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Abstract

Background: The identification of protein-protein interactions contributes greatly to the understanding of
functional organization within cells. With the development of affinity purification-mass spectrometry (AP-MS)
techniques, several computational scoring methods have been proposed to detect protein interactions from AP-MS
data. However, most of the current methods focus on the detection of co-complex interactions and do not
discriminate between direct physical interactions and indirect interactions. Consequently, less is known about the
precise physical wiring diagram within cells.

Results: In this paper, we develop a Binary Interaction Network Model (BINM) to computationally identify direct
physical interactions from co-complex interactions which can be inferred from purification data using previous
scoring methods. This model provides a mathematical framework for capturing topological relationships between
direct physical interactions and observed co-complex interactions. It reassigns a confidence score to each observed
interaction to indicate its propensity to be a direct physical interaction. Then observed interactions with high
confidence scores are predicted as direct physical interactions. We run our model on two yeast co-complex
interaction networks which are constructed by two different scoring methods on a same combined AP-MS data. The
direct physical interactions identified by various methods are comprehensively benchmarked against different
reference sets that provide both direct and indirect evidence for physical contacts. Experiment results show that our
model has a competitive performance over the state-of-the-art methods.

Conclusions: According to the results obtained in this study, BINM is a powerful scoring method that can solely use
network topology to predict direct physical interactions from AP-MS data. This study provides us an alternative
approach to explore the information inherent in AP-MS data. The software can be downloaded from https://github.
com/Zhangxf-ccnu/BINM.

Keywords: Protein-protein interactions, Direct physical interactions, Scoring methods, Affinity purification mass
spectrometry data

Background
Proteins often perform their functions through physi-
cally binding with other partners. Thus, the identification
of direct physical protein-protein interactions is critical
in elucidating the structural and functional architecture
of the cell [1], and further in exploring mechanisms of
human diseases [2].
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There are two leading high throughput experimental
technologies for identifying protein interactions – yeast
two-hybrid (Y2H) [3–5] and affinity purification followed
by mass spectrometry (AP-MS) [6–8]. Y2H screening is
a widely used technique to discover direct physical inter-
actions between proteins. Due to protocol-specific biases,
interactions identified by Y2H are enriched with transient,
condition-specific and inter-complex interactions [9] and
have high levels of false positives and false negatives
[10, 11]. Therefore, Y2H is not sufficient to obtain a
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precise and comprehensive binary interaction map within
protein complexes and cells.
AP-MS is an alternative approach to detect interactions

within protein complexes. Unlike Y2H that focuses on
detecting direct physical interactions, AP-MS is designed
to identify co-complex interactions which include both
direct physical interactions (between proteins that share a
common binding interface) and indirect co-complex asso-
ciations (between proteins that do not physically inter-
act with each other, but belong to common complexes)
[12–14]. Recently, several scoring methods have been
proposed to predict co-complex relationships from AP-
MS data [6, 7, 13, 15–19]. However, most of them do
not distinguish between direct interactions and indirect
interactions [13]. Consequently, less is known about the
internal topology and the physical interactions within the
protein complexes [5, 13, 20]. To address this problem,
we attempt to predict direct physical interactions from
AP-MS data by discriminate between direct interactions
and indirect interactions. For the sake of convenience, we
use “direct interaction”, “physical interaction” and “binary
interaction” interchangeably in the rest of the text.
Although AP-MS is not designed to identify binary

interactions, based on the data it generates, we could
distinguish direct interactions from indirect interactions
by analyzing the topological structure of AP-MS data
[12, 20–22]. The spoke and matrix models are two clas-
sical approaches to transform co-complex associations
into direct interactions. The spoke model considers only
bait-prey interactions; while the matrix model takes into
account both bait-prey and prey-prey interactions. In
general, the spoke model has a high false negative rate;
while the matrix model has a high false positive rate [21].
Friedel and Zimmer [20] presented a method for iden-
tifying direct interactions by calculating the union of all
maximum spanning trees (MST) of a given co-complex
network. Their method strictly classified co-complex
interactions into direct physical interactions and indirect
co-complex interactions, but did not reassign scores to
interactions to quantify their reliability. Therefore, the
performance may depend heavily on the accuracy of
data under consideration. Kim et al. [12] proposed
a new method to distinguish direct interactions from
indirect ones. However, it is computational expensive
[12]. Recently, Saraç et al. [22] developed a supervised
classification-based method to distinguish binary, co-
complex and functional interactions in functional net-
works. However, they did not investigate the performance
of their method on detecting direct interactions from
AP-MS data.
In gene regulatory network inference literature, two

landmark methods have been proposed to cleanup the
observed network which includes direct links obscured by
indirect links [23, 24]. Both methods are based on two

assumptions: first, the observed network is the sum of
both direct and indirect links; second, an indirect link
from a source to a target is mediated by the direct neigh-
bors of the target. They developed different mathematical
methods to derive the strengths of direct links. Links with
large strengths are kept as direct links; whereas links with
small strengths are treated as indirect ones and removed.
Inspired by the two prominent methods, we develop a

Binary Interaction Network Model (BINM) to discrimi-
nate the direct and indirect interactions in co-complex
interaction network. BINM introduces a parameter to
represent the likelihood that an observed co-complex
interaction would be direct. It assumes that the observed
co-complex interactions are the sum of both direct
and indirect interactions, and that indirect interactions
are captured by direct interactions through the com-
mon neighbors. Based on these two assumptions, BINM
can well capture the relationships between observed
co-complex interactions and the underlying direct inter-
actions. In particular, for an observed co-complex inter-
action network which is inferred from AP-MS data, it
identifies direct physical interactions using the estima-
tors of model parameters. We test our model on two
yeast datasets which are constructed from a same com-
bined purification data using two different scoring meth-
ods. The performance is assessed using different types
of reference sets that represent complementary evidence
for physical interactions: (1) reference sets that derived
from available direct physical interactions, (2) reference
sets that derived from three-dimensional structural infor-
mation, (3) reference sets that derived from manually
curated protein complexes, and (4) reference sets that
derived from genetic interaction profiles. Comparative
experiments demonstrate that our model has a better
performance than state-of-the-art methods.

