

ERRATUM Open Access

Erratum to: Genome sequencing of the *Trichoderma reesei* QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

Alexander Lichius¹⁺, Frédérique Bidard²⁺, Franziska Buchholz¹, Stéphane Le Crom³, Joel Martin⁴, Wendy Schackwitz⁴, Tina Austerlitz¹, Igor V. Grigoriev⁴, Scott E. Baker⁵, Antoine Margeot², Bernhard Seiboth^{1*} and Christian P. Kubicek¹

Erratum to: BMC Genomics doi 10.1186/s12864-015-1526-0

Following the publication of our recent article in BMC Genomics [1] we wish to bring the following corrigendum to your attention. In the above paper, we wrote in the discussion on page 13: "These are V756F in XlnR (corresponding to V801 in XYR1) and A804V (based on our analysis; not A824V as stated by the authors) in XYR1". Our analysis of the XYR1 sequence was based on the available Trichoderma reesei QM6a XYR1 sequences deposited in the NCBI database [Protein Accession Number XP 006966092.1 and EGR48040.1]. Recently, Derntl et al. [2] identified that the second intron in xyr1 is in fact not spliced thus giving rise to a protein that, while maintaining the reading frame, is 20 amino acids longer. Consequently, the position A824V given by Derntl et al. [2] is correct, and the numbering of amino acids in our paper after G319 has to be increased by 20.

A corrected version of our statement would read: "These are V756F in XlnR of *A. niger* which corresponds to V821 in *T. reesei* XYR1, as well as A824V in XYR1 of *T. reesei* [35, 42]".

We apologize for this mistake, but would like to stress that none of the results or conclusions in our paper are affected by this change.

Author details

¹Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria. ²IFP Energies Nouvelles, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France. ³Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), FR 3631, Département des Plateforme, F-75005, Paris,

¹Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria France. ⁴US Department of Energy Joint Genome Institute, 2800 Mitchell Avenue, Walnut Creek, CA 94598, USA. ⁵Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

Received: 10 September 2015 Accepted: 10 September 2015 Published online: 22 September 2015

References

- Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, et al. Genome sequencing of the *Trichoderma reesei* QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics. 2015;16:326.
- Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR. Mutation of the xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used *Trichoderma* strains. Biotechnol Biofuels. 2013;6:62.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: bernhard.seiboth@tuwien.ac.at

[†]Equal contributors