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Abstract

Background: African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric
signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ
(EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey
localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have
promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the
physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function
and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in
terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus
Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within
the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii.

Results: Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M
quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico
cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C.
compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps,
and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ
transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome.

Conclusions: The data obtained indicate that: i) the loss of contractile activity and the decoupling of the
excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric
organ’s transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over
of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv)
several myogenic factors might be down-regulated by transcription repressors in the EO.

Background
Bioelectrogenesis (i.e., the ability to produce strong or
weak electric signals by specialized organs) has evolved
several times independently in aquatic vertebrates [1]. In
fact, it can be observed in the marine electric rays
(Torpediniformes) and skates (Rajiformes), in the African
freshwater Mormyridae and Gymnarchidae (Osteoglossi-
formes; Mormyroidea), in the South American knifefishes

(Gymnotiformes), in several catfish species (Siluriformes),
and in few marine stargazers (Perciformes; Uranoscopi-
dae). In all the above-mentioned groups, electric organs
originate from myogenic tissue; the only exception are
members of the family Apteronotidae (Gymnotiformes),
where the electric organs are formed by modified spinal
motor neurons [2]. The amount of excitable cells within
each electric organ determines the electric potential of an
EOD, which can range from few millivolts to several
hundreds of volts (e.g., in the electric eel Electrophorus
electricus) [3].
African weakly-electric fishes of the family Mormyridae

constitute a group of teleost fishes, formed by approximately

* Correspondence: tiedeman@uni-potsdam.de
1Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry
and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam,
Germany
Full list of author information is available at the end of the article

© 2015 Lamanna et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lamanna et al. BMC Genomics  (2015) 16:668 
DOI 10.1186/s12864-015-1858-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1858-9&domain=pdf
mailto:tiedeman@uni-potsdam.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


200 species [4], all endemic to African riverine and, partially,
lacustrine systems. As their name suggests, they are able to
produce only weak electric fields, in the order of millivolts
to few volts, which are not used for predation or defence.
The cells forming their electric organ are compressed disk-
like cells commonly called electrocytes. In many species they
are longitudinally stacked behind each other in order to
form columns of cells embedded within tubes of isolating
connective tissue. The synchronous activity of each elec-
trocyte defines the output of the electric organ, known as
Electric Organ Discharge (EOD) [5]. Such weak pulses are
mainly employed for the localization and discrimination
of objects in water (active electrolocation) [6], for the re-
cognition of conspecific individuals [7, 8], and in social
and reproductive behaviour [9, 10].
Besides these functional roles, the EODs of Mormyrids

display remarkable levels of differentiation in terms of
shape and length across different species [11]. Such dif-
ferences, which can be dramatic even among closely re-
lated species, are considered to have acted as effective
prezygotic isolation mechanisms, promoting thus the
adaptive radiation observed in this family, facilitated by
either ecological speciation [12–14] or speciation driven
by sexual selection [15].
In all mormyrids, the adult electric organ is located in

the caudal peduncle and is formed by four columns of
electrocytes, two dorsal and two ventral ones. Each elec-
trocyte is innervated by electromotoneurons originating
in the spinal cord [3]. Electric organs arise in juvenile
fishes from several myomeres of the deep lateral muscle;
their myogenic origin is confirmed by the presence of
disorganized myofibrils within the electrocytes [16, 17].
During the last decade, several studies have investi-

gated the genetic basis of EOD function and evolution
[18–22]. Some of them have stressed the importance of
duplication in a class of sodium channel genes for the
origin of EOD production and diversification in weakly-
electric fishes, by revealing the presence of important
functional substitutions across paralogs and by discover-
ing their differential patterns of expression between elec-
tric organ (EO) and skeletal muscle (SM) [18, 19, 22].

More recent studies however [20, 21], based on high
throughput genomic technologies (e.g., SSH; RNA-Seq)
have identified many differentially expressed genes, be-
longing to multiple functional classes (e.g., transcription
factors; ion channels; sarcomeric proteins), between ske-
letal muscle and electric organ in several weakly-electric
species (including representatives of Mormyridae). All
studies conducted so far have been focusing on gene ex-
pression differences between two tissues –i.e., skeletal
muscle and electric organ- within a species (cross-tissue
approach), overlooking possible differences in the same
tissue across different species (cross-species approach).
However, tissue-specific gene expression differences across
several species might underlie important phenotypic dif-
ferences [23] which, in the case of the electric organ of
mormyrid fishes, could explain the species-specific vari-
ability of EODs.
The aim of the present work is twofold; first we aim at

exploring the differential patterns of gene expression be-
tween skeletal muscle and electric organ (cross-tissue
comparison) in adult specimens belonging to the mor-
myrid genus Campylomormyrus (C. compressirostris and
C. tshokwe). We focus then, on the identification of the
differentially expressed genes, that are in common be-
tween the two species, and that might be responsible for
the functional differences between the two tissues, and
compare them to the results obtained by previous stud-
ies. The second task is to find differences in gene expres-
sion among three mormyrid species (C.compressirostris,
C.tshokwe, and the outgroup species Gnathonemus
petersii; Fig. 1) for the skeletal muscle and electric organ
separately (cross-species comparison), and identify genes
potentially related to phenotypic differences in EOD shape
and duration.

Results
Transcriptome sequencing and assembly
Sequencing of the twelve cDNA libraries produced a
total amount of 371,043,357raw read pairs, resulting
in 330,595,546 quality-filtered read pairs (89.1 %); see
Additional file 1 for per library sequencing statistics.