Methods
AP-MS data sets
We use a combined set of purifications from two inde-
pendent large-scale screens in Saccharomyces cerevisiae
[6, 7]. Two scoring methods [15, 16] are used to identify
high confidence co-complex interactions from the com-
bined AP-MS dataset. Collins et al. [15] used a scoring
scheme called purification enrichment (PE) to analyze the
combined purification data. Applying a score threshold
(of 3.19), they identified 9070 high confidence interactions
among 1622 proteins. They also used LOESS regression
[25] and the pool adjacent violators algorithm [26] to scale
the PE scores onto the interval 0 − 1. Here we focus on
the 9070 high confidence interactions and use the scaled
scores to represent their reliability. These interactions
and their scores can be downloaded from the supporting
web-site (http://interactome-cmp.ucsf.edu/). Friedel et al.
[16] used the bootstrap technique [27, 28] to determine

http://interactome-cmp.ucsf.edu/
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confidence scores. They calculated Bootstrap confidence
scores for 62876 interactions between 5195 proteins. All
Bootstrap confidence scores are between 0 and 1. Here we
only consider interactions with confidence scores ≥ 0.1,
and we obtain 10096 interactions between 2684 proteins.
We use a cutoff of 0.1 such that only about 10000 high con-
fidence interactions are considered. Note that although
there exists direct interactions beyond the cutoff of 0.1,
interactions at this low cutoff have only very low confi-
dence and are thus omitted [13]. The Bootstrap scores for
the combined purification data can be downloaded from
http://www.bio.ifi.lmu.de/Complexes. We refer to the two
datasets as Collins and Friedel, respectively. The two
datasets are constructed using different scoring schemes
on a same combined set of purification observations,
therefore they can be used to test how different AP-MS
scoring schemes affect the performance of the proposed
model. The detailed description of the statistical model
used to derive the types of confidence scores is beyond the
scope of the paper and the interested reader is referred to
the original publications [15, 16].

Reference data sets
Because no true gold standard for direct physical inter-
actions is available, we compile three independent and
complementary reference sets of binary interactions. We
first use the entire high-quality binary interactions in the
HINT database (version 6/17/2015) as a gold standard
[29]. The HINT database collected interactions from sev-
eral databases and filtered them to remove low-quality
interactions. Therefore, this reference set has a high relia-
bility and coverage. In a similar manner to [13, 20], we also
compile two reference sets using all interactions deter-
mined with yeast two-hybrid assays (denoted as Y2H) [4]
and protein-fragment complementation assay (denoted
as PCA) [30] in the BioGRID database (version 3.4.125)
[31]. The three reference sets provide direct evidence for
physical interactions.
We also construct a reference set to estimate the quality

of the inferred direct interactions on the level of three-
dimensional structure. Zhang et al. [32] calculated a like-
lihood ratio through structural modeling for each pair of
proteins to indicate whether they interact physically. Their
study showed the effect of three-dimensional structural
information on the identification of physical interactions.
Therefore, the three-dimensional structure information-
based score is an effective data to test the performance
of our model. The structure-derived scores are obtained
from the PrePPI database [33].
We use the CYC2008 [34] and SGD [35] benchmarks

as the gold standards of yeast protein complexes. The
CYC2008 catalogue is downloaded from http://wodaklab.
org/cyc2008/ on July 4, 2015. We derive the SGD
complexes following the methods of [36, 37]. The SGD

annotations and the cellular component ontology used to
generate the SGD complexes are downloaded from the
Gene Ontology database (version: July 4, 2015) [38]. GO
annotations with the IEA, ND, NAS evidences and the
NOT qualifier are not considered here.
The genetic interaction profiles are obtained from

a recent large-scale functional study in yeast [39].
We download the lenient cutoff interaction set from
http://drygin.ccbr.utoronto.ca/~costanzo2009/. We focus
on the lenient cutoff dataset because it offers the highest
covered proteins and includes only statistically signifi-
cant interactions. Then we compute the genetic profile
similarities for pairs of proteins by computing Pearson’s
correlation coefficients between their the genetic interac-
tion profiles. Analogous to [13, 39], all protein pairs with
a genetic interaction profile similarities ≥ 0.2 are used
to construct a functional map. Protein pairs in this map
define a genetic interaction reference set.

