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Abstract

Background: The Enhancer of split complex is an unusual gene complex found in Arthropod genomes. Where
known this complex of genes is often regulated by Notch cell signalling and is critically important for neurogenesis.
The Enhancer of split complex is made up of two different classes of genes, basic helix-loop-helix-orange domain
transcription factors and bearded class genes. The association of these genes has been detected in the genomes of
insects and crustaceans.

Results: Tracing the evolution of the Enhancer of split complex in recently sequenced Arthropod genomes indicates
that enhancer of split basic helix-loop-helix orange domain genes arose before the common ancestor of insects and
Crustacea, and before the formation of the complex. Throughout insect and crustacean evolution, a four-gene cluster
has been present with lineage specific gene losses and duplications. The complex can be found in the vast majority of
genomes, but appears to be missing from the genomes of chalcid wasps, raising questions as to how they carry out
neurogenesis in the absence of these crucial genes.

Conclusions: The enhancer of split complex arose in the common ancestor of Crustacea and insects, probably through
the linkage of a basic helix-loop-helix orange domain gene and a bearded class gene. The complex has been maintained,
with variations, throughout insect and crustacean evolution indicating some function of the complex, such as coordinate

regulation, may maintain its structure through evolutionary time.

Background

Evolutionary conserved complexes of genes are rare in in-
sect genomes [1] while relatively common in vertebrates
[2-4]. The best characterised is the Hox complex, found
in the genomes of widely diverse animals, in which inter-
linked and coordinate gene expression appear to stabilise
the genomic structure of the complex over evolutionary
time [5]. Complexes of genes that remain intact over wide
evolutionary distances in insect genomes presumably have
similar features to the Hox complex, such as coordinate
regulation, that maintain their genomic structure, while
the genome is rearranged around them.

The Enhancer of Split Complex (E(spl)-C) is an un-
usual and conserved complex of genes first identified in
Drosophila melanogaster. This complex differs from most
in that the genes it contains encode two completely differ-
ent sorts of proteins: bBHLH-Orange domain transcription
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factors [6, 7] (bBHLHO), and Bearded class proteins [8, 9]
(Brd). The association between these two types of genes
has been found in the genomes of both insects and crusta-
ceans [10], implying that this complex first formed through
the association of these genes rather than the more usual
gene duplication.

A limited survey of insect and crustacean genomes has
shown that the E(spl) complex is ancestrally made up of
three bHLHO encoding genes (PHLHI, bHLH2 and her)
and a single Brd-class gene [10]. The structure of the
complex is modified in some insects, Drosophila being an
example, where two bHLH-orange domain genes are ab-
sent from the complex and there are seven copies of the
remaining one, the Brd-class gene, ma, has been dupli-
cated and there are a range of unrelated genes inserted in
the complex [6, 9-16].

The E(spl)-C was first identified as a modifier of the
Notch mutant Split [17]. Subsequent studies have shown
that the bHLH proteins encoded by E(spl)-C act as ef-
fectors of Notch cell signalling [13, 18]. During neuro-
genesis in Drosophila, presumptive neuroblasts signal to
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surrounding cells in proneural clusters through the
Notch cell-signalling pathway (Reviewed in [19-21]).
This pathway leads to expression of E(spl)-C bHLH
genes [18], which act to repress the expression [22], and
function [23], of proneural genes, a set of transcription
factors that promote neural cell fate [24, 25]. Presump-
tive neuroblasts thus signal surrounding cells to block
their differentiation as neuroblasts through the activa-
tion of Notch cell signalling, and the expression of the
E(spl) bHLHO domain proteins [26—-29]. E(spl) bHLHO
domain proteins encode a c-terminal WRPW motif
which recruits the transcriptional repressor Groucho,
which in turn acts to attenuate gene expression by pro-
moting RNA polymerase pausing, and causes local his-
tone deacetylation [30]. E(spl) PHLHO domain proteins
thus target transcriptional repression to proneural
genes, and proneural gene targets.

