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Abstract

remain poorly understood.

Background: Whole genome sequence construction is becoming increasingly feasible because of advances in next
generation sequencing (NGS), including increasing throughput and read length. By simply overlapping paired-end
reads, we can obtain longer reads with higher accuracy, which can facilitate the assembly process. However, the
influences of different library sizes and assembly methods on paired-end sequencing-based de novo assembly

Results: We used 250 bp lllumina Miseq paired-end reads of different library sizes generated from genomic DNA
from Escherichia coli DH1 and Streptococcus parasanguinis FW213 to compare the assembly results of different
library sizes and assembly approaches. Our data indicate that overlapping paired-end reads can increase read
accuracy but sometimes cause insertion or deletions. Regarding genome assembly, merged reads only outcompete
original paired-end reads when coverage depth is low, and larger libraries tend to yield better assembly results.
These results imply that distance information is the most critical factor during assembly. Our results also indicate
that when depth is sufficiently high, assembly from subsets can sometimes produce better results.

Conclusions: In summary, this study provides systematic evaluations of de novo assembly from paired end
sequencing data. Among the assembly strategies, we find that overlapping paired-end reads is not always
beneficial for bacteria genome assembly and should be avoided or used with caution especially for genomes
containing high fraction of repetitive sequences. Because increasing numbers of projects aim at bacteria genome
sequencing, our study provides valuable suggestions for the field of genomic sequence construction.

Background

Although many assemblers have been proposed for de
novo assembly with NGS data, the inherent shorter
length and higher error rate of short read NGS data still
hinder the reconstruction of bacterial genomes. Al-
though traditional Sanger sequencing obtained reads up
to 1000 base pairs long with accuracy as high as
99.999 %, NGS generates high throughput sequences
with reduced read lengths and qualities [1]. Read length
is undoubtedly critical in de novo assembly. The most
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extreme example is a read as long as the entire genome
that could complete construction of the entire genome.
Third generation single-molecule sequencing has suc-
cessfully generated reads longer than 10-15 kb or even
approaching 150 kb for PacBio and MinION sequencers,
respectively [2—4]. However, PacBio and MinION gener-
ate reads with sequencing errors rates as high as 15 and
35 % respectively [4, 5]. Several methods are proposed to
deal with such high error rates [4—6]. Recently Illumina
TruSeq Synthetic Long-Reads (previously known as
Moleculo) is also proposed to provide longer reads [7].
Nevertheless, currently what we usually have reads as
short as several hundreds of bps long that require so-
phisticated algorithms or strategies for de novo assembly.
Many de novo assemblers utilizing the de Bruijn graph-
based approach were developed for NGS reads, such as
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Velvet, SOAPdenovo, ALLPATHS, Edena, EULER-SR,
and EULER-USR [8-14]. These methods construct de
Bruijn graphs from short reads and obtain contigs by
solving the graphs. Other studies come from a theoret-
ical perspective and discuss whether these short reads
are intrinsically sufficient for genome assembly [15, 16].
Whiteford et al. demonstrated that 90 to 97 % of the E.
coli genome could be reconstructed with reads as short
as 50 bp. However, because of repeats in the E. coli gen-
ome, it required read lengths of up to 475 bp to allow
99 % of the reads to uniquely map to the genome [16].
The existence of repeat sequences largely increased the
complexity for resolving the whole genome sequence.
The problem was only partially solved when the de
Bruijn graph-based approach was proposed, and only
reads longer than the repeat sequence or structural in-
formation provided by mate pair sequencing can pos-
sibly overcome this difficulty [15, 17]. In addition to
reduced length, higher error rates in NGS reads also
contribute to the difficulty of genome reconstruction
[18, 19]. Assemblers based on the de Bruijn approach
may be largely complicated by sequencing errors. Sev-
eral studies have focused on providing sequencing error
correction tools that can largely improve assembly
results [20, 21].