Binary interaction network model
Before introducing our model, we first give some nota-
tions and formalize the problem. Given a set of observed
weighted co-complex interactions between n proteins, we
use a weighted network with adjacency matrix Wobs to
model it. The matrix Wobs stores the confidence scores of
these interactions, where each entry wobs

ij represents the
likelihood that proteins i and j belongs to a common com-
plex. Interactions not observed are given a weight of 0.
We do not consider self-interactions in this study. This
matrix can be derived from AP-MS data using some scor-
ing methods (Fig. 1a-b). We assume that all confidence
scores are in the range of 0 to 1. If the scores are from −∞
(or 0) to ∞, they should be scaled to [ 0, 1].
Since the co-complex interaction network derived from

AP-MS data contain both direct physical interactions and
indirect interactions (Fig. 1b), the binary interactions can-
not be derived from Wobs directly. To this end, two non-
negative matrices Wdir =

(
wdir
ij

)
and Windir =

(
windir
ij

)
,

which are initially unknown, are introduced to represent
the strengths of direct and indirect interactions, respec-
tively. The problem of identifying binary interactions from
AP-MS data is then converted to the estimation of Wdir
givenWobs. Once the estimator ofWdir is obtained, we can
predict binary interactions according to the value of this
estimator (a higher value indicates the corresponding two
proteins are more likely to physically interact with each
other).
Now we introduce a mathematical model, named as

binary interaction network model (BINM), to capture the
topological relationship between observed co-complex
interaction matrix Wobs and direct interaction matrix
Wdir . The observed co-complex interaction confidence
scores are usually constructed according to two types of

http://www.bio.ifi.lmu.de/Complexes
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Fig. 1 Flow chart of binary interaction network model. a Experimental AP-MS data. It includes two type of observations: bait-prey observations and
prey-prey observations. b Co-complex interaction network (Wobs). It can be derived from AP-MS data using some scoring schemes. It often contains
both direct physical interactions and indirect interactions with no clear separation. This map illustrates the Collins and Friedel datasets. c Schematic
overview of BINMmodel. Our model captures topological relationships between direct physical interactions and observed co-complex interactions
in terms of the following assumptions: 1) the observed co-complex interactions are the sum of both direct physical interactions and indirect
interactions; 2) the indirect interactions are captured by direct interactions through the common neighbors. Then the binary interaction detection
problem can be transformed into a nonnegative constrained optimization problem. d Binary interaction network (Wdir ) identified by BINM. After
finding an optimal solution for the BINM model, the observed interactions are ranked by their BINM scores (e.g.,Wdir ). Top ranked interactions can
be predicted as direct physical interactions. The map depicts binary networks induced by the top 2562 and 3018 interactions for the Collins and
Friedel datasets, respectively. We discuss how to determine the rank cutoffs in the Results section
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observations: direct bait-prey observations and indirect
prey-prey observations where two proteins are both iden-
tified as preys in a purification with a same protein as
bait [6, 15, 16]. Therefore, we intuitively assume that
the observed interactions are the sum of direct physical
interactions and indirect interactions; that is

Wobs = Wdir + Windir . (1)

The indirect co-complex association score between two
proteins i and j is usually calculated based on the co-
occurrence of them as preys in the same purifications.
The more common bait proteins two prey proteins share,
the more likely they belong to same complexes. Therefore,
we assume the confidence score of indirect interaction
between proteins i and j (i �= j), windir

ij , can be captured
by summing the effects mediated by the common neigh-
bors of them in binary interaction network Wdir , that is
windir
ij = ∑n

k=1 wdir
ik wdir

kj . The above relationship can be
rewritten in matrix form as follows:

D (Windir) = D
(
W 2

dir
)
. (2)

Here D(·) sets the diagonal terms of a matrix to zero
such that self-interactions are omitted.
For an observed co-complex interaction network Wobs,

the question is how to estimateWdir according to Eqs. (1)
and (2). Instead of solving the non-linear equations, we
transform this problem into the following optimization
problem by taking Eq. (2) into Eq. (1) (Fig. 1c):

min
Wdir≥0

∥∥D (
Wobs − (

Wdir + W 2
dir

))∥∥2
F + λ ‖Wdir‖2F ,

(3)

where ‖·‖F denotes the Frobenius norm of a matrix, and
Wdir ≥ 0 means each entry wdir

ij ≥ 0. The first term rep-
resents the error which quantifies how well the observed
co-complex interactions can be captured by the direct
physical interactions in terms of quadratic loss function.
Since the observed co-complex interactions have high lev-
els of noise [11], a complex estimator ofWdir that approx-
imates the observed data best may result in overfitting.
Therefore, we introduce a regularization term, ‖Wdir‖2F
(the second term), to penalize complex estimators in a
similar manner to ridge regression [25]. Here λ ≥ 0 is a
tuning parameter that balances the two terms. Selecting a
good value of λ is critical; we will discuss the effect and
choice of λ in the next section.
To optimize Eq. (3) forWdir , we adopt the multiplicative

update rule [40] which is a special case of gradient descend
method that keeps nonnegativity ofWdir through an auto-
matic step selection. According to this rule, we obtain the
following updating formula:

Wdir ← Wdir ·
(

Wobs + Wdir
TWobs + WobsWdir

T

Ŵobs + WdirTŴobs + ŴobsWdirT + λWdir

). 14
,

(4)

where Ŵobs is computed using Ŵobs = D
(
Wdir + W 2

dir
)
.