Fig. 1 Analyzed species. The three species analysed in this study, with their relative EODs. From bottom to top: G. petersii, C. compressirostris,
C. tshokwe

Lamanna et al. BMC Genomics  (2015) 16:668 Page 2 of 17



Trinity assembly resulted in 260,598 and 369,030 contigs
for C. compressirostris and C.tshokwe cross-tissue tran-
scriptomes respectively (Table 1); 357,832 and 399,878
contigs were obtained for the SM and EO cross-species
assemblies respectively (Table 2). Contigs were then
compared to the Danio rerio proteome, retrieving 18,458
and 19,363 unique proteins for C. compressirostris and
C.tshokwe respectively; of these retrieved matches, 7971
(43.1 %) and 8993 (46.4 %) hits corresponded to full or
nearly full-length coding sequences (Fig. 2a). For the
cross-species assemblies, 20,023 and 20,352 contigs, for
the SM and EO respectively, matched unique proteins in
the D. rerio proteome, with 8662 (43.3 %) and 8768
(43.1 %) hits corresponding to full or nearly full-length
coding sequences (Fig. 2b).

Differential Expression (DE) analysis
Cross-tissue comparison
After transcript quantification with RSEM and DE-
analysis with edgeR, 1313 transcripts resulted to be
differentially expressed between EO and SM in C. compres-
sirostris (356 up-regulated in EO and 957 down-regulated
in EO) and 1002 in C. tshokwe (594 up-regulated in EO
and 408 down-regulated in EO). Of all differentially
expressed transcripts, 271 resulted to be shared between
the two species (97 up-regulated in EO and 174 down-
regulated in EO) (Fig. 3).

Cross-species comparison
In order to obtain an initial overview of transcriptome-
wide gene expression patterns, we performed a principal
component analysis on the expression levels of all
assessed transcripts with non-zero levels in both assem-
blies (see methods for details). The results clearly separ-
ate the data according to tissue rather than species
(Fig. 4). A distance matrix was then obtained from the
same dataset and a neighbour-joining gene expression
tree was built (see methods) in order to analyse global
evolutionary trends in more detail. The obtained tree
(Fig. 5) shows a clustering pattern for the EO data where
species characterized by similar EODs (G. petersii,

C. compressirostris) are grouped together, whereas the
species with a rather different EOD (C. tshokwe) forms an
isolated cluster. SM data, on the other hand, do not seem
to form any particular clustering scheme.
After DE analysis, 166 and 950 genes resulted to be

differentially expressed across the three analysed spe-
cies for SM and EO, respectively. Within the skeletal
muscle 78 genes are up-regulated in G. petersii, 16 in
C. compressirostris, 17 in C. tshokwe, and 55 in C. com-
pressirostris and C. tshokwe together (Fig. 6a). As far as
the electric organ is concerned, 232 genes are up-
regulated in G. petersii, 87 in C. compressirostris, and 631
in C. tshokwe (Fig. 7a).

Functional annotation
Cross-tissue comparison
In order to identify over-represented functional cate-
gories and pathways within the C. compressirostris and
C. tshokwe transcriptomes, the sets of up- and down-
regulated genes in the electric organ were subject to an
enrichment analysis involving Gene Ontology categories,
as well as Reactome and KEGG biological pathways
(Fig. 8). The number of retrieved categories/pathways is
proportional to the amount of differentially expressed
genes present in each analysed set; with fewer categories
for the EO up-regulated genes compared to the EO
down-regulated genes in C. compressirostris, and a simi-
lar number of categories identified between the two sets
in C. tshokwe. For both species the most represented cat-
egories within the EO up-regulated genes are related to
ion channel transport (e.g., sodium ion transport), multi-
cellular organismal development, development and pat-
terning of nerves (branching morphogenesis of a nerve;
semaphorin interactions; axon guidance). The genes
found to be down-regulated in the EO regard mainly
functional classes like: metabolic pathways specific to
muscle tissue (oxidative phosphorylation, pyruvate me-
tabolism, calcium signalling pathway), and muscle spe-
cific categories (muscle cell differentiation, striated
muscle contraction, cardiac muscle contraction).

Table 1 Assembly statistics for the cross-tissue comparison

C. compressirostris C. tshokwe

Trinity contigs 260,598 369,030

# of retrieved ORFs 139,963 228,306

# of unique PFAM domains 9,986 9,941

# of contigs matching D. rerio proteome 108,705 159,263

# of unique hits to D. rerio proteome 18,458 19,363

N50 3,010 3,597

Average contig length 1,392.16 1,672.28

Total assembled bases 362,794,286 617,123,151

Table 2 Assembly statistics for the cross-species comparison

SM EO

Trinity contigs 357,832 399,878

# of retrieved ORFs 150,068 182,682

# of unique PFAM domains 10,374 10,752

# of contigs matching D. rerio proteome 193,516 232,755

# of unique hits to D. rerio proteome 20,023 20,352

N50 2,299 2,345

Average contig length 1,119.38 1,149.25

Total assembled bases 400,549,148 459,560,613
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Fig. 2 Distribution of length coverage between Campylomormyrus Trinity transcripts and corresponding top-blast hits (D. rerio proteome). Histogram
showing the distribution of the percent in length of the sequences in the D. rerio proteome that aligns to the assembled Trinity contigs.
Numbers on the x-axis indicate the upper limit of the binned interval (e.g., 100 is the upper value of the interval 100–91). a Cross-tissue comparison.
b Cross-species comparison
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Fig. 3 Number of differentially expressed genes (Cross-tissue). Venn diagram showing the amount of differentially expressed genes within each
Campylomormyrus species’ transcriptome (full circles) and the amount of differentially expressed genes shared between the two Campylomormyrus
species (overlapping area). The amount of genes that are up (EO[+])- or down (EO[−])-regulated in the electric organ are reported for each dataset
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Given the information provided by the category-based
functional annotation, and to better understand the
functional differences in terms of gene expression be-
tween EO and SM, independently from the species ana-
lysed, a literature search was performed on the shared