Several studies have assembled whole genome se-
quences by combining data from both Illumina and 454
sequencing technologies that can compensate one an-
other’s weaknesses [10, 13]. Long reads from 454 can as-
sist short reads produced by Illumina in resolving repeat
regions. As the technology rapidly advances, read length
is becoming longer, and longer reads are undoubtedly
helpful in the de novo assembly of genomes. Currently,
the read length of the Illumina MiSeq has reached as
long as 300 bp, although it remains shorter than the
Roche 454 sequencing reads. Nevertheless, we can easily
generate longer reads by overlapping Illumina paired-
end reads. Several tools have already been developed for
merging paired-end reads, such as the merge module in
CLC, PEAR, FLASH, PANDAseq, Stitch and FastqJoin
[22-27]. Paired-end read merging allows us to generate
reads lengths comparable to 454. However, how these
merged reads influence assembly results remains un-
answered. In this study, we used real sequencing data to
demonstrate the potential effects of merged reads in real
world genome assembly.

To investigate the effect of merged paired-end reads in
de novo assembly, we explored the sequence accuracy of
merged reads and tried different assembly strategies with
the same Illumina datasets. We generated Illumina
paired-end reads with four different library sizes
(300 bp, 400 bp, 500 bp and 600 bp) from the genomes
of Escherichia coli DH1 and Streptococcus parasanguinis
FW213. These genomes were chosen as representative
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bacterial genomes because they have considerably differ-
ent GC contents and genome complexities, both proper-
ties known to influence sequencing quality and assembly
processes. E. coli DH1 and S. parasanguinis FW213 have
intermediate (50.8 %) and low (41.7 %) GC contents, re-
spectively. S. parasanguinis FW213 has a higher propor-
tion of short tandem repeats and long repeats in its
genome compared with E. coli DH1. We explored the ac-
curacy of these reads and the de novo assembly results
from these reads. Although MiSeq has been shown to pro-
vide the lowest error rate compared with the 454 GS Jun-
ior and Ion Torrent PGM, which both produce
homopolymer-associated indel (insertion/deletion) error
[28], we still observed certain levels of sequencing errors,
even after reads were trimmed. We also observed that
these errors could be significantly reduced by simply mer-
ging paired-end reads. However, the merge step some-
times also largely increased indel errors, particularly for
reads from libraries with few overlapping regions or from
genomes with many tandem repeats. Given that the
merged reads had higher sequence qualities and longer
lengths, we further performed reconstruction of the gen-
ome sequences using different de novo assembly strategies
with either paired-end reads or merged reads for different
library sizes. In addition to assembly strategies, informa-
tion on how many reads should be used will be helpful in
experimental design. Several studies already provide
suggestions on the optimum depth for genome assembly
[29, 30]. By examining the assembly results generated
from real data, we discuss how paired-end reads should be
used to generate the best assembly results. Our study pro-
vides invaluable and useful suggestions for hundreds of
ongoing bacterial genome reconstruction projects.

Methods

Sequence read preparation

Total cellular DNA from E. coli DH1 and S. parasanguinis
FW213 were prepared by standard protocols [31]. Four
paired-end libraries containing different sizes of DNA
fragments (300 bp, 400 bp, 500 bp and 600 bp) were pre-
pared by Ovation Ultralow Library Systems (NuGEN) for
both E. coli DH1 and S. parasanguinis FW213. The librar-
ies were sequenced by an Illumina MiSeq sequencer. A
total of eight different datasets of paired-end 2 X 250 bp
reads were generated (SRP060735). For sequence quality
estimation, calculate_stats from seq_crumbs was used to
estimate the read qualities for each dataset [32]. For fur-
ther de novo assembly analysis, reads were trimmed to fit
the quality threshold of Phred quality scores larger than
Q20 and lengths larger than 50 bp.