That is, Ŵobs is an approximation of Wobs based on
current estimator of Wdir , and the diagonal terms of
it are set to zero. Here matrix operation X · Y rep-
resents element-by-element multiplication; X

Y represents
element-by-element division; and X . 14 represents element
power. Due to the lack of space, the details of this updating
rule are presented in Additional file 1.
The procedure of identifying binary interactions from

co-complex interaction network using BINM is presented
in Algorithm 1. We set the diagonal terms of Wobs to
zeros such that self-interactions are omitted. In the iter-
ation process, we initialize Wdir using Wobs. In this way,
according to update formula (4), the estimator wdir

ij will
be 0 if wobs

ij = 0. Therefore, our model is developed to
reassign weights to observed co-complex interactions to
quantify the strengths of direct physical interactions, but
not to predict new interactions. The consecutive update of
Wdir is conducted until the relative change in the objective
value of Eq. (3) is less that 0.1 %. To avoid the case that this
process converges too slowly, we also stop it if the num-
ber of iterations reaches 20. After estimatingWdir , we can
rank these observed interactions according to the magni-
tude of wdir

ij . The top-ranked interactions can be predicted
as direct physical interactions (Fig. 1d). In this paper, we
refer toWdir as BINM scores.

Algorithm 1: Algorithm for BINM
Input: observed co-complex interaction matrixWobs.
Output: binary interaction matrixWdir .
1:Wobs = D (Wobs); %% Set the diagonal terms to zero
2:Wdir = Wobs; %% Initialization
3: while (Stop Condition);
4: UpdateWdir according to Eq. (4);
5: Calculate the value of objective function (3);
6: end while;
7: returnWdir .

Results
In this section, we first analyze the effect of param-
eter. Then, we assess the ability of various methods
in detecting direct physical interactions from AP-MS
data. Because there is no comprehensive gold standard
set of physical interactions [13], we assess the perfor-
mance of various methods from different perspectives.
First, we drive three complement reference sets of binary
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interactions, and compare the top-ranked interactions to
these reference sets. Since these reference sets represent
only a small fraction of direct physical interactions, we
also resort to several additional reference sets that are
derived from three-dimensional structural information
of protein interactions, manually curated protein com-
plexes, and genetic interaction profiles. We also analyze
the difference between score distributions of bait-prey
interactions and prey-prey interactions. Because spoke
model is often considered to be better suited to detect
direct physical interactions, we compare our model with
a spoke model. Finally, binary interaction networks are
constructed by a simple thresholding method.

Effect and determination of parameter
There is a parameter λ in the proposed BINM model.
We wonder how it influences the performance. We run
the BINM model on the two co-complex interaction net-
works (Collins and Friedel) with different values of λ(
λ ∈ {2−4, 2−3, · · · , 22}), and evaluate the performance
using the three reference sets of direct physical interac-
tions (HINT, Y2H and PCA). The performance is mea-
sured by the area under the receiver operating character-
istic curve (AUC), which is equal to the probability that a
method will rank a randomly chosen direct physical inter-
action (positive instance) higher than a randomly chosen
indirect co-complex association (negative instance) [41].
Larger scores of AUC are better.
Figure 2 shows the performance of our model with

respect to various values of λ. As the value of λ increases,
the AUC scores increases slightly in the beginning and
decreases after obtaining maximum. Overall, the AUC
scores do not change significantly when λ ∈[ 2−4, 1],
which shows that BINM is not very sensitive to the choice
of λ. To avoid overestimating the performance of our
model, we do not tune the parameter to a particular

dataset and set λ to 1 as the default value in the following
experiments.

Performance evaluation using direct physical interactions
as reference sets
To investigate the predictive accuracy, three reference sets
of experimentally validated binary protein interactions are
complied: HINT, Y2H and PCA. We compare BINM with
AP-MS [15, 16], MST and eMST [20]. For the method
of AP-MS, the performance is evaluated using the co-
complex confidence scores (Wobs) which are calculated
using some scoring methods. For the collins dataset, con-
fidence scores are calculated using the PE scoring method
[15]; for the Friedel dataset, the scores are calculated
using a bootstrap method [16]. Please note that AP-MS
is different from the other three methods (BINM, MST
and eMST) because that the AP-MS scores are calculated
using the raw purification data while the other threemeth-
ods make predictions based on the AP-MS scores. In a
similar manner to [23, 24], the AP-MS scoring methods
are used as a baseline to test whether BINM is able to
improve the discrimination power between direct interac-
tions and indirect interactions. The softwares of MST and
eMST are downloaded from http://www.bio.ifi.lmu.de/
Complexes/Substructures/. For eMST, we use the default
parameter α = 1. The method of [12] is not considered
since there is no public software available and it is com-
putational expensive. The predictions made by [22] are
not evaluated for the following reasons. First, unlike the
unsupervisedmethods we consider, their method is super-
vised. The evaluation experiments can only be imple-
mented by cross-validation which may lead to biases and
overestimation. Second, they focus on classifying inter-
actions in functional interaction networks, while we pay
attention to distinguish direct physical interactions and
indirect interactions in co-complex interaction network
which is inferred from AP-MS data.
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Fig. 2 Performance of our model with different values of λ measured by AUC scores with respect to reference sets of direct interactions. The x-axis
denotes the value of log2 λ; the y-axis denotes the value of AUC score. a Collins dataset, b Friedel dataset
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Figure 3 and Figures S1-S2 in Additional file 1 show
how well different methods perform in identifying direct
interactions in terms of the three reference sets. The per-
formances of MST and eMST are data dependent. They
outperform AP-MS on the Collins dataset, but eMST
works a little poorer than AP-MS on the Friedel dataset
when comparing against the HINT and Y2H reference
sets. Notable, BINM outperforms the other three meth-
ods on the two datasets with respect to all the three
reference sets. These results show that BINM is less sen-
sitive to the scoring methods, which are used to construct
co-complex interaction network from AP-MS data, than
MST and eMST. We also evaluate the performance using
the receiver operating characteristic (ROC) curve. The
results also show that BINM performs better than other
competing methods (Figures S3-S5 in Additional file 1).