set of differentially expressed genes between C. com-
pressirostris and C. tshokwe. For each gene, pheno-
typic information consequent to its mis-expression (e.g.,
via knockdowns or non-sense mutations) in D. rerio was
retrieved from the “Zebrafish Model Organism Database”
(ZFIN; http://zfin.org/). All shared genes were divided into
five “general” functional classes, which synthesize the cat-
egories reported in Fig. 8. The chosen categories are:
“electrical activity” (genes responsible for the differential
accumulation and transfer of ions across the plasma mem-
brane), “muscular activity” (genes important for keeping a
functional muscle phenotype), “metabolism” (genes in-
volved in metabolic pathways), “transcription factors”
(genes regulating gene expression) and “signal transduc-
tion” (molecules involved in signalling pathways) (Tables 2,
3, 4, 5 and 6). Many of the genes present in the category
“electrical activity” are up-regulated in the EO (Table 2),
they include genes coding for Na+/K+ pumps (atp1a2a),
voltage-gated sodium (scn4aa) and potassium channels
(kcnq5a) and cholinergic receptors (chrna7). However,
other voltage-gated ion channels result to be down-
regulated in the EO (kcna3, cacna2d2). There are then
two members of the subfamily J of inwardly-rectifying po-
tassium channels that show distinct patterns of expres-
sion, with one member (kcnj9) up-regulated in EO and
the other (kcnj12) down-regulated. All the genes included
in the class “muscular activity” are down-regulated in
the EO (Table 3). As far as the “metabolism” genes are
concerned (Table 4), most of the EO up-regulated tran-
scripts are involved in the metabolism of fatty acids,
glycerol, and phospholipids (e.g., acsl3b, gdpd4a, cds1),
whereas the down-regulated transcripts are more

Fig. 4 Principal component analysis of expression levels. Gnapet = G. petersii; comp = C. compressirostris; tsho = C. tshokwe; eo = electric organ;
mu = skeletal muscle

P > 0.9
P > 0.5

Fig. 5 Neighbour-joining analysis of expression levels. Neighbour-joining
tree based on pairwise distance matrix (1 – ρ, Spearman’s correlation
coefficient) for EO and SM expression values. Bootstrap replicates = 10,000.
Circles at nodes indicate bootstrap support. Gnapet =G. petersii; comp= C.
compressirostris; tsho = C. tshokwe; eo = electric organ; mu= skeletal
muscle; rep = replicate
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involved in muscle-specific, energy production pro-
cesses, like glycolysis (aldoab) and gluconeogenesis
(gpib). Among transcription factors (Table 5), two of
the four known myogenic factors (transcription factors
that activate the expression of sarcomeric proteins), are
down-regulated in the EO (myog, myf6), while the other
two (myoD, myf5) do not show significant differences
in expression between the two tissues. Two basic helix-
loop-helix (bHLH) transcription factors (hey1, hes6)
and one co-factor (her6) are up-regulated in the electric
organ. Two myocyte enhancer factors (mef2aa, mef2b)
show high levels of expression in the EO, whereas two
regulators of SM cell proliferation (six1b, six4b) are lowly
expressed in the EO. Most of the EO up-regulated genes

involved in signal transduction (Additional file 9) belong
to the G-protein coupled receptor (GPCR) signalling path-
way (e.g., arhgef7a, arhgef7b, gpr22) and to the fibroblast
growth-factor receptor (FGFR) signalling pathway (e.g.,
fgf8a, kal1b)

Cross-species comparison
The two sets of differentially expressed genes identified
for SM and EO across the three analysed species were
each partitioned into four sub-clusters with related ex-
pression patterns (see the methods section for details);
each sub-cluster was then subjected to an enrichment
analysis like the one described in the previous paragraph
and in the methods section. Of the analysed sub-clusters
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Fig. 6 Cross-species analysis (SM). a Results of the DE analysis. Left: heatmap showing the differentially expressed genes clustered by expression levels.
Expression sub-clusters obtained from k-mean clustering. Each cluster groups together genes characterized by similar expression levels. b Network showing
significantly enriched terms and their relative genes for each sub-cluster
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for the SM dataset, one out of four showed significantly
enriched terms, all related to nucleotides metabolic pro-
cesses (Fig. 6b). Conversely, three out of four sub-clusters
were significantly enriched in functional categories for the
EO dataset (Fig. 7b). The most representative enriched
functional categories are: glutamate receptor activity (sub-

cluster 1); TCA cycle and fatty acid metabolism (sub-clus-
ter 2); ion transport, neuronal system, and striated muscle
contraction (sub-cluster 4).
For each of the analysed sub-clusters genes with

known phenotypic effect in D. rerio or H. sapiens are re-
ported in Table 7.
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Fig. 7 Cross-species analysis (EO). a Results of the DE analysis. Left: heatmap showing the differentially expressed genes clustered by expression levels.
Expression sub-clusters obtained from k-mean clustering. Each cluster groups together genes characterized by similar expression levels. b Networks
showing significantly enriched terms and their relative genes for each sub-cluster

Lamanna et al. BMC Genomics  (2015) 16:668 Page 7 of 17



Discussion
Cross-tissue comparison
Functional annotation of the 271 differentially expressed
genes that are shared between C. compressirostris and C.
tshokwe has revealed marked differences within several

functional categories, which are probably critical in deter-
mining the observed phenotypic differences between the
electric organ and the skeletal muscle. Below, the functional
implications of the differentially expressed genes, in the light
of what is known from other fish models, are discussed.
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Fig. 8 Functional annotation results (Cross-tissue). Pie charts showing the composition in terms of enriched functional categories (GO) and pathways (KEGG,
Reactome) for each cluster of differentially expressed genes. EO[+] = up-regulated in the electric organ; EO [−] = down-regulated in the electric organ

Table 3 Electrical activity

Gene Protein name Expression in EO Pathway/Function Disrupted phenotype Reference

atp1a2a ATPase, Na+/K+ transporting, alpha
2a polypeptide

+ Ion channel transport Impaired depolarization of the resting
membrane potential in slow-twitch
fibers of skeletal muscles.