Mapping reads to reference genomes
The reference genome sequences of E. coli DHI1
(NC_017625) and S. parasanguinis FW213 (NC_017905)
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were downloaded from NCBI [33]. We used seqtk [34]
to randomly select 40 % of all original raw reads 5 times.
These subsets of raw reads were merged with or without
trimming. The resulting dataset of reads (raw reads,
trimmed reads and merged reads) were all mapped back
to their corresponding reference genomes with BWA-
MEM using default parameters [35]. Mismatch and
mapping rates were calculated from the output mapped
bam files using sam-stats from ea-utils [24].

Overlapping paired reads

To investigate the effect of overlapping reads, the
“merge overlapping pairs” module in the CLC Genomics
workbench was used to overlap the paired-end reads
[26]. For reads that could be overlapped together
(referred to as “Group M” henceforth), their overlapping
reads and original paired-end reads were both generated
as separate files using several in-house scripts.

de novo assembly

The CLC Genomics Workbench [26] was used for de
novo assembly with default parameters. There were five
different assembly strategies. The original raw reads were
assembled as paired-end reads (Group A [PE]) or as single-
end reads (Group A [SE]). Reads that overlapped were ei-
ther assembled as paired-end reads (Group M [PE]) or as
single-end reads (Group M [SE]) after overlapping. All of
these merged single-end reads and the rest of the non-
overlapped paired-end reads were also assembled together
(Group A [PE + SE]). For each assembly strategy, an in-
house, multithreaded Perl script was used to randomly
generate different numbers of reads from the total number
of reads. These reads were randomly sampled from the
raw data, and 9260/4340 paired reads were treated as
coverage depths of 1X for E. coli DH1 and S. parasanguinis
FW213 which have genome sizes of 4.63 Mb and 2.17 Mb,
respectively. We randomly selected three independent
datasets from each depth to estimate variance.

Repeat region analysis

The Tandem Repeats Finder was used to identify tandem
repeats in both the E. coli DHland S. parasanguinis
FW213 [36] genomes. Only tandem repeats with matches
larger than 80 % were included and analyzed. For short
tandem repeat analysis, tandem repeats with sizes smaller
than 100 bp were included. These tandem repeat period
sizes were multiplied by their corresponding copy num-
bers and then summed to estimate the percent of the gen-
ome that was located within tandem repeats.

Estimating assembly quality

All contigs generated from de novo assembly were fur-
ther evaluated by QUAST [37]. From the QUAST re-
port, several important and representative statistical
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values, such as N50, genome fraction (%), number of
misassemblies, number of genes covered, and number of
contigs and number of indels per 100 kb were used to
evaluate the assembly qualities.