Performance evaluation using three-dimensional
structural information
Owing to the fact that the reference sets of binary inter-
actions are incomplete, a predicted direct physical inter-
action that does not belong to the reference sets may
be a valid but previous uncharacterized binary interac-
tion. Therefore, we conduct a complementary experiment
to assess the reliability of the predicted direct interac-
tions using the three-dimensional structural information.
This is inspired by the fact that three-dimensional struc-
tural information can be used to predict physical inter-
actions with considerable accuracy [32]. Here we use the
structure-based scores provided by [33] which quantify
the likelihood ratio (LR) that a candidate pair of proteins
represents a true direct physical interaction.
We rank interactions according to their confidence

scores derived from different methods, and we com-
pute the average likelihood ratios of the corresponding

pair-wise interactions. Please note that we do not consider
interactions which are not assigned with structural scores
(e.g., LR=0). Figure 4 shows the results of the aforemen-
tioned four methods. At a same rank cutoff, the structural
scores of interactions inferred by BINM are consistently
higher than the scores of interactions inferred by the three
compared methods (except the top 1,500 predictions on
the Friedel dataset).

Performance evaluation using protein complexes
A protein complex is a group of proteins that physi-
cally interact with each other to fulfill their functions
[36, 42]. Therefore, we can rely on the following assump-
tion to assess the identified direct physical interactions:
all members of a protein complex can be connected by
the physical interactions [13]. Consequently, the quality of
inferred physical interactions can be estimated by assess-
ing howwell these physical interactions connect themem-
ber proteins of manually curated protein complexes. Here
we use the SGD and CYC2008 complexes to assess the
performance.
Figure 5 and Figure S6 in Additional file 1 depict how

well physical interactions predicted by different methods
connect manually curated protein complexes. Following
in the method of [13], a complex is considered to be
sufficiently connected by a set of inferred physical inter-
actions if these interactions reduce the number of con-
nected components within the complex to less than 50 %
compared with the unconnected complex. It is notice-
able that the physical interactions identified by BINM,
MST and eMST can sufficiently connect more complexes
than those identified by AP-MS at a same rank cutoff.
We also observe that MST and eMST seem to be a lit-
tle better suited to connect complexes than BINM. This
might be due to the fact that MST and eMST identify
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physical interactions on the basis of maximum spanning
trees which take into account how well the inferred direct
interactions connect the entire network.

Performance evaluation using genetic interaction profiles
Physically interacting proteins that carry out similar bio-
logical functions often have strongly correlated genetic
interaction profiles [39]. Therefore, we can use genetic
interaction profiles as another evidence to assess the iden-
tified physical interactions. Following the method of [13],
we obtain a set of genetic interaction profiles from [39]

and employ it to define a genetic interaction reference set
which consists of protein pairs with high genetic inter-
action profile similarities. Figure 6 illustrates how well
physical interactions inferred by different methods match
with the genetic interaction reference set. This assessment
shows that BINM significantly outperforms the other
three methods.

Score distributions of different types of interactions
AP-MS experiments identify protein interactions using
both a bait protein and a set of prey proteins. Bait-prey
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(B-P) observations provide evidence for direct physical
interactions, and prey-prey observations provide evidence
for indirect co-complex associations [15]. Therefore, it
would be interest to test whether the confidence scores
(e.g.,Wobs andWdir) can distinguish bait-prey interactions
and prey-prey interactions.We obtain the raw purification
data from http://interactome-cmp.ucsf.edu/. A protein
pair is considered to be a bait-prey interaction if one of
them is a bait protein; otherwise, it is considered to be a
prey-prey interaction.
From Fig. 7 and Figure S7 in Additional file 1, we observe

the confidence scores of bait-prey interactions are, on
average, higher than those of prey-prey interactions for
both AP-MS and BINM scoring methods. The statistical
significance of theses differences is validated using Stu-
dent’s t-test (P-value ≤ 0.001). Furthermore, we find that
the t-statistics of BINM scores are higher than those of

AP-MS scores. These results show that, compared with
the AP-MS scoring method, our model can increase the
discrimination power between bait-prey interactions and
prey-prey interactions.

