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Abstract

Background: Variation in environment, management practices, nutrition or selection objectives has led to a variety
of different choices being made in the use of genetic material between countries. Differences in genome-level
homozygosity between countries may give rise to regions that result in inbreeding depression to differ. The
objective of this study was to characterize regions that have an impact on a runs of homozygosity (ROH) metric
and estimate their association with the additive genetic effect of milk (MY), fat (FY) and protein yield (PY) and
calving interval (CI) using Australia (AU) and United States (US) Jersey cows.

Methods: Genotyped cows with phenotypes on MY, FY and PY (n = 6751 US; n = 3974 AU) and CI (n = 5816 US;
n = 3905 AU) were used in a two-stage analysis. A ROH statistic (ROH4Mb), which counts the frequency of a SNP
being in a ROH of at least 4 Mb was calculated across the genome. In the first stage, residuals were obtained from
a model that accounted for the portion explained by the estimated breeding value. In the second stage, these
residuals were regressed on ROH4Mb using a single marker regression model and a gradient boosted machine
(GBM) algorithm. The relationship between the additive and ROH4Mb of a region was characterized based on the
(co)variance of 500 kb estimated genomic breeding values derived from a Bayesian LASSO analysis. Phenotypes to
determine ROH4Mb and additive effects were residuals from the two-stage approach and yield deviations,
respectively.

Results: Associations between yield traits and ROH4Mb were found for regions on BTA13, BTA23 and BTA25 for the
US population and BTA3, BTA7, BTA17 for the AU population. Only one association (BTA7) was found for CI and
ROH4Mb for the US population. Multiple potential epistatic interactions were characterized based on the GBM
analysis. Lastly, the covariance sign between ROH4Mb and additive SNP effect of a region was heterogeneous
across the genome.

Conclusion: We identified multiple genomic regions associated with ROH4Mb in US and AU Jersey females. The
covariance of regions impacting ROH4Mb and the additive genetic effect were positive and negative, which
provides evidence that the homozygosity effect is location dependent.

* Correspondence: christian_maltecca@ncsu.edu
1Department of Animal Science and Genetics Program, North Carolina State
University, Raleigh, NC 27695-7627, USA
Full list of author information is available at the end of the article

© 2015 Howard et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Howard et al. BMC Genomics  (2015) 16:813 
DOI 10.1186/s12864-015-2001-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2001-7&domain=pdf
mailto:christian_maltecca@ncsu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
An individual’s inbreeding coefficient is defined as the
probability that any randomly chosen allele at a homolo-
gous locus carried by the individual is identical-by-descent
(IBD) and equals the coancestry between its parents [1, 2].
Following Wright [1], the inbreeding coefficient for an in-
dividual can be calculated and is the expected proportion
of the genome that is IBD. The advent of dense single
nucleotide polymorphism (SNP) marker panels allows for
alternative molecular inbreeding metrics to be estimated.
The molecular inbreeding value calculated from the gen-
omic relationship matrix [3, 4] is the probability that the
two alleles carried by an individual are identical-by-state
(IBS) and is adjusted based on the SNP allelic content [5]
and represents the realized proportion of the genome that
is homozygous. An alternative way of measuring in-
breeding involves genomic runs of homozygosity (ROH).
The ROH is a useful measure of inbreeding given its
ability to distinguish between chromosome segments that
are IBS and IBD. Long ROH segments have low prob-
ability of having arisen by chance, and are more likely to
be stretches of two homologous chromosomes within the
same individual descending from a recent common ances-
tor [6]. Keller et al. [6] found that ROH based inbreeding
estimates are preferable to pedigree derived metrics and
other measures of genomic inbreeding, since they cor-
relate strongly with the homozygous mutation load. As a
further advantage, ROH measures can be tailored to dis-
tinguish between inbreeding arising from a recent com-
mon ancestor (longer ROH) or more distant common
ancestors (shorter ROH).
High levels of inbreeding result in a reduction in fit-