Results and discussion
Merging paired-end reads improves their accuracy
To investigate the effect of overlapping paired-end reads
on the accuracy of merged reads, we generated eight dif-
ferent datasets from the E. coli DH1 and S. parasangui-
nis FW213 genomes. We produced 2 X 250 paired-end
reads from each genome. We designed four different li-
brary sizes: 300 bp, 400 bp, 500 bp and 600 bp for each
genome, and all reads were generated by the MiSeq plat-
form. All eight datasets contained more than 1 million
reads and high sequence quality, with average Phred
scores greater than 30 (Table 1). The CLC workbench
was then used to merge overlapped paired reads. This
merging step looked for overlapping regions from the
ends of paired reads and merged these overlapped regions.
If any conflicts in the overlapped region existed, the read
with the higher quality score was used. We defined two
read datasets from this merging step: Group A that in-
cluded all reads and Group M that included only a subset
of reads that could be merged. As expected, most of the
reads from the library size of 300 could be merged to-
gether, and the percentage of read pairs that could be
merged decreased as the library size increased (Table 1).
The influence of sequence accuracy after the merging
step was the first issue we investigated. Because base
quality usually drops towards the end of the read, some
sequencing errors can be corrected during the merging
step. To survey the extent and effect of correcting se-
quencing errors in this manner, we mapped raw paired
reads and merged reads from Group M to the reference
genomes. We observed that the mismatch rate for
Group M was significantly lower than that for Group A
(Fig. 1). This result demonstrates that only raw reads
with higher accuracy could be merged. Although the
merged reads did not extensively increase the mapping
rate, they did significantly decrease the mismatch rate.
Although the merging step only involved partial read re-
gions, this step corrected 10.2 to 67.3 % of the mismatches
in raw reads (Additional file 1: Table S1). The accuracy
improvement was most significant in the smallest library
that had the longest overlapping regions on average
(Fig. 1a). We further examined whether the same se-
quence accuracy improvement could be achieved by se-
quence trimming, which is one of the most commonly
used strategies for eliminating low quality bases. Raw
reads were trimmed for quality (Phred score larger than
Q20) and length (longer than 50 bp) and then mapped
back to the reference genomes with and without the mer-
ging step. We still observed a significant decrease in
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Table 1 Summary of paired-end reads used in this study
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Reference genome Library size Read number Average quality? Q20° Q30° Group M¢
E. coli DH1 300 bp 1,894,068 3431 90.15 % 85.27 % 71.59 %
E. coli DH1 400 bp 2,221,312 3391 88.94 % 83.61 % 69.21 %
E. coli DH1 500 bp 2,093,116 33.50 87.63 % 81.87 % 2512 %
E. coli DH1 600 bp 1,548,836 32.79 85.29 % 78.78 % 0.85 %

S. Parasanguinis FW213 300 bp 2,162,006 35.84 93.47 % 90.77 % 82.05 %
S. Parasanguinis FW213 400 bp 1,968,178 35.60 9267 % 89.76 % 81.04 %
S. Parasanguinis FW213 500 bp 1,886,084 3521 91.55 % 88.26 % 19.03 %
S. Parasanguinis FW213 600 bp 1,745,876 3461 89.58 % 85.67 % 6.82 %

#Average Phred score

PThe percentage of bases in the reads with a Phred score equal or larger than 20 or 30

“Percentage of paired reads that can be merged

mismatch rate for trimmed paired-end reads from library
sizes of 300 bp and 400 bp but an opposite trend for reads
from larger libraries (Fig. 1b). Similar decrease and in-
crease pattern in mismatch rates were found when reads
were merged by FLASH, PANDAseq or PEAR (Additional
file 1: Table S2). This increase in mismatch rate may be
random because fewer reads belonged to Group M for
large library size. In our example, the number of reads
from the 600 bp library of Group M was approximately 1/
100 (E. coli DH1) and 1/10 (S. parasanguinis FW213) the
number of reads from other library sizes. This small size
in reads number make this group more susceptible to
sampling fluctuation. However, the merge step may intro-
duce incorrect sequences by erroneously merging non-
overlapping region. Because these mistaken merges were
most likely to occur in regions with repeats, we further ex-
plored the insertion and deletion rates from previous
mapping results (Fig. 2). We observed that reads from
Group A had similar insertion and deletion rates whether
mapped as paired-end or single-end reads. However, both
the insertion and deletion rates significantly increased for
merged reads from Group M with library sizes of 500 bp
and 600 bp. Increase in both insertion and deletion rates
were also found when reads were merged by FLASH,
PANDAseq or PEAR (Additional file 1: Table S3 and Table
S4). This result implies that when the overlapped regions
are short or non-existent, the merging step may cause a
significant number of indel errors, explaining the increase
of the mismatch rate observed for the merged reads from
large library sizes.

