understanding the tumorigenic mechanisms
in such cancers. Correcting these annotation errors re-
quires haplotype phase information, which is not retained
by most variant callers. Our program MAC solves the
problem by retrieving the haplotype phase information
from the BAM file, identifying and fixing any potentially
mis-annotated protein codons. As the amount of sequen-
cing data grows rapidly, this automated pipeline provides
a convenient solution to bridge the gap between the
commonly used SNV-based variant callers and the need
for correct MNV annotation. Although the development
of MAC was motivated by more frequently observed
test MAC run

MNV annotation Gene (mRNA)

P433G (missense) HIVEP1 (NM_002114)

E285L (missense) TP53 (NM_000546)

A316G (missense) CDC5L (NM_001253)

L1973K (missense) ZNF407 (NM_017757)
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dinucleotide substitutions, MAC can also provide annota-
tion correction for trinucleotide or other complex substitu-
tion mutations.
We foresee a variety of extensions to the applications

of MAC. In addition to known cancer types with a high
frequency of MNVs, MAC can provide accurate annota-
tion for any genomic locations involving multiple haplo-
types such as mutation hot spots. When running under
the ‘no-annotation’ mode, MAC can also provide haplo-
type phase information for neighboring SNVs. This func-
tion can be useful in determining biallelic mutant status
or characterizing tumor heterogeneity.

Methods
The study was approved by Institutional Research Board
(IRB) of the Roswell Park Cancer Institute (RPCI).

Extracting reads from the BAM file for all SNVs to identify
Block of Mutations (BM)
Starting with a list of SNVs previously identified by any
variant caller, all SNVs are screened for the existence of
MNVs and reclassified as such. The fact that two SNVs
occur in the same protein codon does not imply that the
mutant alleles fall on the same chromosome. Without
knowing the haplotype phase information, MNVs
(Fig. 1, A1) can be easily confused with neighboring
SNVs from separate chromosomes (Fig. 1, B1). In order
to correctly predict amino acid change, it is critical to
distinguish the actual relationship by interrogating the
raw NGS reads spanning neighbouring SNVs. NGS as-
says typically generate millions to billions of reads per
sample, where each pair of reads (if paired-end sequen-
cing) originates from the same DNA fragment. There-
fore, the fact that two SNVs are consistently present on
the same read or read pair implies that these two SNVs
are on the same chromosome, and vice versa. In normal
diploid genomes, there usually exists no more than two
haplotypes, while more patterns can be observed in tumor
samples due to tumor heterogeneity and chromosomal
aneuploidy. Due to the short length of NGS reads, the re-
lationship between any two random SNVs around the
genome is usually difficult to determine. However, when
the two SNVs occur close enough that the distance is less
than the library insert size, haplotypes can be inferred by
using the reads or read pairs spanning multiple SNVs
(Fig. 1, A1 and B1).
To identify and utilize reads spanning multiple SNVs,

we first treat every SNV as a vertex (Fig. 2, A1), then ex-
tract reads at every SNV’s site from the BAM file, and
classify each read’s mutation status regarding the specific
SNV into one of three groups: mutant, non-mutant
(wild-type or a different allele), or unknown (ie. no
coverage). Additionally, reads with a base quality lower
than a specifiable quality threshold at a SNV position
are classified as ‘unknown’ for the corresponding SNV.
To maximize the chance of determining the relationship
between multiple SNVs, we combined the mutation sta-
tuses of every pair of reads, which expands the length of
each measurement from one read (usually 100 bp) to the
size of the DNA fragment (named as insert, usually
spans several hundred bps). To avoid potential sequen-
cing errors, any read pair containing a controversial mu-
tation status regarding one SNV (i.e. one read suggests
mutant while its read pair suggests a non-mutant) will
be excluded. For a simple description, the term “read” is
used in this paper although we used read pair in the
program.
A depth-first search strategy was implemented to

screen through all the SNVs and their associated reads
to find Block of Mutations (BM), defined as a group of
mutations where every mutation contains at least one
read or read pair (either mutant or non-mutant) that is
shared with at least one other mutation in that group
(Fig. 2, A2).

Find Block of Mutations within Codon (BMC) and predict
amino acid change by using a user-specified annotation
tool
In certain circumstances, especially samples with high
mutation burdens, one BM may contain many SNVs
spanning several codons. This leads to a complex output
as a significant number of different haplotypes can hypo-
thetically result from the numerous combinations of
multiple SNV mutations. Since our primary goal is to re-
solve the incorrect amino acid prediction of MNVs, we
simplified the annotation process by limiting our focus
to individual codons, thus annotating only one codon at
one time.
To incorporate codon information, each BM was

treated as a subgraph, and a second layer of edges (red
in Fig. 2, A3) was added to any SNV with an overlapping
codon. We defined any connected component by the
second layer of edges (overlapping codon) in each sub-
graph as Blocks of Mutations within Codon (BMC).
Those SNVs are processed together in the next annota-
tion step. In situations when a block substitution spans
across an intron/exon boarder, the non-coding part is
excluded from subsequent functional prediction.
All existing haplotypes within each BMC were summa-

rized with quantitative information. The sequencing
reads are grouped by the combined mutation status of
all SNVs. Specifically, within every haplotype, 1, 0, and
dash (-) are used to represent the three possible mutation
statues (mutant, non-mutant, and unknown, respectively)
for each SNV. For example, a typical dinucleotide mutation
on a single chromosome will be reported as 11, while two
consecutive SNVs occurring separately on each chromo-
some pair will be reported as “10” or “01”. The numbers of