ness and overall performance at the phenotypic level,
due to individuals carrying a large number of dele-
terious recessive mutations and/or the reduction in
frequency of the superior heterozygotes [7]. This reduc-
tion is referred to as inbreeding depression and is seen
mostly in characters connected with reproductive
capacity or physiological efficiency, although any trait
under selection can show some degree of inbreeding
depression (see [8], for a review). Inbreeding depression
is associated with the degree of dominance that exists
for a trait and it has been shown that larger negative
estimates of inbreeding depression are associated with
higher estimates of dominance variance [9]. Further-
more, by constructing founder-specific partial inbreed-
ing coefficients, inbreeding depression has been shown
to be heterogeneous across founders [10, 11]. As a con-
sequence, a region of the genome that is derived from
an ancestor potentially gives rise to varying levels of
inbreeding depression in different progeny. Utilizing
dominance as a proxy for characterizing regions that
impact inbreeding depression has been utilized previ-
ously [12, 13], but is computationally demanding and

requires large samples sizes. Recently, alternative ways
to characterize inbreeding depression have been pro-
posed. For example in swine [14] and dairy cattle [15],
a ROH metric has been utilized to characterize the im-
pact of regions contained within a ROH on economic-
ally important traits. The use of genomic information
to identify regions that impact inbreeding depression
allows for the possibility to distinguish between animals
with the same inbreeding coefficient, but that differ in
the number of regions that when homozygous cause a
reduction in fitness. Additionally, the combination of
multiple regions that individually have a minor effect
on inbreeding depression, but when combined cause a
major reduction in fitness may provide clues as to the
previously identified non-linear relationship of in-
breeding depression [16]. The use of machine-learning
algorithms that utilize regression trees [17] allows for
SNP-by-SNP interactions to be characterized and is
computationally efficient. Tree based learners have been
used previously to identify epistatic interactions between
SNP for residual feed intake in dairy cattle [18].
Longer ROH segments (>5 Megabases (Mb)) instead

of short (> 0.5 Mb) and moderate (> 1.5 Mb) segments
have been shown by simulation to have a higher cor-
relation with the homozygous mutation load when the
effective populations size is low (i.e. 100 animals) [6].
This has been confirmed with real data by Pryce et al.
[15], who found that longer ROH were associated with
a reduction in milk yield that was independent of the
proportion of the genome that was homozygous in the
Holstein breed. However, the ROH has also been uti-
lized in studies conducted to identify regions that have
a high ROH frequency that is most likely due to direc-
tional selection [19, 20]. Therefore, it is likely that there
are some regions where long stretches of homozygosity
have a favorable impact on economically important
traits due to the region having undergone strong direc-
tional selection based on the additive genetic value of
the region, although this has yet to be validated using
real data.
Characterizing the homozygosity across the genome

and its impact on inbreeding depression in dairy cattle
is advantageous due to the large number of cows that
are currently being genotyped and the large number of
fitness (e.g. fertility) and performance (e.g. milk yield)
traits being measured. Specifically, characterizing these
regions with the Jersey breed is worthwhile given the
higher levels of inbreeding and smaller effective popula-
tion size when compared to the Holstein breed [21, 22].
Therefore, the first objective is to identify regions that
have an impact on inbreeding depression in US and AU
Jersey cows using a ROH metric. The second objective
is to determine the relationship between additive effects
and the ROH status of a SNP.
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Results
Characterizing regions impacting inbreeding depression
Two cow populations born in the US and AU were uti-
lized to identify regions that when homozygous cause a
reduction in milk (MY), fat (FY) and protein yield (PY;
n = 6751 US; n = 3974 AU) and an increased calving
interval (CI; n = 5816 US; n = 3905 AU), which is the
interval between consecutive calvings and a measure dir-
ectly linked to fertility. Phenotypic information for the
AU population was provided in the form of yield devia-
tions and equivalent variable for US population were cal-
culated after adjusting their phenotypes (e.g. Milk yield)
for fixed effects. The ROH status of a SNP (n = 31,431)
was defined based on whether the SNP was within an
ROH of at least 4 Mb in length (ROH4Mb). A two-stage
analysis was performed within each population to esti-
mate the effect of the ROH4Mb status of a SNP on milk
yield and fertility traits. The first stage involved generat-
ing residuals from an animal model that accounted for
the additive effects captured by the estimated breeding
value (EBV) of the individual. The second stage involved
using the residuals from the first stage as a phenotype
and regress these on the ROH4Mb status utilizing a sin-
gle marker regression and gradient boosted machine
(GBM). Significance was declared by using a permuta-
tion test based on 2500 samples [23]. The identification
of epistatic interactions between the ROH4Mb status of
a SNP was carried out by counting the number of times
two SNP were a descendent pair as described by Yao et
al. [18] and outlined in Fig. 1. The significance of the
frequency of a descendent pair and variable import-
ance value was then declared based on a permutation
test (n = 2,500 samples) [23].
The single marker regression and GBM analysis identi-