Location information from paired-end reads largely
promotes de novo assembly

Based on the improved accuracy observed with the over-
lapped paired-end reads, we were interested in investi-
gating how the improvement influences the process of
de novo assembly. For all library sizes, we assembled
paired raw reads as paired-end reads (Group A [PE]) or
as single-end reads (Group A [SE]). We also assembled

the merged reads together with the non-overlapping
reads (Group A [PE + SE]). To compare the assembly re-
sults for different library sizes, we used N50 (N50 is the
length for which the collection of all contigs of that
length or longer contains at least half of the sum of the
lengths of all contigs) to represent the integrity of as-
sembly result [38]. As shown in Fig. 3, as read number
increased, N50 increased and then plateaued. Within all
assembly strategies, Group A [PE] always yielded the
highest N50 for all library sizes. Group A [PE + SE] had
similar performance as Group A [PE] in E. coli DH1 but
did not generate a higher N50 value compared to Group
A [PE]. Nevertheless, Group A [PE + SE] had significant
drops of N50 were observed for library sizes of 300 bp
and 400 bp in S. parasanguinis FW213 (Fig. 3f). This
drop also existed in large libraries (500 bp or 600 bp)
that had much lower ratios of overlapping reads.

Larger library size typically yielded a higher N50 value
given the same read number and assembly strategy
(Fig. 3a and b). We also examined the number of misas-
semblies for assembled contigs from different library
sizes. The rate of misassemblies is not higher for these
assembled results with higher N50 (Additional file 2:
Figure S1). This result suggest the higher N50 values
really represent better assembly results. Because quality
scores for different library sizes were similar (Additional
file 1: Table S5), the advantage observed in libraries with
longer sizes likely resulted from the paired-end informa-
tion but not read quality. To investigate whether the
higher N50 values for larger library sizes can be attrib-
uted to the paired-end information alone, we further in-
vestigated the results from Group A [SE] (Fig. 3c and d),
in which the superiority of larger libraries disappeared.
We noticed that the smallest library (300 bp) still had a
slightly lower N50 value because most read pairs from
this library have almost overlapped with each other com-
pletely. However, Group A [SE] had much worse de novo
assembly results compared with Group A [PE] in all
datasets, again indicating the importance of location
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Fig. 1 Mismatch rates detected from mapping reads to reference genome. Reads from Group A (all reads) were mapped to reference genomes
as paired-end reads or single end reads (R1 and R2 shuffled together). Reads from Group M (reads can be merged together) were mapped as
paired-end reads or merged single reads. Mismatch rates for Group A and Group M are explored. For raw reads (a), the mismatch rates of Group
A were similar for both paired-end mapping and shuffled reads mapping. The rate decreased significantly for Group M (paired-end) and
decreased even more for Group M (merged reads). For trimmed reads (b), there was much less decrease or even increase of mismatch for
large libraries (500 bp and 600 bp). The difference of mismatch rates between Group M (paired reads) and Group M (merged reads) was tested
by paired t tests
J

information in the de novo assembly process. Similar
patterns were found when we used different assemblers
(IDBA-UD and SPAdes) as shown in Additional file 3:
Figure S2 [39, 40].

Merged reads improve de novo assembly only when read
depth is low

To further examine the effect of merged reads in the de
novo assembly process, we focused on the subset of
reads that could be merged (Group M). We assembled
Group M as paired-end (Group M [PE]) or merged

single end reads (Group M [SE]). The two large libraries
(500 bp and 600 bp) were skipped in this analysis be-
cause few overlapping reads were present in these two
groups. We observed that Group M [PE] and Group M
[SE] had similar performances on the E. coli DH1 gen-
ome in terms of N50 and number of misassemblies
(Fig. 4a and ¢ and Additional file 4: Figure S3). However,
the N50 from Group M [PE] was higher than the N50
from Group M [SE] in S. parasanguinis FW213 (Fig. 4b
and d) when the depth of read coverage was higher than
20X. We suggest that this difference may be because of
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specific properties of the genome—in particular, the
presence of tandem repeats that can increase the possi-
bility of erroneously merged reads and hinder assembly.
Because short tandem repeats may become sources of
erroneous merges, we focused on tandem repeats
shorter than 100 bps. We observed that 0.68 % of the S.
parasanguinis FW213 genome was covered by tandem
repeats compared with only 0.13 % of the E. coli DH1
genome. Two of the tandem repeats, 72 bp and 36 bp,
on the S. parasanguinis FW213 genome had copy num-
bers as high as 81 and 165, respectively. Although such
high copy numbers are infrequent, S. parasanguinis
FW213 has 5.4 times more tandem repeats than E. coli
DHI1. This higher rate of repeats also explains the higher
insertion and deletion rates for S. parasanguinis FW213
in Fig. 2. The merging step may introduce errors into
the middle of reads that will largely complicate the de
Bruijn graph used in assembly and result in incorrect as-
sembly results in S. parasanguinis FW213.