Comparison with spoke model
The computational methods that assign confidence scores
to AP-MS observations belong to two major categories:
methods that only consider bait-prey observations (spoke
model) and those that consider both bait-prey and prey-
prey observations (matrix model) [19]. The spoke model
may be better suited to identify direct physical interac-
tions from AP-MS data than the matrix model [13]. In this
study, we first use two scoring methods which is based on
matrix model to infer the co-complex interaction network
from AP-MS data, and then use BINM to identify direct
physical interactions from the co-complex interactions.
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presented in the figure. a AP-MS score distributions, b BINM score distributions
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Therefore, it is interesting to compare our model with
spoke model which can directly identify physical interac-
tions from AP-MS data.
Collins et al. [15] calculated PE scores as a sum of direct

bait-prey components (denoted as direct PE scores) and
indirect prey-prey components (denoted as indirect PE
scores). We compare BINM scores (e.g., Wdir) with direct
PE scores and indirect PE scores to test how well they
perform in identifying direct physical interactions. Direct
PE scores and indirect PE scores are obtained from the
supporting web-site. The performance is assessed using
the three reference sets of binary interactions: HINT, Y2H
and PCA. As can be seen from Fig. 8, BINM achieves
the best performance among all the three scoring meth-
ods and direct PE scoring scheme significantly outper-
forms indirect PE scoring scheme. These results show
that prey-prey observations mainly provide evidence for
indirect co-complex interactions and are not well suited
to infer direct physical interactions. However, BINM can
effectively combine prey-prey observations with bait-prey
observations to improve the performance. Here we do not
consider the Friedel dataset since Friedel et al. [16] did not
provide scores of the two types of observations separately.

Binary interaction network
To construct a comprehensive binary interaction network,
we rank the observed co-complex interactions according
to their BINM scores and predict the top-ranked interac-
tions as binary interactions. Here, determining a reason-
able rank cutoff is a critical problem since a low cutoff will
produce a small network with low coverage (recall), and a
high cutoff will produce a large network with low reliabil-
ity (precision). We need to pick up an optimal cutoff that
has a good compromise between coverage and reliability.
To this end, we try different rank cutoffs and compare the

resulting binary networks against the HINT reference set
using the F2 measure [43, 44]. We use the HINT refer-
ence set because it is high quality. Unlike the traditional
F1 measure which weights recall and precision equally,
F2 measure puts higher weights on recall than precision.
Here we use F2 measure because that the reference set of
binary interactions is not complete and recall may bemore
important than precision.
Figure 9a depicts the method of determining the rank

cutoffs. We observe that as the cutoff increases, the F2
score increases in the beginning and then decreases after
obtaining its maximum. This is because that if the cutoff
is too low, only a small fraction of direct physical inter-
actions can be detected and we will obtain a low recall;
while if the cutoff is too high, a large fraction of indirect
interactions will be predicted as direct interactions and we
will obtain a low precision. Rank cutoffs of 2562 and 3018
produce the highest F2 scores for the Collins and Friedel
datasets, respectively. We then use these two cutoffs to
construct the binary interaction networks (Fig. 1d). The
inferred binary interaction networks are sparse and mod-
ular, which agree with our intuition for the networks of
direct physical interactions with protein complexes [13].
Since the Collins and Friedel datasets are inferred from a
same AP-MS data, it is interesting to assess the agreement
between the interactions generated by different methods.
There are 4910 interactions shared by the two datasets
which are inferred using the PE and bootstrap scoring
methods respectively (Fig. 9b). Furthermore, there are
1902 interactions that are in common between the binary
interactions identified by our model from the two datasets
(Fig. 9c). The overlap rate (Jaccard index) between inter-
actions in the two datasets can be increased from 0.34
to 0.52 through using our model to filter out indirect
interactions.
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Discussion
Different from Y2H screening that discovers binary
interactions, AP-MS identifies co-complex interactions
between proteins. Therefore, direct physical interactions
in AP-MS data are obscured by indirect co-complex inter-
actions. In this paper, we have presented a new net-
work topology-based method to identify binary interac-
tions in co-complex interaction network which is induced
from AP-MS data. Unlike the transient and inter-complex
binary interactions discovered by Y2H, the binary inter-
actions identified by our method from AP-MS data are
enriched with stable and intra-complex interactions. The
two types of interactions are fundamentally different and
complementary, which indicates that our predictions can
substantially expand the knowledge about pairwise binary
interactions.
Previous AP-MS scoring methods focus on assigning

confidence scores that represent strength of co-complex
relationships to interactions observed within the purifi-
cations. Therefore, a high confidence score between two
proteins only indicate that they are likely to belong to a
common complex but can not give clues to whether or
not they interact physically. Consequently, direct physi-
cal interactions and indirect co-complex interactions can
not be separated simply. Here, we resort to the method
of network deconvolution [23, 24] and reassign confi-
dence scores that represent strength of direct interactions
to co-complex interactions identified using previous scor-
ing methods. Specially, our model enhances the scores
of direct interactions and silences the scores of indirect
interactions. By doing so, direct interactions and indirect

interactions can be simply separated using a thresholding
method.
BINM is a post-processing scoring scheme that is

devised to identify binary interactions from co-complex
interactions. Interactions with BINM scores exceeds a
predefined threshold can be predicted as direct interac-
tions. In comparative experiments, we rank interactions
according to their scores and use different rank cutoffs
to make predictions. Different methods are then com-
pared at a same cutoff. For practical application purpose,
determining a reasonable cutoff is a critical problem since
different cutoffs will produce networks with different reli-
ability and coverage. Based on a given gold standard of
direct interactions, we can pick up a cutoff that produces
the highest F2 score. However, this method depends on a
complete gold standard set of binary interactions which is
not available at present. It might be possible to follow the
method of false discovery rate (FDR) [18, 19]. We do not
make further efforts to this method because how to calcu-
late FDR and determine a reasonable FDR threshold have
many open problems themselves.
Before using our model, we need to construct a co-