fied multiple regions that have a significant effect when
contained within a ROH of at least 4 Mb across multiple
traits and populations. A complete list of the regions
along with their significance level is outlined in Table 1
for the US and AU populations. Additionally, the nega-
tive log of the p-value from the permutation analysis
across the genome based on the single marker regression
analysis for all traits are presented in Additional file 1:
Figure S1 and Additional file 2: Figure S2 for US and
AU, respectively. Within a population, the following
regions had an effect across multiple traits including
BTA13 (19.3–19.9 Mb; MY-PY), BTA23 (32.7–33.3 Mb;
MY-FY-PY) and BTA25 (24.8–30.7 Mb; MY-PY) for the
US population and BTA3 (113.4–114.6 Mb; FY-PY), BTA7
(6.6–16.7 Mb; FY-PY), BTA17 (68.9–75.0 Mb; MY-FY-PY)
for the AU population, although no regions were identi-
fied that were significant in both populations. A complete
description of genes closest to the SNP with the highest
significance based on the single marker regression analysis
is outlined in Additional file 3: Table S1.

Multiple regions of the genome were found to display
potential interactions based on their frequency as des-
cendent pairs. A complete list is outlined in Table 2. The
majority of the significant descendent pairs were associ-
ated with at least one SNP that also had a large variable
importance score. A gene network analysis was employed
to determine if two interacting SNP were within the same
network and associations were found including shared
protein domain as well genetic interactions.

Relationship between additive effect and ROH4Mb status
of SNP
We further characterized the relationship between the
additive and ROH4Mb effects of a SNP. Estimates of the
additive marker effect of each SNP were obtained using
a whole genome marker regression on the yield devia-
tions, using the Bayesian LASSO of Park and Casella
[24]. The ROH4Mb effect of a SNP was estimated by
regressing ROH4Mb of a SNP on the same phenotype as
single marker regression and gradient boosted machine
and therefore the additive effect explained by the EBV
was removed from the phenotype. The relationship be-
tween the additive and ROH4Mb status of a region was
characterized based on the (co)variance of genomic esti-
mated breeding values (GEBV) based on 500 kb overlap-
ping windows. The 10 largest regions based on their
absolute covariance were characterized across all traits
and countries.

Fig. 1 An example of a regression tree generated by Gradient
Boosted Machine algorithm based on the run of homozygosity of at
least 4 Mb status of a SNP (i.e. 0 or 1). The split point for a particular
SNP (i.e. A, B, C, D or E) and the subsample bin an observation falls
into based on the genotype value is outlined below each circle. Two
SNP that are within the same branch of a tree, such as A-B, A-D, B-D,
A-C, A-E and C-E, are referred to as descendent pairs and may indicate
epistatic effects and would be tagged as an interaction. The SNP that
are not within the same branch of a tree, such as SNP pairs B-C, B-E,
D-C and D-E, are referred to as non-descendent pairs and may indicate
independent additive genetic effects and not tagged as an interaction
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The relationship between the additive effect, ROH4Mb
effect and their covariance is outlined for MY in Figs. 2
and 3 for US and AU, respectively. The remaining traits
are outlined in Additional file 4: Figure S3, Additional
file 5: Figure S4, Additional file 6: Figure S5, Additional
file 7: Figure S6, Additional file 8: Figure S7 and
Additional file 9: Figure S8 for FY, PY and CI across both
countries. As illustrated by Figs. 2 and 3, the covariance
sign between ROH4Mb status and the additive effect of
a SNP is heterogeneous across the genome. Regions on
BTA3 (47.25–54.15), BTA7 (24.26 – 49.00), BTA20
(23.71–34.98) and BTA26 (9.34 – 20.71) had a positive
covariance between the additive and ROH4Mb effect of
a SNP across both populations. It is worth noting that
although there are regions with high ROH4Mb across
both populations this does not necessarily imply that

they are the same (i.e. IBD) run of homozygosity, instead
just confirms that across both populations the region
has a similar relationship with the additive genetic value
of the individual. Furthermore, within these regions the
estimate of the ROH4Mb effect was positive for the
majority of the regions, such that it is beneficial for a
SNP to be within a long stretch of homozygosity likely
resulting from the region having undergone strong dir-
ectional selection, which was confirmed by Howard et
al. [19]. The majority of the regions with the largest ab-
solute covariance value across traits were positive, which
is not surprising due to a low frequency of ROH4Mb
status for regions with a large ROH4Mb effect (mean
ROH4Mb frequency = 0.089) in comparison to the re-
gions that displayed a large positive covariance (mean
ROH4Mb frequency = 0.235).