Brd class proteins from the E(spl)-C, in contrast, an-
tagonise Notch signalling by interacting with Neuralised
[31], an E3 ubiquitin ligase, stimulating the degradation
of a Notch ligand, Delta [32]. In Drosophila, brd-class
proteins particularly act to pattern adult sensory precur-
sor formation [8, 9]. Bearded class genes encode small
proteins with amphipathic alpha helices, and little se-
quence conservation [9].

The genes contained within the E(spl)-C are regulated in
a range of ways. While individual enhancer elements for
some of the genes have been identified [33, 34], the entire
complex appears also to be activated by Su(H) [9, 35-40],
a transcription factor usually regulated by Notch signalling
[41]. This Notch responsiveness is also found in a crust-
acean, Daphnia [42]. Individual transcripts are repressed,
in Drosophila, by miRNAs binding to 3"'UTR located sites
(named GY, Brd and K- boxes) [15, 43, 44]. There is also
evidence for coordinate regulation of the E(Spl)-C by cohe-
sin [45], a chromatin structure regulating protein that coats
the E(spl)-C in cells and represses expression, and repres-
sion by Polycomb group proteins [46]. The genomics DNA
containing the E(spl)-C also is structured in three dimen-
sions in cells such that the chromatin of the complex inter-
acts with itself forming an isolated domain, but does not
interact with flanking regions [46]. This self-interactive
structure implies the complex is regulated in a coordinated
manner [46].

E(Sp])-C bHLH proteins are closely related to other
clades of insect bHLH-orange domain proteins, including
clockwork orange (cwo), Similar to Deadpan, (Side), Hairy
and E(spl) related with a YRPW domain (Hey), hairy (h),
deadpan (dpn). These genes have multiple roles in insects.
Hairy is a regulator of segmentation [47, 48], acting as a
pair-rule gene in many arthropods [49-51]. Deadpan [52]
has multiple roles in Drosophila development, such as
dosage compensation [53] and regulating neuroblast pro-
liferation through responding to Notch signalling [54].
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Hey has been shown to regulate neuron fate determin-
ation [55]. Cwo (clockwork orange) has a role in regulating
the circadian clock [56—59]. Side has no identified func-
tion in Drosophila. In non-arthropod animals, closely
related genes, the HES genes (hairy-enhancer of split
genes) act, in most situations, as effectors of Notch
signalling [60, 61] though some these genes do have
non-Notch related roles [62, 63]. Given this close phylo-
genetic relationship, and the role in Notch signalling
conserved between arthropods and vertebrates, it seems
likely that Notch responsiveness, and a role as an ef-
fector of Notch signalling, may be an ancestral function
for this group of transcription factors. Indeed expres-
sion of E(spl)-mé produces a neurogenic effect when
mis-expressed in Xenopus embryos [64].

The unusual nature of the E(spl)-C, containing two
types of genes, and its potential coordinate regulation,
make understanding the dynamics of its evolution im-
portant. Here I examine the structure and relationships
of the E(spl)-C from arthropod and onychophoran
genomes, particularly those provided by the i5K consor-
tium [65, 66]. The i5K consortium provides high quality
Arthropod genome sequences that allow both the identi-
fication of genes, and examination of genome structure.
This dataset allows us to trace both the origins and sub-
sequent evolution of the E(spl)-C in arthropods.