[50]

chrna7 cholinergic receptor, nicotinic,
alpha 7 (neuronal)

+ Activation of Nicotinic
Acetylcholine Receptors

kcnj9 potassium inwardly-rectifying
channel, subfamily J, member 9

+ Potassium Channels; GABA
receptor activation

kcnq5a potassium voltage-gated channel,
KQT-like subfamily, member 5a

+ Potassium Channels; Synaptic
transmission ion currents

grik3 Glutamate Receptor, Ionotropic,
Kainate 3

+ Transmission across Chemical
Synapses

scn4aa sodium channel, voltage-gated,
type IV, alpha, a

+ Ion channel transport; Axon
guidance

kcna3 potassium voltage-gated channel,
shaker-related subfamily, member 3

- Potassium Channels;
Transmission across Chemical
Synapses

kcnj12 potassium inwardly-rectifying
channel, subfamily J, member 12

- Potassium Channels; GABA
receptor activation

cacna2d2 calcium channel, voltage-dependent,
alpha 2/delta subunit 2

- Ion channel transport

For each of the shared differentially expressed gene are reported: the gene and protein names obtained from the top hit blast results against the proteome of D.
rerio; whether it is up(+)- or down(−)- regulated in the EO; its function or pathway (or both when available); the phenotypic effect on D. rerio of its mis-expression
(when available)
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Table 4 Muscular activity

Gene Protein name Expression in EO Pathway/Function Disrupted phenotype Reference

atp2a1 ATPase, Ca++ transporting, cardiac
muscle, fast twitch 1

- Muscle contraction Abnormal locomotion [51]

atp2a2 ATPase, Ca++ transporting, cardiac
muscle, slow twitch 2a

- regulation of heart contraction Abnormal heart development [31]

casq1a calsequestrin 1a - Calcium homeostasis

jph1a junctophilin 1a - structural constituent of muscle

jph1b junctophilin 1b - structural constituent of muscle

myl2a myosin, light chain 2a, regulatory,
cardiac, slow

- Striated Muscle Contraction

mybpc2a myosin binding protein C, fast type a - Striated Muscle Contraction

mybpc3 myosin binding protein C, cardiac - Cardiac muscle contraction Abnormal heart development [52]

myhb myosin, heavy chain b - Striated Muscle Contraction

myl10 myosin, light chain 10, regulatory - Regulation of actin cytoskeleton;
Focal adhesion

myl12.2 myosin, light chain 12, genome
duplicate 2

- Striated Muscle Contraction

mylk2 myosin light chain kinase 2 - Focal adhesion; Regulation
of actin cytoskeleton

mylk3 myosin light chain kinase 3 - Focal adhesion; Regulation
of actin cytoskeleton

Cardiac sarcomere disruption [53]

mylpfb myosin light chain, phosphorylatable,
fast skeletal muscle b

- Focal adhesion; Regulation
of actin cytoskeleton

myo18ab myosin XVIIIAb - Signaling by FGFR

myoz3a myozenin 3a - Calcineurin signaling

nexn nexilin (F actin binding protein) - cardiac muscle fiber
development

parvb parvin, beta - Focal adhesion; Cell junction
organization

Abnormal trunk musculature
development

[54]

pdlim3b PDZ and LIM domain 3b -

pdlim5b PDZ and LIM domain 5b -

pvalb3 parvalbumin 3 - calcium ion homeostasis

ryr1a ryanodine receptor 1a (skeletal) - calcium ion channel transport Abnormal trunk musculature
development

[32]

ryr1b ryanodine receptor 1b (skeletal) - calcium ion channel transport Abnormal trunk musculature
development

[33]

tnnc2 troponin C type 2 (fast) - Striated Muscle Contraction

smpx small muscle protein, X-linked - Striated Muscle Contraction

smyd1b SET and MYND domain containing 1b - Muscle Development Thick myosin filament
disorganization

[55]

srl sarcalumenin - calcium ion homeostasis

stac3 SH3 and cysteine rich domain 3 - Striated Muscle Contraction Excitation–contraction
coupling disruption

[34]

tcap titin-cap (telethonin) - Striated Muscle Contraction Myofibril disorganization [30]

tmod4 tropomodulin 4 (muscle) - Muscle contraction

tnnc1b troponin C type 1b (slow) - Muscle contraction

tnni2b.2 troponin I type 2b (skeletal, fast), tandem
duplicate 2

- Striated Muscle Contraction

tnnt1 troponin T type 1 (skeletal, slow) - Muscle contraction

Lamanna et al. BMC Genomics  (2015) 16:668 Page 9 of 17



Electrical activity
The up-regulation of the atp1a2a gene is explained by
the fact that its product, the Na+/K+ ATP-ase, is funda-
mental for keeping the electrochemical gradient across
the plasma membrane. Over-expression of this gene was
already observed in the mormyrid fish Brienomyrus bra-
chyistius [20], as well as in several species of south-
American weakly-electric fishes (Gymnotiformes) [21].
Voltage-gated ion channels, on the other hand, are im-
portant for dissipating the electric potential generated by
the ATP-ases and therefore for producing an EOD in re-
sponse to an action potential. In the electric organ of the
analyzed species, one gene coding for a voltage-gated so-
dium channel (scn4aa) is highly expressed in the electric
organ; differential expression of this gene and of its
paralog (scn4ab) between EO and SM was demonstrated
by Zakon et al. [18] for mormyrid and gymnotiform
fishes, and suggest the role of gene duplication followed
by neo-functionalization as a main driver for the evolution
of electric communication [19]. Other over-expressed
genes that increase cell excitability are the potassium
channels kcnq5a and kcnj9. The latter belongs to the fam-
ily of inwardly rectifying potassium channels, a class of
ion channels that favour the influx of K+ ions in the cell;
up-regulation of members of this family was observed in
the EO of the Electric eel (E. electricus) [24].