Table 1 Regions of the genome associated with a run of homozygosity of at least 4 Mb for milk and fertility traits across countries

Countrya Trait BTA (Region)b Locationc Frequency P-value*

Single marker regression Gradient boosted machine

US Milk Yield 7 (96.2–96.7) 96,541,131 0.07 0.0005 0.07

13 (19.3–19.9) 19,388,240 0.10 0.0001 0.02

23 (32.7–33.3) 32,682,177 0.18 0.0001 0.0019

25 (24.8–27.5) 25,450,477 0.05 0.00009 0.03

25 (29.1–29.9) 29,113,430 0.06 0.0009 -

Fat Yield 8 (82.5–83.4) 83,048,502 0.08 0.0003 0.19

8 (106.6–107.1) 106,817,894 0.11 0.0002 0.07

19 (12.7–15.5) 14,409,010 0.07 0.0002 0.005

20 (34.7–36.3) 36,240,997 0.24 0.0003 0.04

23 (32.7–33.3) 32,682,177 0.18 0.0003 0.04

Protein Yield 7 (96.1–96.7) 96,192,503 0.07 0.0002 0.04

13 (19.3 – 19.5) 19,388,240 0.10 0.0004 0.16

23 (31.9–33.3) 32,682,177 0.18 0.00008 0.004

25 (24.8–30.7) 29,113,430 0.06 0.00002 0.02

Calving Interval 7 (82.1–83.0) 82,173,456 0.09 0.0004 0.003

AU Milk Yield 17 (72.1–73.5) 73,055,503 0.04 0.00004 0.03

20 (28.4–29.5) 29,322,034 0.33 0.0001 0.04

Fat Yield 2 (90.4–91.1) 91,117,564 0.16 0.0004 0.08

3 (113.8–114.2) 113,930,518 0.06 0.0007 0.20

7 (6.6–16.7) 8,860,921 0.17 0.00007 0.02

17 (72.1–75.0) 73,257,794 0.04 0.00002 0.006

18 (50.8–53.0) 52,024,379 0.15 0.00001 0.005

Protein Yield 3 (113.4–114.6) 113,845,303 0.06 0.000006 0.02

7 (8.8–12.8) 8,860,921 0.17 0.0003 0.05

17 (68.9–75.0) 73,055,503 0.04 0.0000008 0.005

18 (49.0–52.2) 49,446,631 0.13 0.0005 0.47
aAU refers to Australia and US refers to United States
bBTA refers to chromosome and the region and location are in Mb build UMD 3.1 (http://bovinegenome.org/cgi-bin/gbrowse/bovine_UMD31/)
cReferrs to the location with regions with the highest significance based on Single Marker Regression Analysis
*P-values were generated based on a permutation test (Doerge and Churchill [23]) for each analysis
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Discussion
Characterizing regions impacting inbreeding depression
A single marker regression and an ensemble learning
method, GBM, were utilized in the current analysis to
characterize regions that have an impact on inbreeding
depression based on a ROH metric. In order to deter-
mine how similar the results were for the single marker
regression and GBM analysis, a rank correlation based
on SNP used across both analysis was estimated within
each trait and population. The variables utilized in the

correlation were the significance value for single marker
regression and the variable importance score for GBM.
The rank correlation across traits and population ranged
from 0.48 to 0.65. A rank correlation of less than unity
is not surprising given that the importance score from
the GBM analysis captures both the ROH4Mb effect of
the SNP and its epistatic interactions with all other SNP.
There were no regions in common across the USA

and AU populations that had a significant impact on in-
breeding depression. Interbull correlations [25] of EBVs

Table 2 Genomic regions that potentially display pairwise epistatic interaction based on the high frequency of it being descendent
pair for milk and fertility traits across countries

Countrya Trait SNP 1 SNP 2 Average depth P-value* Individual rank based on importance score