Results and discussion
Phylogeny of all isolated E(spl) bHLH genes recovers
three major clades
Searching for E(spl)-like bHLH sequences in arthropod
genomes identifies large numbers of sequences with
similarity to E(spl) bHLHs, and other clades of bBHLHO
domain sequences. In most species of insects and Crust-
acea, multiple bPHLHO sequences can be identified with
strong similarity to E(Spl)-C bHLHs, and these genes are
often found adjacent to each other in contigs, linkage
groups or genome scaffolds. Aligning the protein prod-
ucts of these genes and reconstructing their relationships
using Bayesian phylogenetics [67] identifies the three
major clades of E(spl) bHLHO proteins as first described
in Duncan and Dearden [10] (her, bHLH1 and bHLH?2)
(Fig. 1). The analysis also indicates that the Strigamia
maritima (centipede) genome contains a number E(Spl)
bHLH proteins, but these do not fall into the three clas-
ses of E(spl) bHLH proteins found in crustacean and
insects. Orthologues of non E(Spl) bHLHO proteins
robustly fall outside the E(Spl) bHLH clades (Protein
identifiers refer to names in Additional file 1: Table S1).
Branch-lengths within the E(spl) bHLH clades are
short, indicating strong conservation of sequence, but
these branch lengths increase between bHLH1 proteins
from Diptera, implying more sequence divergence in
that group. The assignment of E(spl) bHLH genes from
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Fig. 1 Relationships of E(Spl) bHLH genes. Bayesian Phylogram of E(spl)-C related bHLH proteins generated using WAG model of amino-acid evolution.
Clade of bHLH proteins are marked by coloured areas and named. Node labels indicate posterior probabilities. The tree is rooted with hairy sequences
from insects and chelicerates. Protein identifiers refer to names in Additional file 1: Table S1

crustacean and insect genomes to these three clades of
allows us to interpret the genomic structure of the E(spl)-
C in crustacean and insect genomes.

Genomic analysis of E(spl) genes indicates clusters and
conserved structure

Duncan and Dearden [10] identified a four gene E(spl)
complex as the ancestral state for insects and Crustacea.
This four-gene cluster (bHLH-2, her, ma and bHLH-I)
was identified in the genome of the crustacean Daphnia
and in sequenced insect genomes [10]. I have expanded
this analysis, using the i5k consortium data, to identify

E(spl)-Cs within Arthropod and Onycophoran genomes
and then used phylogenetic analyses (Fig. 1) to categor-
ise those genes. This analysis indicates that the bHLH
complex is a component of the vast majority of insect
genomes, but there are clade and species-specific losses
and expansions. In Chelicerates, and the partial genome
of an onycophoran (Velvet worm, Non arthropod Ecdy-
sozoan, basal to arthropods), we can find no evidence
for bHLHO proteins that are orthologous (by reciprocal
blast) to E(spl) bHLHO proteins (Fig. 2). A myriapod
genome [68] (Strigamia) encodes 5 E(spl) proteins, but
these are not co-located in the genome. In two
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Fig. 2 Genomic Structures of E(spl) complexes. Schematic phylogeny of Arthropods with structures of E(spl)-C from examined species. Colour coding
of bHLH genes follows Fig. 1 (bHLH-1, light blue; bHLH2, Dark blue; her, green). Red hexagons indicate ma genes. White ovals indicate inserted genes
with no homology to bHLHO or ma, brown ovals represent Tubulin Tyrosine ligase genes. Purple circles mark gooseberry genes. Where the colour of a
bHLH gene is lightened, identification of this gene is only through placement in the complex due to gaps in the genome sequence. Where a white
square is shown, placement in the complex cannot indicate the identity of the partial gene sequence. Yellow squares indicate E(spl) type bHLHs from
Strigamia that are not able to be classified. Arrows indicate direction of transcription. Structures for the Endopterygota are predicted based on analyses
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which ma genes could be identified by tblastn [69] of the
genome, they were found in the E(spl)-C except in Dros-
ophila, where a complex of Brd-class genes lies outside
the E(spl)-C [31]. Given the difficulties in identifying these
genes, it is possible that other members of the Brd-class
are present outside the E(spl)-C in other species.

In Eurytemora, a copepod crustacean, the E(spl)-C is
modified with duplications of all three E(spl) bHLH
genes (two bHLH-1, three her and 5 bHLH2). Alongside
this, no ma gene can be identified.

In insects, a four-gene complex can also be identified
in deeply branching clades (Fig. 2). In a mayfly (Ephem-
era) and a termite (Zootermopsis), a four-gene complex,
identical to Daphnia, is present.