Repression of muscular phenotype in the EO
Many of the differentially expressed transcription factors
retrieved in this study are fundamental for the regulation
of myogenic development. In particular, we have found
that two bHLH transcription factors: hey1 and hes6, in
co-operation with her6, are up-regulated in the EO;
these factors are known to negatively regulate the ex-
pression of myogenic factors in several model organisms
[25, 26], including electric fish [21]. Two of the four
known myogenic regulatory factors (MRFs: myog, myf6)
are down-regulated in the EO, both genes are funda-
mental for muscle development and differentiation [27];
in particular, knock-down experiments on myf6 have
shown the degradation of posterior somites in D. rerio

[28], the region where the adult EO originates [17]. An-
other gene important for muscle development is the
myocyte enhancer factor mef2aa. Unlike MRFs, this
gene is up-regulated in the electric organ of the two spe-
cies analysed here, as well as in other electric fish species
[20, 21], and it is also important for the correct develop-
ment of posterior somites in D. rerio [29]. The concerted
activity of transcriptional repressors and co-repressors of
the myogenic program results in the down-regulation of
genes coding for muscle specific proteins (Table 4),
which finally determine the non-muscle characteristics
of the EO like: i) the presence of few, non-contractile,
myofibrils [17] (e.g., tcap [30]); ii) loss of calcium
compartmentalization activity (e.g., atp2a1, atp2a2, casq1a
[31]); and iii) decoupling of the excitation-contraction
process (e.g., ryr1, stac3, jph1 [32–34]).

Metabolic activity
The observed differences in terms of gene expression be-
tween EO and SM suggest that the metabolic machinery
of the electric organ could be mainly devoted to the pro-
duction and turn-over of membrane structures. Indeed,
many of the metabolism-related genes up-regulated in
the EO are involved in the metabolism of fatty acids
(acsbg2, acsl3b, cpt2), glycerophospholipids (cds1, gdpd4a,
gdpd5a, gdpd5b), and cholesterol (idi1). On the other
hand, most of the SM up-regulated genes are involved in
typical processes of muscle metabolism like: glycolysis
(aldoab, glo1, me3); gluconeogenesis (gpib, pgam2); and
aminoacids metabolism (acy1, ckma, ckmt2a).

Cross-species comparison
The grouping pattern emerging from the principal com-
ponent analysis, where expression levels tend to group
in an “organ-wise” rather than a “species-wise” fashion,
is putatively due to the fact that expression levels are
conserved for the same organ across different species for
functional reasons. A similar pattern was already ob-
served for more tissues across broader phylogenetic dis-
tances [23].

Table 4 Muscular activity (Continued)

tnnt3b troponin T type 3b (skeletal, fast) - Striated Muscle Contraction

tpm1 tropomyosin 1 (alpha) - Striated Muscle Contraction

tpm2 tropomyosin 2 (beta) - Striated Muscle Contraction

trdn triadin - Muscle contraction

trim54 tripartite motif containing 54 - Titin-kinase regulation

xirp1 xin actin-binding repeat containing 1 -

myl13 myosin, light chain 13 -

For each of the shared differentially expressed gene are reported: the gene and protein names obtained from the top hit blast results against the proteome of D.
rerio; whether it is up(+)- or down(−)- regulated in the EO; its function or pathway (or both when available); the phenotypic effect on D. rerio of its mis-expression
(when available)
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The clustering scheme obtained from the neighbour-
joining analysis for the EO data might be indicative of
the observed differences in terms of EOD among the

three species, which may be reflected in the expression
levels of a conspicuous part of the EO transcriptome.
Previous studies [23, 35] have revealed that, for most

Table 5 Metabolism

Gene Protein name Expression in EO Pathway/Function Disrupted phenotype Reference

acsbg2 acyl-CoA synthetase bubblegum family member 2 - Fatty acid metabolism

acsl3b acyl-CoA synthetase long-chain family member 3b + Fatty acid metabolism

acy1 Aminoacylase-1 - Aminoacids metabolism

adssl1 adenylosuccinate synthase like 1 - Purine metabolism

aldoab Fructose-bisphosphate aldolase - Glycolysis

ampd1 Adenosine monophosphate deaminase 1 (Isoform M) - Purine metabolism

aoc2 amine oxidase, copper containing 2 + beta-Alanine metabolism

cds1 CDP-Diacylglycerol Synthase 1 + Glycerophospholipid
biosynthesis

Imperfect angiogenesis [56]

ckma creatine kinase, muscle a - Metabolism of amino acids
and derivatives

ckmt2a creatine kinase, mitochondrial 2a (sarcomeric) - Metabolism of amino acids
and derivatives

cox4i2 cytochrome c oxidase subunit IV isoform 2 - Oxidative phosphorylation

cpt2 carnitine palmitoyltransferase 2 + Fatty acid beta-oxidation

cyp24a1 cytochrome P450, family 24, subfamily A, polypeptide 1 - Steroid biosynthesis