BTAb Locationb BTAb Locationb SNP 1 SNP 2

US Milk Yield 23 32,682,177 5 95,459,836 1.18 0.0003 1 5

30 140,296,904 20 69,528,142 1.24 0.0009 14 30

19 14,409,010 11 10,271,653 1.24 0.0009 3 46

Fat Yield 19 41,615,615 19 14,409,010 1.42 0.0002 2 1

19 41,615,615 2 83,919,557 1.36 0.0006 2 7

11 56,825,445 5 62,248,841 1.29 0.0006 6 10

12 12,685,397 7 96,192,503 1.16 <0.001 31 15

Protein Yield 23 32,682,177 1 24,549,757 1.41 0.0005 1 19

9 7,645,969 1 24,549,757 1.05 0.0009 65 19

25 29,428,407 2 113,716,333 1.30 0.0009 2 4

Calving Interval 7 82,173,456 2 83,616,368 1.53 0.0002 1 3

25 17,166,118 9 44,951,803 1.18 0.0006 7 2

26 30,607,485 7 82,173,456 1.15 0.0006 12 1

7 82,173,456 7 41,207,144 1.43 0.0007 1 5

8 34,242,903 7 82,173,456 1.43 0.0009 32 1

AU Milk Yield 22 39,545,402 1 112,497,788 1.03 0.0002 25 14

21 62,115,138 11 38,445,947 1.04 0.0003 35 47

14 16,526,322 1 13,304,658 1.27 0.0004 68 17

20 35,012,179 20 29,322,034 1.46 0.0006 51 3

22 31,649,896 16 42,262,470 1.32 0.0008 4 41

Fat Yield 6 56,522,979 2 13,411,225 1.08 0.0002 10 18

9 59,036,606 8 51,460,409 1.73 0.0005 5 3

8 51,460,409 7 8,860921 1.26 0.0009 3 4

Protein Yield 14 38,155,245 7 107,837,688 1.27 0.00007 2 18

17 38,275,065 17 5,445,294 1.38 0.0005 17 20

14 38,155,245 8 51,695,384 1.40 0.0006 2 22

16 64,623,464 11 109,818 1.00 0.0008 42 11

Calving Interval 24 37,002,274 24 7,380,047 1.04 0.0003 16 44

5 33,334,061 3 9,686,101 1.38 0.0004 1 3

15 16,416,329 10 53,560,658 1.25 0.0004 14 6

17 9,753,430 3 80,517,326 1.40 0.0009 8 27
aAU refers to Australia and US refers to United States
bBTA refers to chromosome and the region and location are in Mb build UMD 3.1 (http://bovinegenome.org/cgi-bin/gbrowse/bovine_UMD31/)
*P-values were generated based on a permutation test (Doerge and Churchill [23]) for each analysis

Howard et al. BMC Genomics  (2015) 16:813 Page 5 of 13

http://bovinegenome.org/cgi-bin/gbrowse/bovine_UMD31/


between the US and AU are below unity (ranging from
0.75 and 0.80 for milk, fat and protein yield), indicating
that at the additive genetic level, a genotype by environ-
ment interaction exists. The equivalent for non-additive
effects is unknown, however current results suggest the
potential for a genotype by environment interaction to
exist at the non-additive genetic level too. Alternative
reasons for the lack of concordance between the two
populations may be due to a different population history,
resulting from a different set of founder sires and or
breeding objectives. The introgression of US germplasm
in AU genetics is relatively recent and occurred around
20 years ago [22], therefore it is not surprising that the
two populations might have a different set of influential
sires. An alternative method to characterize the genetic
differences across the population is to conduct a prin-
cipal component analysis on the genomic relationship
matrix. A principle component analysis was conducted

previously by Howard et al. [19] on a subset of the cows
utilized in the current study and the variance explained
by the first principle component was 0.024, which illus-
trates slight differences across the populations.
In order to determine if regions obtained from the

two-stage analysis show some degree of dominance
using the actual (raw or unadjusted) phenotype an
estimate of the additive and dominance effect of SNP
declared as being significant were estimated. Actual phe-
notypes were only available for the US dataset and there-
fore only SNP that were declared significant within the
US population were utilized. The dominance p-value
across all SNP for the US population was below 0.1 for
10 out of 15 SNP (66.7 %), although only 3 SNP would
be significant at the 0.05 level based on the Bonferroni
multiple correction factor. In our analysis, the residuals
from the 2 stage analysis were corrected for the individ-
uals’ EBV. It is worth noting though that some of the