In the large hemipteroid clade of insects, examples of a
four-gene complex are relatively common (Frankliniella
(Western flower thrips), Acrythosiphon (Pea Aphid, though
this is split between two contigs) [10], and Homalodisca
(Glassy-winged sharpshooter)). Despite this conservation,
gene-loss has occurred in some Hemipteroid lineage, with
species such as Cimex (bedbug) and Oncopeltus (milkweed
bug) having only two bHLH genes (her and bHLH2) and
species such as Gerris (Waterstrider) and Halyomorpha
(Brown marmorated stink bug) having a single E(spl) gene
(bHLH2). The patterns of change in the complex imply
that such losses are lineage or species specific, and that
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the selective pressure to maintain the full E(spl)-C is
somewhat reduced in this assemblage. In species without
the full complex of genes, ma is invariably missing, though
its fast sequence evolution means that it could be located
elsewhere in the genome.

Within Endopterygote lineages, the E(spl)-C appears
more stable. In the Hymenoptera (Fig. 3), the classic four-
gene complex is present in most species, though in
Orussus (Parasitic woodwasp) one gene (her) is missing,
and in Chalconid wasps (Trichogramma, Copidosoma and
Nasonia) no complex is detectable (see later). With these
exceptions the E(spl)-C (including flanking and unrelated
genes inserted into the complex (see later)) is completely
conserved in gene complement, order and orientation.

In Coleoptera, by contrast, the complex is stable, but
only contains three genes (her, ma and bHLH?2) (Fig. 4).
An orthologue of bHLHI is not present in any of the cole-
opteran genome examined. In Leptinotarsa (Colorado
potato beetle), her and ma are missing, and bHLH2 has
been duplicated. The fact that bHLH]I is absent from all
Coleopteran species examined indicates that it was likely
lost early in Coleopteran evolution.

The basal four-gene complex can be found in the ge-
nomes of the Lepidopterans (Fig. 5) Manduca (Tobacco
Hornworm), and Bombyx [10] (Silk moth), and possibly
in Danaeus (Monarch Butterfly) though in this genome

Hymenoptera
Tenthredinoidea Athalia
Orussoidea
Orussus
Chalcidoidea
Trichogramma
Copidosoma
] Nasonia
Vespoidea
D Atta
Acromyrmex
Solenopsis
Apoidea .
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I o rergene Bombus
W ccorohuagene
@ cormagene Apis florea
. w;‘tugl igase .
@ Gooseberygene Apis mellifera

gaps in the genome sequence. Arrows indicate direction of transcription

Fig. 3 Genomic Structures of E(spl) complexes from Hymenoptera. Schematic phylogeny of Hymenoptera with structures of E(spl)-C from
examined species. Colour coding of bHLH genes follows Fig. 1 (bHLH-1, light blue; bHLH2, Dark blue; her, green). Red hexagons indicate ma,
genes. White ovals indicate inserted genes with no homology to bHLHO or ma, brown ovals represent Tubulin Tyrosine ligase genes. Purple circles
mark gooseberry genes. Where the colour of a bHLH gene is lighter, identification of this gene is only through placement in the complex due to
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Fig. 4 Genomic Structures of E(Spl) complexes from Coleoptera. Schematic phylogeny of Coleoptera with structures of E(spl)-C from examined species.
Colour coding of bHLH genes follows Fig. 1 (bHLH-1, light blue; bHLH2, Dark blue; her, green). Red hexagons indicate ma, genes. White ovals indicate
inserted genes with no homology to bHLHO or ma. Arrows indicate direction of transcription
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the complex is split across two contigs. The complex is
reduced to two genes (bHLHI and her) in Heliconius
(Postman Butterfly). This is the only insect species of
the 42 studied that does not have a bHLH2 gene, raising
the possibility that this may be a genome sequencing
error. In a species of Caddisfly (Limnephilus, sister group
to the Lepidoptera) only bHLH2 can be found. It is un-
clear if this is species specific or lost in the entire lineage.
In Diptera (Fig. 6), PHLHI is absent from all genomes
examined. In the Cuculidae (Anopheles, Aedes and Culex),