When the depth of read coverage was small, Group M
outcompeted Group A (Fig. 4). This difference may re-
sult from the slightly higher overall quality of reads from

Group M compared with reads from Group A (Additional
file 1: Table S6). Given that Group M only included reads
that had overlapped regions, these reads consequently
provided less location information. This result suggests
that when the depth of read coverage is low, read quality
is a critical factor in de novo assembly (Fig. 4). However,
as the depth of read coverage increased, paired-end infor-
mation could compensate and eventually provide greater
benefits than higher accuracy. Similar results were ob-
served when these reads are assembly by IDBA-UD or
SPAdes (Additional file 5: Figure S4). For Group M,
merged single end reads yielded an even higher N50 than
the original paired-end reads (blue and light blue lines in
Fig. 4). This result indicates that longer reads with higher
accuracy improve the assembly results. Nevertheless, this
improvement again disappears when the depth of read
coverage increases. We observed that Group M [SE]
barely overcame Group M [PE] in S. parasanguinis
FW213. We believe that this result is because of the differ-
ences in the genome complexities of E. coli DH1 and S.
parasanguinis FW213. Although S. parasanguinis FW213
has a smaller genome, it contains 7 tandem repeats larger
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than 400 bp, and these repeats have copy numbers range
from 2.2 to 6.1 (Additional file 1: Table S7). Under the
same criteria, E. coli DH1 only has a repeat of 535 bp with
a copy number of 2.9.

Merged reads increase indel frequency in de novo
assembly when depth of read coverage is low

Because the merging step may mistakenly introduced
indels into reads, we further explored the indel rates for
these assembly results. By comparing assembled contigs
with reference genome we can obtain the number of
indel in our assembled contigs for different assembly

strategies of Group A (Fig. 5). We found that the num-
ber of indels decreases as more reads used in the assem-
bly. This is reasonable because when depth of read
coverage is low, errors in few reads may result in errors
in de Bruijn graph that can be corrected when more
reads are used to construct the graph. We also observed
higher indel rates for large library (600 bp) when com-
paring between different library sizes. Although the indel
rates tend to decrease as the depth of read coverage in-
creases, there are exceptions in both PE and PE + SE
groups when depths of reads are low (Fig. 5). This
phenomenon suggests that even if the reads were
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merged, the similarity in the end of read pair causes
indels in the final assembly result when depths of read
coverage are not high enough. It is worth mentioning
that the indels rates are slightly lower in PE group com-
paring to PE + SE group. This result suggests the error
indels in assembled contigs are more likely to be created
when paired information are used from barely over-
lapped paired-end reads and the merging step may aug-
ment the error rate. Nevertheless most of these indel
errors can be eliminated when the read number is large
enough. Even the depth of read coverage for S. parasan-
guinis FW213 reached more than 200X, twice the max-
imum depth of E. coli DH1. We observed that the
number of indels in S. parasanguinis FW213 was higher
than that in E. coli DH1. The higher indel rate is again
consistent with the idea that the elimination of indels is
more difficult for genomes containing repeats. This re-
sult demonstrates that these repeats can only be resolved
by reads longer than the repeats instead of increasing
depth of read coverage.