Fig. 2 Plot of additive genomic estimated breeding (GEBV) variance, covariance between the additive genomic estimated breeding (GEBV) and
ROH4Mb based genomic estimated breeding value and ROH4Mb based genomic estimated breeding value variance across the genome for milk
yield on the United States dataset. The region from 1.5 to 2.3 Mb on BTA14 were removed surrounding the DGAT mutation in order to make
visualization more informative
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residual may still contain an additive genetic component,
thus creating a partial confounding in subsequent ana-
lyses. The average accuracy of the estimated breeding
values (EBV) in our data was 0.76 and 0.42 for PY and
CI, suggesting that the EBV correction does provide a
reasonably good measure of the additive breeding value
of the individual. In order to confirm that additive
effects from SNP information were not within the
residual from the two-stage analysis, the correlation
between yield deviations that were corrected for the
additive SNP effects estimated from the LASSO model
and the residual from the two-stage were computed for
the US population. The correlations between the two
measures for protein yield and calving interval was
0.94 and 0.99 and is displayed graphically in Additional
file 10: Figure S9. Based on the dataset used in the current
study the two-stage approach provided a more flexible
and computationally less demanding way to investigate

inbreeding effects, although these regions need to be
validated in other populations and fine mapped to identify
the possible gene/causative mutations.
The animals used in the study had multiple production

records and therefore the regions characterized in the
currently study result in a reduction in performance
and/or fitness of the animal, but are not lethal or indi-
vidually do not have a large impact on fitness. Further-
more, individuals that are homozygous in these regions
actually have a chance of being allowed to stay in a herd,
unlike when lethal or large effect mutations exist, due to
the animal having a small likelihood of being born alive.
Furthermore, it has been argued that the ability for a
population to purge deleterious homozygous mutations
is greater for large effect and/or lethal mutations and is
not as effective for mutations with minor effects [26].
From this the need to introduce alternative metrics that
characterize the effect of region-specific stretches of

Fig. 3 Plot of additive genomic estimated breeding (GEBV) variance, covariance between the additive genomic estimated breeding (GEBV) and
ROH4Mb based genomic estimated breeding value and ROH4Mb based genomic estimated breeding value variance across the genome for milk
yield on the Australian dataset. The region from 1.5 to 2.3 Mb on BTA14 were removed surrounding the DGAT mutation in order to make
visualization more informative
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homozygosity and are less reliant on the assumption that
two individuals with the same inbreeding value, also have
the same level of inbreeding depression. The use of func-
tional inbreeding metrics that allow for the identification
of individuals that are homozygous in areas that have no
impact on an economical trait has the potential to allow
for greater flexibility in managing herds/populations at the
genomic level. One such example could be based on
region-specific measures of the effect of homozygosity in
order to generate the expected reduction in performance
due to inbreeding and/or the probability of being culled at
a given parity. The effectiveness of using regions specific
inbreeding effects to minimize inbreeding depression
while maximizing the genetic gain in a population has yet
to be fully understood and should be considered in future
research. Additionally, the use of ROH based metrics to
manage population diversity and curb inbreeding depres-
sion could have even greater potential in small population
due to a lack of power in these populations to estimate
the dominance effect, using the more traditional metrics.
We identified regions with a putative multiplicative ef-

fect for all traits. A further network analysis was able to
identify networks shared between two interacting SNP.
The existence of ROH4Mb by ROH4Mb interaction
between two loci would generate non-linear epistasis in
the form of diminishing (reduction in performance is
less than the sum of the individual effects) or reinforcing
(reduction in performance is greater than sum of the
individual effects) epistasis [27]. A few regions that
displayed interactions based on the GBM analysis were
found to share network associations. To determine if the
descendent pairs resulted from a dominance by domin-
ance interaction, a traditional parametric linear model
was fitted using the actual phenotype as a response vari-
able that included both SNP additive and dominance
effects and their interactions. None of the dominance-
by-dominance interactions terms were significant across
SNP interactions. It should be noted though that linear
models are greedier than non-parametric models and
that a larger number of observations might be needed in
this case to confirm potential associations. Albeit the
ability to detect ROH4Mb by ROH4Mb interaction in
the current population is relatively low given the small
number of animals our analysis provides a blueprint that
can be easily replicated, and as the number of genotyped
cows increases this approach could become more
powerful.