Lepidoptera and Trichoptera

Trichoptera

Limnephilus

Lepidoptera

Heliconius —i—i—
Danaess —il— -—@——

I conorin gene

I conorhhergene Bombyx _i_m_i_
W coororiogene

@ corrmagene

O Non-E(spl) gene Manduca w

Fig. 5 Genomic Structures of E(spl) complexes from Lepidoptera and
Trichoptera. Schematic phylogeny of Trichoptera and Lepidoptera with
structures of E(spl)-C from examined species. Colour coding of bHLH
genes follows Fig. 1 (bHLH-1, light blue; bHLH2, Dark blue; her, green).
Red hexagons indicate ma, genes. White ovals indicate inserted genes
with no homology to bHLHO or ma. Arrows indicate direction

of transcription

her is also absent from the genome and ma and bHLH2
make up the complex. In the Brachycera, the complex is
expanded, with multiple copies of bHLH2; 7 in Ceratitis
(Medfly), 7 in Drosophila species and 9 in Lucilia
(Common Green Bottle fly). Ma is also expanded, with
two copies in each genome. In Drosophila, her is
present in the genome, though not linked to the E(spl)-
C. In Lucilia and Ceratitis, no her ortholog is present.

Her is present in the E(spl)-C of Mayetiola (Hessian
fly), a more deeply branching fly, and there is an uniden-
tifiable gene (due to a gap in genome sequence), in the
same position in the fragmentary genome of Lutzomyia
(Blackfly). These patterns imply that at least a three gene
complex (her, ma and bHLH2) was present in the com-
mon ancestor of Diptera, but that gene loss (Culicidae)
and expansion of the complex (Brachycera) have exten-
sively modified the E(spl)-C in this group.

In most of the complexes I have identified, the orientation
of genes with respect to the direction of transcription of ma
is conserved. bHLH-1 and her are transcribed on the oppos-
ite strand to ma, and bHLH2 on the same strand. The only
variations to this pattern are in Diptera (Fig. 6) where the
multiple copies of bHLH2 in Brachycera are transcribed
from either strand, and in Culex (Mosquito), where ma and
bHLH? are transcribed from opposite strands.

These data imply that the origins of the E(spl)-C lie in
the pan-crustacean clade. I can find no evidence for
E(spl)-C bHLH genes in chelicerates (4 genomes), the
most basally branching clade of arthropods, nor the ony-
chophora, the closest non-arthropod ecdysozoan group.
While this analysis is not conclusive as to the presence of
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these genes in onychophorans (due to the partial nature
of the genome sequence), their absence in all chelice-
rates examined is best explained by absence of these
genes in this lineage, but could plausibly be due to
gene loss.

The patterns of conservation, gene loss and expansion
indicate that the E(spl)-C has a history of conservation
of an ancestral four-gene structure, with gene-loss in
some lineages, usually not affecting bHLH2, and expan-
sion via gene duplication in Brachyceran flies, and the
copepod Eurytemora. These expansions are difficult to
explain, as their patterns of expansion are different. In
Eurytemora, all bLHLH genes are expanded, while ma is
missing. In Brachycera, bHLH1 and her are missing from
the complex, with an expansion of bHLH2 and ma.
Given there are many species with two, or only one class
of E(Spl) gene, these expansions are not best explained
as a way to replace missing members of the complex,
but may be related to complexity of gene regulation, or
pattern formation, required from the complex.

Insertions into the E(spl)-C

In Drosophila melanogaster (Fig. 6), 2 non bHLHO/ma
genes are found in the E(spl)-C. These genes, mI(encoding
a Kazal-type protease inhibitor) and m6 (encoding a pro-
tein with a Myelin proteolipid protein PLP), do not pro-
duce Notch signalling- like defects when mutant, though
m6, like the other E(spl)-C genes, is regulated by Notch
signalling [70]. The insertion of m1 and m6 in the complex
are conserved in other Drosophilids [10, 71] but only m1 is
conserved in the Bracyceran flies Ceratitis and Lucilia.
Flanking the Drosophila complex is another Notch related

gene, groucho, which encodes a protein that interacts with
E(spl)-bHLH genes to supress gene expression [30, 72].
This gene does not flank the E(spl)-C outside Drosophila
species.