complex interaction network from AP-MS data using a
predetermined scoring scheme (Fig. 1a-b). Therefore, the
performance of our model may be influenced by the the
scoring scheme we use. To assess the influence of scoring
schemes, we derive two co-complex interaction networks
from a same combined AP-MS data but using differ-
ent scoring schemes. Experiment results show that our
model outperform competing methods on both datasets,
which demonstrate that the performance of our model
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is not very sensitive to the scoring schemes. In practise,
we suggest using matrix model-based scoring schemes to
infer weighted co-complex interactions. This is because
spoke model consider only bait-prey interactions where
physical interactions between prey proteins may be over-
looked. Take the Friedel dataset and HINT reference set
for example, there are about 100 out of 1144 direct phys-
ical interactions between prey proteins. Furthermore, we
have shown that our model outperforms the spoke model
when using the PE scoring scheme. Therefore, besides
bait-prey observations, prey-prey observations are also
useful to identify binary interactions.
The proposed method has a number of desirable prop-

erties. First, it is effective and simple. Compared to the
method of [20], the superior performance of our method
has been shown in the experiments. Unlike the super-
vised classification method developed in [22], our method
is unsupervised. Defining positive and negative exam-
ples, which itself has many open problems [45], is not
necessary. Second, our method is based on well estab-
lished theories of matrix approximation and regulariza-
tion which have sound mathematical principles. It may be
more preferable over methods based on a mere hunch.
Third, it is fast and scale well with the size of the net-
work analyzed. As discussed in Additional file 1, the
worst time cost of our algorithm is O(nTE), where n
is the number of proteins, E is the number of interac-
tions and T is the number of iterations. We implement
the algorithm using Matlab in a workstation with Intel 4
CPU (3.40 GH × 4) and 16 GB RAM. We experimen-
tally find that it can analyze the two datasets consid-
ered within 2 seconds (see Additional file 1). Compared
to the time complexity reported in [12], our method is
more efficient.
Unlike studies that de-noise the interactions obtained

from high-throughput experiments through predicting
missing interactions and identifying spurious interactions
[11, 46, 47], this study attempts to distinguish direct
physical interactions and indirect co-complex interac-
tions in AP-MS data. The de-noising methods basically
assume that two proteins sharing many common neigh-
bors or having short distance with some measures are
likely to interact with each other. They prefer to assign
high scores to co-complex interactions and low scores to
inter-complex interactions [46]. However, inter-complex
interactions may be direct and intra-complex interactions
may be indirect [29]. Therefore, they cannot be applied
to discriminate direct and indirect interactions. In pre-
vious studies, indirect secondary data, such as coexpres-
sion, functional annotation and phenotypic profile, are
used to evaluate the performance of de-noising methods.
Here we do not consider these secondary data since they
often correlate with functional interactions [32] and do
not have distinguishable distributions between direct and

indirect interactions [5, 9]. As an alternative, we evalu-
ate our method using known binary interactions in public
databases and other three reference sets that provide less
direct evidence for physical interactions [13, 33].
Our method may be improved in the following aspects.

We only use the topology of the network to identify direct
interactions. The performance depends on the topological
structure of network and confidence scores of interac-
tions under consideration. However, AP-MS data have
a high level of noise and are incomplete [11]. There-
fore, the predictions of our method may be limited in
accuracy. One possible way to ameliorate this is to incor-
porate other genomic features (e.g, sequence, domain and
three dimensional structure) that can provide evidence
for physical interactions. In addition, we test our model
on Saccharomyces cerevisiae since it is well studied and
the comprehensive AP-MS data and reference sets are
available. Recently, experimental data for other organisms
(e.g., Drosophila melanogaster [48] and Homo sapiens
[49–51]) become available, we will apply our model on
these species to enrich the binary protein-protein interac-
tion landscape.

Conclusions
In this study, a new scoring method is developed to iden-
tify binary interactions from AP-MS data. Experiment
results on two yeast datasets show the competitive per-
formance of our method with respect to four types of
reference sets. This study provide new insights for under-
standing and analyzing AP-MS data.
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10. Deane CM, Salwiński Ł, Xenarios I, Eisenberg D. Protein interactions two
methods for assessment of the reliability of high throughput
observations. Mol Cell Proteomics. 2002;1(5):349–56.

11. Kuchaiev O, Rašajski M, Higham DJ, Pržulj N. Geometric de-noising of
protein-protein interaction networks. PLoS Comput Biol. 2009;5(8):
1000454.

12. Kim E, Sabharwal A, Vetta A, Blanchette M. Predicting direct protein
interactions from affinity purification mass spectrometry data. Algorithms
Mol Biol. 2010;5(1):34.

13. Schelhorn SE, Mestre J, Albrecht M, Zotenko E. Inferring physical protein
contacts from large-scale purification data of protein complexes. Mol Cell
Proteomics. 2011;10(6):10–1074110004929.

14. Teng B, Zhao C, Liu X, He Z. Network inference from ap-ms data:
computational challenges and solutions. Brief Bioinform. 2015;16(4):
658–74.

15. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege
FC, et al. Toward a comprehensive atlas of the physical interactome of
Saccharomyces cerevisiae. Mol Cell Proteomics. 2007;6(3):439–50.

16. Friedel CC, Krumsiek J, Zimmer R. Bootstrapping the interactome:
unsupervised identification of protein complexes in yeast. J Comput Biol.
2009;16(8):971–87.