Relationship between the additive and inbreeding
depression effect of region
The relationship between the additive and ROH4Mb ef-
fects based on their GEBV covariance was characterized
across the genome for multiple traits. The regions on
BTA3 (47.25–54.15Mb), BTA7 (24.26 – 49.00Mb),

BTA20 (23.71–34.98Mb) and BTA26 (9.34 – 20.71Mb)
have been previously found to be under positive direc-
tional selection [19, 28–32]. It should be pointed out
that this analysis as described in the previous section
could be hampered by the fact that a portion of the
additive genetic value might still be contained in the re-
siduals, thus causing a positive covariance. The region
on BTA7 has been found in multiple selection signature
studies across a variety of cattle breeds such as Jersey
(19,30), Angus (30), Nellore cattle [31] and Fleckvieh
[32]. The region is gene dense with multiple olfactory re-
ceptors, which detect and identify a wide range of odors,
providing a cue for the animal to interact with its envir-
onment. The region on BTA20 contains the growth hor-
mone receptor gene (GHR), which has been associated
with milk yield and composition [33] and has been
shown previously to be under positive selection [19, 30].
The positive covariance between the additive and
ROH4Mb effect for regions most likely undergoing posi-
tive directional selection is expected to be due to the
favorable allele(s) being driven towards fixation and
therefore in this situation homozygosity at this particular
region is beneficial to the animal. It is expected that re-
gions that reduce the fitness of the organism to be at a
low frequency, which was seen in the current study. Due
to this the majority of the population does not have the
haplotype therefore the ability to precisely estimate the
covariance is limited. This may partly explain the fact
that the majority of regions with the largest absolute co-
variance value across traits were also beneficial.
With the current study we have shown that regions

that impact inbreeding depression are variable across
populations. The causes of this heterogeneity are mani-
fold: potential lack of power, from a different number of
founder individuals, to varying numbers of influential
sires in the previous generations, different mating pro-
grams or selective goals over time. Interestingly in the
current study the majority of the regions identified were
at a low frequency. This is important since the power to
estimate effects when the frequency of the region is low
is reduced and most regions of small effects would be
missed by only using a single population. Due to this, a
population may not show an effect based on the current
set of animals utilized, but over time the frequency may
increase and the power will be sufficient to estimate it.
Therefore if a region has been shown to be sensitive to
long stretches of homozygosity in other populations
then long stretches of homozygosity in a population
under study should be further investigated. This is also
one of the primary limitations of using medium density
genomic data, given that the majority of variants impact-
ing inbreeding depression are probably carried at low
frequency and these would be in low LD with the ones
used in SNP assays. Nevertheless, identifying regions
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across multiple countries capitalize on the fact the ROH
regions differ across populations as confirmed by
Howard et al. [19] using the same populations.
Furthermore, the a priori knowledge on the impact of

a region when it is contained within a long stretch of
homozygosity can be utilized in mating schemes in order
to constrain homozygosity at specific regions while
allowing homozygosity at other regions. Previous re-
search has used methods that constrain relationships
averaged across the genome [34–38], although this study
confirms that the effect of a region on inbreeding
depression is dependent on the genomic region and
more importantly some regions are advantageous when
homozygous.

Conclusion
Genomic regions across multiple traits were found to be
associated with ROH4Mb on BTA13, BTA23 and BTA25
for the US population and BTA3, BTA7, BTA17 for the
AU population. Furthermore, multiple potential epistatic
interactions were characterized. The regions on BTA3,
BTA7, BTA20 and BTA26 displayed a large positive co-
variance between the ROH4Mb and the SNP effect and
these regions have been previously found in signatures
of selection studies. This provides evidence that the ef-
fect of a region being homozygous is dependent on the
genomic location. Future work should investigate the ef-
fectiveness of incorporating location specific inbreeding
effect into mating designs using simulated and real data.

Methods
Data
No animal care approval was required for the present
manuscript because all records came from field data.
Phenotype and pedigree information on US Jersey and
AU Jersey cows were provided by the American Jersey
Cattle Association (Reynoldsburg, OH) and the Australian
Dairy Herd Improvement Scheme (ADHIS; Melbourne,
Australia), respectively. For the US dataset, the pheno-
types used were the same in both populations and in-
cluded standardized 305 day lactation milk (MY), fat (FY)
and protein yield (PY) and calving interval (CI; a measure
of fertility). For the AU dataset, yield deviations were
already estimated and in order to make comparisons simi-
lar yield deviations were constructed for the US popula-
tion that was based on the same model using ASReml
[39], as outlined below:
yijklm = μ +HYSi + parityj +monthk + age + eijklm (Model 1)