Unrelated genes are inserted into the E(spl)-C in many
insect species but these insertions are most often not con-
served between species. The exception to this are a set of
tubulin tyrosine ligase genes inserted between bHLHI and
her in Hymenopteran genomes (Fig. 3). One or two of these
genes are present in this location in all Hymenopteran ex-
amined that have an E(spl)-C. The maintenance of this in-
sertion over 250 million years of evolutionary time, and the
expression pattern of one of these genes in Honeybees [10]
implies that these tyrosine-tubulin ligase genes may be reg-
ulated by Notch signalling.

The stability of the E(spl)-C in hymenopteran genomes
extends to flanking genes. All Hymenopteran complexes
are also flanked by a gene named gooseberry (Fig. 3).
Gooseberry is a paired-box containing transcription fac-
tor that has been shown to have roles in patterning the
nervous system and cuticle in a number of insect species
[73-79] including hymenoptera [80, 81]. This gene is
also found flanking the E(spl)-C in Homoladisca (Fig. 2),
implying the association of gooseberry and E(spl)-C may
date from the common ancestor of Endopterygota and
the hemipteroid assemblage.

Chalcid Wasps have lost the E(spl) complex

While the E(spl)-C in the hymenoptera is highly con-
served and stereotyped, I can find no evidence for
E(spl)-C bHLHO genes in the genomes of three chalcid
wasps. These species have a full complement of other
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bHLHO domain genes (Fig. 7), but no E(spl)-C ortholo-
gues are present in these genomes, either distributed, or
in a complex. That this pattern of loss is present in three
genomes, one of which is the well-sequenced (both ge-
nomes and transcriptomes) Nasonia genome, implies that
loss of the complex in this group is not a sequencing error,
but that Chalcid wasps have lost their E(spl)-C. These are
the only group yet found in insects that do not have identi-
fiable E(spl)-C genes. All of these wasp’s genomes encode
the core components of the Notch signalling pathways, as
well as other direct targets of Notch signalling (eg glass,
sugarless etc.) (data not shown). This deficit is specific,
therefore, to the genes of the E(spl)-C. That the E(spl)-C is
missing from the genomes of these wasps raises important
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questions as to how cell specification in the nervous system
of these animals is achieved.

Interestingly, studies of the effect of Nasonia venom on
their fly hosts indicates that E(spl)-C genes are upregu-
lated in the host in response to the venom [82], possibly
to trigger developmental arrest. Is it possible that the evo-
lution of resistance to their own venom has necessitated
the deletion of the E(spl)-C from the genomes of wasps
that use this mechanism?

Origins of the e(spl) complex

E(spl) bHLHO proteins are related to a broad family of
BHLHO proteins found in animal genomes. In arthro-
pods, 5 major families (Hairy/deadpan, Side, clockwork
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orange, hey and E(spl)) are present. These proteins are
related to HES genes (Hairy/E(spl)-like proteins) found
in Deuterostomes and Lophotrochozoan genomes [61]. I
reconstructed the relationships between these genes
using Bayesian techniques, focussing particularly on
deep arthropod relationships, in order to understand the
origins of E(spl)-C bHLHO proteins (Fig. 8). This ana-
lysis indicates that all of the 5 families of arthropod
bHLHO proteins are related to the HES genes of other
metazoa. Hairy/deadpan, side, cwo, hey and E(spl) are all
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equally related to the Notch regulated HES genes. E(spl)
proteins are, however, restricted to Myriapods, Crustacea
and Insects. The case of Strigamia maritima is an illumin-
ating one. In this genome there are five genes encoding
proteins closely related to E(spl)-C proteins, as well as ex-
amples of the other arthropod bHLHO (excepting Side).
Strigamia also encodes two proteins similar to HES from
Lophotrochozoa. Chelicerates (including 1 mite, 1 tick