dhrs9 dehydrogenase/reductase (SDR family) member 9 + Retinol metabolism

gdpd4a glycerophosphodiester phosphodiesterase domain
containing 4a

+ Glycerol metabolism

gdpd5a glycerophosphodiester phosphodiesterase domain
containing 5a

+ Glycerol metabolism

gdpd5b glycerophosphodiester phosphodiesterase domain
containing 5b

+ Glycerol metabolism

glo1 Glyoxalase 1 - Pyruvate metabolism

glud1b glutamate dehydrogenase 1b - Nitrogen metabolism

got2a glutamic-oxaloacetic transaminase 2a, mitochondrial - Glucose metabolism;
aminoacids metabolism

gpib glucose-6-phosphate isomerase b - Gluconeogenesis

idi1 isopentenyl-diphosphate delta isomerase 1 - Cholesterol biosynthesis

man1a1 mannosidase, alpha, class 1A, member 1 + N-Glycan biosynthesis

me3 malic enzyme 1, NADP(+)-dependent, cytosolic - Pyruvate metabolism

pcyox1 prenylcysteine oxidase 1 - Terpenoid backbone
biosynthesis

pfkfb1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 - Glycolysis

pgam2 phosphoglycerate mutase 2 (muscle) - Glycolysis and
Gluconeogenesis

pgm5 Phosphoglucomutase 5 - Glucuronidation Failure in myofibril
assembly

[57]

ucp3 uncoupling protein 3 - Respiratory electron
transport

ugp2b UDP-glucose pyrophosphorylase 2b - Glucose metabolism

gyg1a glycogenin 1a - Glycogen Metabolism

mid1ip1l MID1 interacting protein 1, like - lipid metabolic process

For each of the shared differentially expressed gene are reported: the gene and protein names obtained from the top hit blast results against the proteome of D.
rerio; whether it is up(+)- or down(−)- regulated in the EO; its function or pathway (or both when available); the phenotypic effect on D. rerio of its mis-expression
(when available)
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tissues, gene expression levels tend to accumulate over
evolutionary time, such that more closely related species
have more similar expression levels. However, for tissues
characterized by increased levels of adaptation (e.g.,
testis and liver in mammals), expression trees tend to
group according to phenotypic similarity [23].
The results of the enrichment analysis conducted on

the expression clusters for the EO have revealed interest-
ing results. In particular, sub-cluster 2 and sub-cluster 4
(Fig. 7b) are enriched in terms which might underlie the

observed EOD differences across the three species; both
sub-clusters are characterized by genes which are mainly
up-regulated in the EO of C. tshokwe. The terms relative
to sub-cluster 2 are all related to metabolic pathways,
the metabolism of fatty acids in particular. Many of the
observed genes are involved in the production and turn-
over of cell membranes (e.g., smpd1, oxct1a, mlycd,
cpt2). Sub-cluster 4 is mainly characterized by genes in-
volved in ion transport and neuronal function; of par-
ticular importance here are sodium/potassium ATPases

Table 6 Transcription factors

Gene Protein name Expression in EO Pathway/Function Disrupted phenotype Reference

eng1b engrailed homeobox 1b + neuron fate commitment

her6 hairy-related 6 + Notch signaling pathway

hes6 hes family bHLH transcription factor 6 + Notch signaling pathway

hey1 hes-related family bHLH transcription
factor with YRPW motif 1

+ Notch signaling pathway

hipk2 homeodomain interacting protein
kinase 2

+ Wnt signaling pathway;
p53 Signaling; ERK Signaling

Induced apoptosis [58]

hoxc11a homeobox C11a +

hoxd11a homeobox D11a +

mef2aa myocyte enhancer factor 2aa + Signaling by FGFR Abnormal development
of posterior somites

[29]

mef2b myocyte enhancer factor 2b + miRs in Muscle Cell Differentiation

rb1 retinoblastoma 1 + E2F mediated regulation of DNA
replication; Cell cycle

Abnormal retina
development

[59]

taf6 TAF6 RNA polymerase II, TATA box
binding protein (TBP)-associated
factor

+ GPCR Pathway

arxa aristaless related homeobox a - Axon guidance Abnormal dopaminergic
neurons development

[60]

klf15 Kruppel-like factor 15 - Adipogenesis

pbxip1 pre-B-cell leukemia homeobox
interacting protein 1

-

myf6 myogenic factor 6 - Myogenesis Disrupted myogenesis [28]

myog myogenin - Myogenesis Disrupted myogenesis [27]

nfatc1 nuclear factor of activated T-cells,
cytoplasmic, calcineurin-dependent 1

- Wnt signaling pathway

nr0b2a nuclear receptor subfamily 0, group B,
member 2a

- Nuclear Receptor transcription pathway;
NOD-like Receptor Signaling Pathways

pitx2 paired-like homeodomain 2 - retinoic acid receptor signaling pathway Abnormal eye and
craniofacial development

[61]

rxrgb retinoid X receptor, gamma b - steroid hormone receptor activity;
retinoic acid receptor signaling pathway

six1b SIX homeobox 1b - regulation of skeletal muscle cell
proliferation

Abnormal trunk
musculature development

[62]

six4b SIX homeobox 4b - regulation of skeletal muscle cell
proliferation

tbx15 T-box 15 - regulation of transcription,
DNA-templated

For each of the shared differentially expressed gene are reported: the gene and protein names obtained from the top hit blast results against the proteome of D.
rerio; whether it is up(+)- or down(−)- regulated in the EO; its function or pathway (or both when available); the phenotypic effect on D. rerio of its mis-expression
(when available)
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(atp1a1a, atp1a1b, atp1b2a), as their over-expression in
the EO of C. tshokwe might explain the higher amplitude
observed in its EOD [36]. Other genes which may poten-
tially influence EOD features are potassium channels
(kcnq5b, kcnma1a, kcnk2a, kcnj11).