Table 2 Performance evaluation of MAC on 10 TCGA tumor samples (LUSC)

Sample barcode Num. of
input SNVs

Num. of
BMs

Size of the
largest BM

No Annotation Annovar VEP Snpeff

Memory (Kb) Run time
(min:sec)

Num. of
BMCs

Memory
(Kb)

Run time
(min:sec)

Num. of
BMCs

Memory
(Kb)

Run time
(min:sec)

Num. of
BMCs

Memory
(Kb)

Run time
(min:sec)

TCGA-18-3409-01A-01D-0983-08 3910 303 4 1123088 02:18.1 108 5185632 01:47.5 108 6701680 10:08.5 112 13766144 05:00.4

TCGA-22-5473-01A-01D-1632-08 944 21 3 652336 01:05.9 6 5180416 01:10.1 6 5017200 02:35.5 6 13654800 04:10.1

TCGA-33-4566-01A-01D-1441-08 1451 41 3 844304 01:23.5 18 5180864 01:29.0 20 5020896 03:20.2 19 13706992 04:27.2

TCGA-34-5231-01A-21D-1817-08 743 15 4 459488 00:53.8 7 5180416 00:58.6 7 5015952 02:12.6 7 13635536 03:55.1

TCGA-37-5819-01A-01D-1632-08 839 31 2 380144 00:41.0 10 5184032 00:44.1 11 5013136 02:29.6 12 13725376 03:55.3

TCGA-39-5031-01A-01D-1441-08 754 22 3 549296 00:52.5 1 5180384 00:59.2 1 5018256 02:21.9 1 13644784 03:58.5

TCGA-46-3769-01A-01D-0983-08 1037 29 3 446448 00:41.8 13 5184032 01:04.3 13 5025968 02:26.0 13 13639456 03:49.8

TCGA-60-2698-01A-01D-1522-08 1396 34 5 1198992 02:07.6 4 5180400 02:07.2 4 5021424 03:33.8 4 13715488 04:54.1

TCGA-66-2785-01A-01D-1522-08 1338 44 3 1101216 01:56.5 4 5180848 01:54.0 4 5025424 03:33.9 4 13731600 04:53.6

TCGA-85-6561-01A-11D-1817-08 984 14 2 602112 00:44.0 3 5180400 01:31.6 3 5016176 02:26.3 3 13637520 04:09.9

Num. of input SNVs: the number of somatic SNVs from TCGA data matrix
Num. of BMs: the number of identified Blocks of Mutations
Size of the largest BM: the maximu number of SNVs in a Block of Mutations
Num. of BMCs: the number of BMCs (Block of Mutations wtihin Codon)
Memory: the peak memory used during the run
Run time: the eclipsed wall time for the run
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reads with every haplotype are reported to provide relative
abundance information.
In each haplotype, the existing variants were reformat-

ted into one single block substitution and annotated
with the selected annotation tool. In the final output, the
predicted amino acid change for every existing haplotype
is reported. Any haplotype containing an unknown
SNV status will bypass the annotation process and
not be reported, but MAC has the option to include
these in the output without annotation, only reporting
the corresponding read counts.

Performance evaluation
To evaluate the performance of MAC, 10 lung squa-
mous cell carcinomas (LUSC) samples with the highest
level of somatic mutations as determined by whole
exome sequencing, were selected from 178 TCGA
(The Cancer Genome Atlas) LUSC tumor samples
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).
The number of somatic mutations ranged from 743 to
3910. The corresponding TCGA bam files (GRCh37/HG19
assembly) were downloaded from Cancer Genomics Hub
at https://browser.cghub.ucsc.edu. MAC was performed on
each sample with the following annotation options:
no-annotation, annotation-by-Annovar, annotation-by-VEP,
and annotation-by-Snpeff (Table 2). The run times for all
jobs were under 11 min. The peak memory usage when
using the ‘no-annotation’ mode ranged from 380 MB to
1.2 GB, with a moderate positive correlation with the
numbers of input SNVs (r = 0.6339). When running MAC
with any pre-compiled annotator, most jobs had approxi-
mately the same peak memory usage across samples
(Annovar: ~ 5 GB, VEP: 5-7 GB, Snpeff: ~ 13 GB). All jobs
were performed on cluster nodes containing 16 cores with
CPU of 2.60GHz (Model: Intel(R) Xeon(R) CPU E5-2670)
and memory size of 64 GB. The operating system was
CentOS release 5.7 (Final).

Availability and requirements
Project name: MNV Annotation Corrector
Project home page: http://sourceforge.net/projects/
mnvannotationcorrector/or https://github.com/hubentu/
MAC
Operating system (s): Unix-like (Linux, Mac OSX)
Programming language: Perl
Any restrictions to use by non-academics: None
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