Gene and genome coverage and sequencing depth
By examining the de novo assembly results from real se-
quencing data, we further explored how many reads are

required for de novo assembly analysis. Although the op-
timal sequencing depth may vary for different read
length and organisms, our data can provide hints for
analysis of genomes with similar characteristics. We ex-
plored how much of the genome is covered by assem-
bled contigs. The covered genome fraction increases as
sequencing depth increasing and finally reaches plateau.
The genome coverage is different for different library
sizes and the median library sizes (400 bp and 500 bp)
tend to have relatively higher genome coverage fraction
while depth of read coverage is low. However, as sequen-
cing coverage depth increasing all libraries can reach to
similar plateau value. We found that 97 % of the genome
can be covered by coverage depths approximately 12X-
19X and 19X-50X for the larger libraries (400 bp, 500 bp
and 600 bp) and smallest library (300 bp), respectively
(Fig. 6). We also found that the plateau value is approxi-
mately 96.2 ~98.2 %, which again supports previous re-
sults that part of the genome can never be resolved until
reads larger than the long repeat regions are included in
de novo assembly analysis. We also examined the cov-
ered genome fraction across different assembly strategies
(Additional file 6: Figure S5). We found the group M
has slightly higher coverage while the depth of read
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Fig. 5 Number of indels per 100 kb for different assembly strategies. Numbers of insertions/deletions (indels) for Group A are plotted with
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coverage is low but as depth of read coverage increasing
finally all assembly strategies all reach plateau with simi-
lar covered genome fraction. We further explored how
many of the annotated genes were fully covered by these
assembled contigs. The pattern of gene coverage was
similar to genome coverage only with relatively lower
coverage that was obvious because only fully covered
genes considered. The plateau value for gene coverage
was 92.9 ~ 98.2 %.

Another suggestion for choosing read coverage depths
is to generate a higher number of reads than actually

necessary and then obtain a subsample from original
reads. We noticed that there are fluctuations for N50
values in all assembly strategies particularly for large
coverage depths (Figs. 3 and 4,). Although all of these
read numbers are the same and all of the reads were
already selected with their read quality and read length,
different combinations of these qualified reads resulted
in different assembly results. Regardless of the cause of
the difference, our result suggests that when the number
of reads is large enough, obtaining subsets from all of
the available reads and performing multiple do novo
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assemblies might be beneficial. From the same dataset,
certain combinations of reads may provide better gen-
ome reconstruction results. The reason behind the dif-
ferences in assembly results may be the sequence
content of the reads, the real covered regions in the gen-
ome or other factors. Thus, further study is warranted to
generate selection criteria for genome assembly studies.

Conclusions

As more and more bacteria genome reconstruction pro-
jects are conceived, it is increasingly more important to
have guidelines and suggestions for designing the analyses.

In this study, we provide detailed paired-end read analyses
of real sequencing data from two bacteria and generate
some useful suggestions for future bacterial genome ana-
lyses. By using four different real datasets from two repre-
sentative genomes, we investigated the effect of merging
overlapping paired-end reads. We observed that the mer-
ging step could create longer reads with higher accuracy.
We further demonstrated that the improvement in read
accuracy could improve assembly when reads were fewer.
However, as the read number increased, paired-end infor-
mation rather than sequence length or quality is the key
factor dominating the outcome of de novo assembly. In
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addition, we also observed that the merging step may un-
expectedly create indels within reads that further create
indels in assembled contigs. Although these indels in con-
tigs can be eliminated when the depth of read coverage in-
creases, the elimination is less effective for genomes with
many repeats. In summary, our results suggest that mer-
ging paired-end data analysis is not always beneficial and
better avoided when the genome under study contains
many repeat sequences. These results shed new light on
genomic sequence construction.
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Additional file 1: Table S1-S7. Table S1 — Summary of mapping
reads to reference genome. Table S2 - Mismatch rates detected from
reads mapped to reference genome before and after merge by different
merge programs. Table S3 — Insertion rates detected from reads
mapped to reference genome before and after merge by different merge
programs.