17. Xie Z, Kwoh CK, Li XL, Wu M. Construction of co-complex score matrix
for protein complex prediction from ap-ms data. Bioinformatics.
2011;27(13):159–66.

18. Choi H, Larsen B, Lin ZY, Breitkreutz A, Mellacheruvu D, Fermin D, et al.
Saint: probabilistic scoring of affinity purification-mass spectrometry data.
Nat Methods. 2011;8(1):70–3.

19. Pu S, Vlasblom J, Turinsky A, Marcon E, Phanse S, Trimble SS, et al.
Extracting high confidence protein interactions from affinity purification
data: At the crossroads. J Proteomics. 2015;118:63–80.

20. Friedel CC, Zimmer R. Identifying the topology of protein complexes
from affinity purification assays. Bioinforma. 2009;25(16):2140–146.

21. Bader GD, Hogue CW. Analyzing yeast protein–protein interaction data
obtained from different sources. Nat Biotechnol. 2002;20(10):991–7.

22. Saraç ÖS, Pancaldi V, Bähler J, Beyer A. Topology of functional networks
predicts physical binding of proteins. Bioinforma. 2012;28(16):2137–145.

23. Barzel B, Barabási AL. Network link prediction by global silencing of
indirect correlations. Nat Biotechnol. 2013;31(8):720–5.

24. Feizi S, Marbach D, Médard M, Kellis M. Network deconvolution as a
general method to distinguish direct dependencies in networks. Nat
Biotechnol. 2013;31(8):726–33.

25. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Berlin: Springer; 2009.

26. Robertson T, Wright F, Dykstra RL, Robertson T. Order Restricted
Statistical Inference. New York: Wiley; 1988.

27. Efron B. Bootstrap methods: another look at the jackknife. Ann Stat.
1979;7(1):1–26.

28. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Oxford: CRC
press; 1994.

29. Das J, Yu H. Hint: High-quality protein interactomes and their
applications in understanding human disease. BMC Syst Biol. 2012;6(1):92.

30. Tarassov K, Messier V, Landry CR, Radinovic S, Molina MMS, Shames I,
et al. An in vivo map of the yeast protein interactome. Science.
2008;320(5882):1465–1470.

31. Chatr-aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A,
Stark C, et al. The biogrid interaction database: 2013 update. Nucleic
Acids Res. 2013;41(D1):816–23.

32. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al.
Structure-based prediction of protein-protein interactions on a
genome-wide scale. Nature. 2012;490(7421):556–60.

33. Zhang QC, Petrey D, Garzón JI, Deng L, Honig B. Preppi: a
structure-informed database of protein–protein interactions. Nucleic
Acids Res. 2013;41(D1):828–33.

34. Pu S, Wong J, Turner B, Cho E, Wodak SJ. Up-to-date catalogues of yeast
protein complexes. Nucleic Acids Res. 2009;37(3):825–31.

35. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD:
Saccharomyces genome database. Nucleic Acids Res. 1998;26(1):73–9.

36. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes
in protein-protein interaction networks. Nat Methods. 2012;9(5):471–2.

37. Zhang XF, Dai DQ, Ou-Yang L, Wu MY. Exploring overlapping functional
units with various structure in protein interaction networks. PLoS ONE.
2012;7(8):43092.

38. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.
Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):
25–9.

39. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al.
The genetic landscape of a cell. Science. 2010;327(5964):425–31.

40. Lee DD, Seung HS. Algorithms for Non-negative Matrix Factorization. In:
Adv Neural Inf Process Syst, vol. 13. Cambridge: The MIT Press; 2001.
pp. 556–62.

41. Fawcett T. An introduction to roc analysis. Pattern Recogn Lett.
2006;27(8):861–74.

42. Zhang XF, Dai DQ, Ou-Yang L, Yan H. Detecting overlapping protein
complexes based on a generative model with functional and topological
properties. BMC Bioinforma. 2014;15(1):186.

43. van Rijsbergen C. Information Retrieval. Oxford: Butterworth; 1979.
44. F2 measure. https://en.wikipedia.org/wiki/F1_score. Access date 10 July

2015.
45. Ben-Hur A, Noble W. Choosing negative examples for the prediction of

protein-protein interactions. BMC Bioinforma. 2006;7(Suppl 1):2.
46. Lei C, Ruan J. A novel link prediction algorithm for reconstructing

protein–protein interaction networks by topological similarity.
Bioinforma. 2013;29(3):355–64.

47. Zhu Y, Zhang XF, Dai DQ, Wu MY. Identifying spurious interactions and
predicting missing interactions in the protein-protein interaction
networks via a generative network model. IEEE/ACM Trans Comput Biol
Bioinform. 2013;10(1):219–25.

https://en.wikipedia.org/wiki/F1_score


Zhang et al. BMC Genomics  (2015) 16:745 Page 14 of 14

48. Guruharsha K, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, et al. A
protein complex network of drosophila melanogaster. Cell. 2011;147(3):
690–703.

49. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human
deubiquitinating enzyme interaction landscape. Cell. 2009;138(2):
389–403.

50. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the
human autophagy system. Nature. 2010;466(7302):68–76.

51. Marcon E, Ni Z, Pu S, Turinsky AL, Trimble SS, Olsen JB, et al. Human-
chromatin-related protein interactions identify a demethylase complex
required for chromosome segregation. Cell Rep. 2014;8(1):297–310.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Authors' information
	Availability of data and materials
	Acknowledgements
	Author details
	References