Conclusions
The cross-tissue analysis of differentially expressed
genes between skeletal muscle and electric organ in
two species of African weakly-fishes suggests that: i)
the loss of contractile activity and the decoupling of

the excitation-contraction processes are reflected by
the down-regulation of the corresponding genes in
the electric organ; ii) the metabolic activity of the EO
might be specialized towards the production and turn-
over of membrane structures; iii) several ion channels are
highly expressed in the EO in order to increase excitabil-
ity; iv) several myogenic factors might be down-regulated
by transcription repressors in the EO.
The cross-species analysis has revealed that the EO

transcriptome is more variable in terms of gene expres-
sion levels across species than the SM transcriptome.

Table 7 Cross-species differentially expressed genes with known phenotypic effect

Gene Protein Tissue Sub-cluster Phenotype Source

nme2b.2 NME/NM23 nucleoside diphosphate kinase 2b,
tandem duplicate 2

SM 4 GTP biosynthesis ZFIN

prkcg protein kinase C, gamma EO 1 AMPA-R kinetics ZFIN

aco2 aconitase 2, mitochondrial EO 2 Infantile cerebellar-retinal degeneration OMIM

pdp1 pyruvate dehyrogenase phosphatase catalytic
subunit 1

EO 2 Pyruvate dehydrogenase phosphatase deficiency OMIM

nnt nicotinamide nucleotide transhydrogenase EO 2 Glucocorticoid deficiency 4 OMIM

sucla2 succinate-CoA ligase, ADP-forming, beta subunit EO 2 Mitochondrial DNA depletion syndrome 5 OMIM

kcnj11 potassium inwardly-rectifying channel, subfamily J,
member 11

EO 2 Diabetes mellitus OMIM

ippk inositol 1,3,4,5,6-pentakisphosphate 2-kinase EO 2 Craniofacial development ZFIN

smpd1 sphingomyelin phosphodiesterase 1, acid lysosomal EO 2 Niemann-Pick disease OMIM

th tyrosine hydroxylase EO 2 Adult brain function ZFIN

ache acetylcholinesterase EO 2 Locomotion ZFIN

oxct1a 3-oxoacid CoA transferase 1a EO 2 Succinyl CoA:3-oxoacid CoA transferase deficiency OMIM

mlycd malonyl-CoA decarboxylase EO 2 Malonyl-CoA decarboxylase deficiency OMIM

idh1 isocitrate dehydrogenase 1 (NADP+), soluble EO 2 Susceptibility to glioma OMIM

cpt2 carnitine palmitoyltransferase 2 EO 2 Myopathy/Encephalopathy OMIM

pltp phospholipid transfer protein EO 2 HDL cholesterol level OMIM

acat1 acetyl-CoA acetyltransferase 1 EO 2 Alpha-methylacetoacetic aciduria OMIM

atp1a1a.1 ATPase, Na+/K+ transporting, alpha 1a polypeptide,
tandem duplicate 1

EO 3 Brain development ZFIN

ryr1a ryanodine receptor 1a (skeletal) EO 3 Myopathy ZFIN

bcl2l10 BCL2-like 10 (apoptosis facilitator) EO 3 Cytoskeletal activity ZFIN

nalcn sodium leak channel, non-selective EO 3 Hypotonia OMIM

cngb1a cyclic nucleotide gated channel beta 1a EO 3 Retinitis pigmentosa 45 OMIM

kcnma1a potassium large conductance calcium-activated
channel, subfamily M, alpha member 1a

EO 3 Hearing sensitivity ZFIN

kcnq5b potassium voltage-gated channel, KQT-like subfamily,
member 5b

EO 3 Cell membrane excitability ZFIN

nsfa N-ethylmaleimide-sensitive factor a EO 3 Axon development ZFIN

chrna4b cholinergic receptor, nicotinic, alpha 4b EO 3 Epilepsy OMIM

adcy1b adenylate cyclase 1b EO 3 Deafness OMIM

actn2b actinin, alpha 2b EO 3 Cardiomyopathy OMIM

vmhc ventricular myosin heavy chain EO 3 Cardiomyopathy OMIM

List of cross-species differentially expressed genes belonging to the terms obtained from the enrichment analysis. For each gene, we report: the analysed tissue;
the relative sub-cluster as reported in Figs. 6 or 7; and the phenotypic effect of gene function disruption on D. rerio (ZFIN) or Homo sapiens (OMIM)
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The functional annotation indicates that the most diver-
ging functional classes across species in the EO include
“metabolism of fatty acids” and “ion transport”.
In order to better understand the role played by the

differentially expressed gene identified in this study, the
onset of transgenic experiments (e.g., knockdown) will
be necessary either in fully established model organisms
(D. rerio), or in emerging models for electric fish (E.
electricus).

Methods
Specimen collection
Several specimens of C. compressirostris, C. tshokwe and
G. petersii were collected in the wild during a sampling
campaign conducted at the Congo River rapids south of
Brazzaville (Republic of the Congo, August/September
2012). For the present study, adult female specimens for
each species were selected, kept in captivity for a max-
imum period of 2 weeks and then euthanized for tissue
sample collection. Gender and sexual maturity were
assessed after dissection by checking for the presence of
mature ovaries in the selected specimens. Electric organ
and skeletal muscle tissue samples were dissected from
the caudal peduncle and the posterior trunk musculature
respectively and immediately transferred into RNAlater®
(Life Technologies). The research followed internation-
ally recognized guidelines and applicable national legisla-
tion. We received ethical approval from the deputy of
animal welfare of the University of Potsdam.