Table S4 - Deletions rates detected from reads mapped to reference
genome before and after merge by different merge programs.

Table S5 — Q30* values for Group A from different libraries.

Table S6 — Q30* values for Group M from different libraries.

Table S7 - Tandem repeats in S. Parasanguinis FW213. (DOCX 36 kb)

Additional file 2: Figure S1. Number of misassemblies for assembly
results from different library sizes. Number of misassemblies for four
different library sizes (300 bp, 400 bp, 500 bp and 600 bp) for E. coli DH1
and S. Parasanguinis FW213 are plotted against different depth of read
coverage. A and B are from Group A [PE] which represents assembled
results from all reads assembled as paired-end reads. C and D are from
Group A [PE + SE] which represents assembled results from merged reads
and all the non-overlapped paired end reads. E and F are from Group A
[SE] which represents assembled results from all reads assembled as
single-end reads. The number of misassemblies decreases as the depth
of read coverage increases. Even though there are some fluctuations
when depth of read coverage is low, the number of misassemblies
reaches a steady number for all library sizes when depth of read
coverage is high. (TIFF 882 kb)

Additional file 3: Figure S2. N50 for assembly results from different
library sizes assembled by IDBA-UD and SPAdes. N50 values for four
different library sizes (300 bp, 400 bp, 500 bp and 600 bp) for E. coli DH1
and S. Parasanguinis FW213 are plotted against different depth of read
coverage. A, B, C and D are N50 from Group A [PE] and E, F, G and H are
N50 from Group A [SE] which are results from all reads assembled as
paired-end reads and single end reads, respectively. N50 increases as the
depth of read coverage increase and finally reach plateau. Different library
sizes show difference in N50 values while the smallest library size
(Lib_300) always gives the lowest N50 value. (TIFF 814 kb)

Additional file 4: Figure S3. Number of misassemblies for different
assembly strategies. Number of misassemblies for the de novo assembly
results for E. coli DH1 and S. Parasanguinis FW213 are shown together
with their standard errors of the mean. Group A [PE] and Group A [SE]
represent all reads assembled as paired-end reads and single end reads,
respectively. Group A [PE + SE] represents all the non-overlapped paired-
end reads assembled together with merged reads. Group M [PE] and
Group M [SE] represent Group M reads assembled as paired-end reads
and single end reads, respectively. The numbers of misassemblies
fluctuate a lot when depths of read number are low and gradually
decreases until they reach a steady number. The paired-end reads
(Group A [PE] and Group M [PE]) in S. Parasanguinis FW213 gave the
lowest number of misassemblies when depths of read number are high.
(TIFF 669 kb)

Additional file 5: Figure S4. N50 for assembly results from different
assembly strategies assembled by IDBA-UD and SPAdes. N50 values for
the de novo assembly results for E. coli DH1 and S. Parasanguinis FW213
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by IDBA-UD and SPAdes. Group A [PE] and Group A [SE] represent all
reads assembled as paired-end reads and single end reads, respectively.
Group A [PE + SE] represents all the non-overlapped paired-end reads
assembled together with merged reads. Group M [PE] and Group M [SE]
represent Group M reads assembled as paired-end reads and single end
reads, respectively. Group M slightly outcompete Group A when depth of
read coverage is low. However, Group A always has the highest N50
values when depth of read coverage is high. (TIFF 867 kb)

Additional file 6: Figure S5. Percentage of genome covered by
contigs assembled by different assembly strategies. Covered genome
fraction are shown for library size 300 bp and 400 bp. Group A includes
all reads without selection and Group M are read that containing
overlapped region. The covered fraction increases as depth of read
coverage increases. Higher percentage were found for Group M
comparing to Group A when depth of read coverage are low. However,
all strategies reach similar percentage of genome coverage when depths
of read coverage are high. (TIFF 457 kb)
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