and two spiders) have a range of bHLHO proteins, but no
E(Sp))-C related genes.
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The E(spl)-like genes from Strigamia do not form a
cluster in the genome, and the proteins encoded by these
genes form a clade separate to the three crustacean/insect
E(spl)-C bHLH clades. As most phylogenetic examina-
tions of the placement of myriapods within the arthropods
indicates that they are the sister group to crustaceans and
insects, the origins of E(spl)-c bHLH proteins must lie
somewhere after the separation of the lineage leading to
chelicerates, but before the last common ancestor of in-
sects/crustacea and myriapods. E(spl)-C bHLHO proteins
thus pre-date the origin of the E(spl)-C, which is present
only in the genomes of insects and crustacea.

These differences in the organisation of the E(spl)-C
genes and complex mirror, to some extent, differences be-
tween these clades in the presence of the neural stem
cells, neuroblasts, that the E(spl)-C regulates. In chelice-
rates and myriapods there is no evidence for cells similar
to the neural stem cells that arise out of proneural clusters
and repress their neighbours through Notch signalling
and the E(spl)-C in Drosophila [83—87]. Neither of these
groups have an E(spl)-C in our analyses, while Crustacea
and insects, which do have identifiable neuroblasts, do.
There is some evidence that Myriapods, which have no
E(sp])-C but do have E(Spl) bHLHO proteins, may have
specialised neural precursors in groups of cells specified
to become neural [83]. Understanding how neural cells
are specified in these groups, and how this is related to
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Notch signalling, will allow us to determine if the for-
mation of the E(spl)-C is linked to the evolution of
neuroblasts.

Conclusions
The genomes of arthropods contain few evolutionary con-
served gene complexes [1], the most well known being the
Hox [5], runt [88] and E(spl)-C [10]. The E(spl)-C is re-
stricted to Crustacea and insects, but the key bHLH genes
arose before the formation of the complex. The complex
appears to have become assembled in the lineage leading
to insects and crustaceans, possibly though the association
of the bHLH genes (with a long evolutionary history of
Notch responsiveness) with the ma Brd-class gene (Fig. 9).
Presumably the formation of this complex gave some
advantage in the regulation or expression of these genes,
cementing the structure of the complex. The regulation of
this complex in Drosophila through chromatin conform-
ation regulators [45, 46], and the suggestion of coordinate
regulation [46], may provide an explanation for the con-
servation of the complex through 540 million years of
arthropod evolution. This complex has remained stable in
insect genomes, but while gene-loss and duplication has
reshaped it in some lineages, its complete absence has
only been detected in a group of Chalconid wasps.

The pattern of evolution of the E(spl)-C implies some
regulatory reason for the conservation of its structure,
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perhaps on a par with the well-described coordinate regu-
lation of the Hox complex [5]. Examining the expression
and function of these genes in species with variations of
the complex, and in deeply branching groups such as myr-
iapods, will provide insight into the reasons behind the
conservation of this remarkable gene complex.

Methods

Gene identification

BHLHO domain genes and Brd-class genes were identified
in arthropod genomes using Blast [69], with orthology
assigned using a reciprocal blast best-hit approach. Coding
sequences were either extracted from gene prediction sets,
or, if such predictions were absent or erroneous, using
FGENESH [89] on contigs identified as containing bHLHO
sequences using tblastn [69]. Predicted proteins were
generated and aligned using CLC Genomics Workbench
(http://www.clcbio.com).

Genomic analyses were carried out using CLC Genomics
Workbench to visualise the placement of bPHLHO genes on
scaffolds and contigs. Predicted proteins encoded in these
regions were analysed with blastp [69], in the first instance,
and HMMER [90] (to identify Brd-class encoding genes).

Phylogenetics

All phylogenetics were carried out using MrBayes [67]
using the WAG model of protein [91] which proved to
be the most appropriate model after testing using mixed
models. Monte-Carlo Markov chains were run for
1000000 generations with the initial 25 % of trees dis-
carded as burn-in. Consensus trees were visualised with
Dendroscope [92] or CLC Genomics Workbench.
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