RNA extraction and cDNA library preparation
The dissected tissues were processed at the University of
Potsdam for RNA extraction: they were first removed
from the RNAlater®-containing vials; shock frozen in li-
quid nitrogen and then homogenized into a buffer con-
taining guanidine isothiocyanate and β-mercaptoethanol
using a Mini-beadbeater-1 (Biospec). Total RNA was ex-
tracted using the RNeasy® Mini Kit (Qiagen), RNA qual-
ity and concentration was inspected using a Fragment
Analyzer™ (Advanced Analytical Technologies, Inc.).
For the present study eight cDNA libraries were selected

for sequencing (one library per species per tissue; two
biological replicates), each library was obtained by pooling
the total RNA from a minimum of two to a maximum of
4 different individuals (see Additional file 1). The paired-
end (100 nt), strand-specific cDNA libraries were prepared
using the NEXTflex™ Directional RNA-Seq Kit V2 (dUTP
based) (Bioo Scientific); preparation was performed in
six steps: i) mRNA enrichment from total RNA via
polyA selection; ii) fragmentation; iii) first and second
strand syntheses; iv) A-tailing; v) adapter and barcode
ligation and vi) PCR amplification. Fragment size distri-
bution and quality was estimated using an Agilent 2100
Bioanalyzer with the High Sensitivity DNA Chip.

Transcriptome sequencing, assembly and annotation
Transcriptome sequencing was performed at the Max
Delbrück Center for Molecular Medicine; the multi-
plexed cDNA libraries were sequenced using one lane
of an Illumina HiSeq2000 sequencing system. After
sequencing, the resulting raw reads were subject to
five processing steps using the program Flexbar v2.4
[37] : i) filtering reads with uncalled bases; ii) trim-
ming of reads at 3′-end to get a minimum average
Phred quality score of 20; iii) barcode detection,
removal and reads separation; iv) adapter detection
and removal, and v) filtering of reads shorter than
20 bp after trimming. Quality control of both raw
and processed reads was performed with FastQC
v0.10.1 (Babraham Bioinformatics).
The processed reads were assembled de novo (i.e.,

without using a reference genome) with Trinity
r20131110 [38] (kmer length = 25). Two reference tran-
scriptomes were produced from C. compressirostris and
C. tshokwe respectively, by assembling together the reads
obtained from the EO and SM libraries. Combining all
reads across all tissues and all biological replicates for
each species (cross-tissue assembly), or across all species
and all replicates for each tissue (cross-species assembly)
(Fig. 9) into a single RNA-seq dataset, allows to correctly
compare transcript abundances from the analysed tis-
sues or species by aligning the short reads from each
library independently onto the same set of reference
transcripts (see below and Additional files 2, 3, 4, 5, 6
and 7 for more details) [39].
Transcriptome annotation was conducted using the

stand-alone version of the blastx algorithm imple-
mented in Blast + v2.2.29 [40] (E-value cutoff = 10−10)
against the proteome of Danio rerio (Uniprot ID =
UP000000437). Likely coding sequences were extracted
from Trinity transcripts using TransDecoder (http://trans-
decoder.github.io/) and the longest translated Open Read-
ing Frames (ORFs) were reported (Table 1). Protein
domains were searched on the PFAM database (Pfam-
A.hmm available at http://pfam.xfam.org/) using HMMER
v3.1b1. The retrieved ORFs were later annotated by
“blasting” them against the SwissProt (http://web.expa-
sy.org/docs/swiss-prot_guideline.html) database using
the blastp algorithm. Transcripts’ completeness was
assessed by computing the proportion of transcripts
and ORFs that matched to full-length top hits in their
respective searches using the Perl script “analyze_blast-
Plus_topHit_coverage.pl” (provided with Trinity) (Fig. 2
and Additional file 8) [39].
The use of a single reference species for annotation

is sub-optimal in terms of number of retrieved ortho-
logs if compared to other methods like iterative
BLAST searches to multiple species [41], however the
use of a long-time established model organism (D.
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rerio) facilitates the enrichment analysis and the iden-
tification of experimental evidence for the functional
role of a given gene.

Transcript abundance quantification and DE-analysis
Short reads were individually mapped to their respective
transcriptome assemblies using Bowtie v1.0.0 [42] with
default parameters. Gene expression levels were esti-
mated using RSEM v1.2.12 [43]. Putative transcript arti-
facts and lowly expressed transcripts were filtered out
using the Perl script “filter_fasta_by_rsem_values.pl”
(provided with Trinity).
Principal component analyses of cross-species data was

performed on a matrix of expression values of 14,436
genes with non-zero values in both assemblies, using the
function “prcomp” in R. The same dataset was used for
building a distance matrix of Spearman’s correlation coeffi-
cients (ρ) which was then subjected to neighbour-joining
tree construction with the function “nj” in R (bootstrap =
10,000). Differential expression analysis was performed
using the Bioconductor package edgeR [44] (minimum
fold change = 4, p-value cutoff = 0.001 after FDR correc-
tion). The differentially expressed transcripts were then
subject to an enrichment analysis using the Cytoscape
plugin ClueGO v2.1.4 [45, 46], in order to identify
over-represented functional categories from the Gene
Ontology (GO) database [47] (http://geneontology.org),
as well as over-represented biological pathways from
KEGG (http://www.genome.jp/kegg/) and Reactome
(http://www.reactome.org/) [48, 49]. Statistical significance

was assessed using a Fisher’s exact test with FDR p-value
correction (≤0.05). Cross-species data were partitioned
into expression clusters using a k-means algorithm (k = 4),
implemented in a perl script provided with Trinity.
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Fig. 9 Assembly schemes for the cross-tissue and cross-species comparison
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