where yijklm refers to either standardized MY, FY, PY, or
CI, μ is the intercept, HYSi is the fixed effect of herd-
year-season of calving, parityj was the fixed effect of
parity, monthk was the fixed effect of month of calving,
and age was the regression of age at first calf. Residuals
were the only random effects in the model. For cows

with multiple lactation records, the average of yield devi-
ations generated from Model 1 were used. Yield devia-
tions were standardized to have a mean of 0 and a
variance of 1 to ensure that the results were not affected
by systematic differences between the two populations.
Genotypic information on US Jersey cows (n = 8235)

and AU Jersey cows (n = 4075) were provided the
American Jersey Cattle Association (Reynoldsburg, OH)
and the Australian Dairy Herd Improvement Scheme
(ADHIS; Melbourne, Australia), respectively. A complete
description of the SNP panels used and SNP editing is
outlined by Howard et al. [19]. Briefly, genotype quality
control was applied within the US and AU populations
separately and consisted of removing animals that had
less than 90 % of the SNP called, SNP with a minor
allele frequency (MAF) below 0.01 and a p-value of a
chi-square test for Hardy-Weinberg equilibrium less
than 0.001. Missing SNP were imputed using Beagle [40]
and SNP with an imputation accuracy (i.e. Beagle r2) of
less than 97.5 % were removed. The SNP that passed
quality control and were in common across the two pop-
ulations (n = 31,431 SNP) were used for the analysis.
The ROH metric outlined by Kim et al. [20] was used

to declare if a SNP was in a ROH. A sliding window
approach with a fixed Megabase (Mb) length was used
to define ROH regions and a ROH was declared when a
region of at least 4 Mb contained only contiguous
homozygous SNP with no heterozygotes observed. The
sliding window approach started with the first SNP on a
chromosome and combined all SNP within 4 Mb into a
window and ROH status declared then the window was
shifted by one SNP to form a new window that was at
least 4 Mb and this process was repeated until the end
of a chromosome. The 4 Mb threshold was chosen be-
cause it has been shown that the medium density SNP
panel is not sensitive enough for the precise determin-
ation of short ROH segments [41]. The ROH status of a
SNP was defined as whether the SNP was within a ROH
of at least 4 Mb in length (ROH4Mb). The ROH4Mb of
a SNP was tagged as 1 if the SNP was in a ROH and 0
otherwise.

Statistical models
A two-stage analysis was performed within each po-
pulation to estimate the effect of the ROH4Mb status of
a SNP on milk yield and fertility traits as outlined by
Gulisija et al. [16]. The first stage involved generating re-
siduals from an animal model that accounted for the
additive genetic effects. The second stage involved using
the residuals from the first stage as a phenotype and
regress phenotype on ROH4Mb status. As inbreeding
depression is expected to be a function of dominance
effects and interactions involving dominance effects [7],
this method should mean that residuals derived from
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the first stage are free of additive genetic effects captured
by the estimated breeding value of the individual. An
alternative model was investigated that fit additive and
dominance effects simultaneously utilizing a subset of
the data. The SNP that had a large dominance effect was
also found to display a large effect based on the
ROH4Mb status using the two-stage approach. There-
fore, the two-stage approach was utilized due to greater
computational flexibility and possibility to explore s vari-
ous models such as single-marker regression and non-
parametric methods that allow for the detection of
interaction terms.
Across both stages, only animals that had both pheno-

typic and genotypic information for milk production
traits (n = 6751 US; n = 3974 AU) and CI (n = 5816 US;
n = 3905 AU) were used.

Stage one
Residuals of a model that accounted for the additive
genetic effects captured by the estimated breeding value
of the individual were obtained using the following
animal model in ASReml [39]:
yijk ¼ μþ uk þ eijk

wijk
(Model 2)

where yijk refers to the yield deviation for MY, FY, PY, or
CI and μ is the intercept. Random effects included uk
the additive genetic effect of the kth individual as-
sumed ~N (0, A), with A representing the additive rela-
tionship matrix derived from a pedigree that traced back
at least 4 generations. The pedigree was constructed based
on a recursive algorithm to compute the inverse of A as-
suming a non-inbred population [42]. The algorithm used
to construct A was based on section 4.3 in Henderson
[42], which allows for D (i.e. diagonal of the L matrix) to
take on only three values

ffiffiffiffi
:5

p
;

ffiffiffiffiffiffiffi
:75

p
and 1 if both parents

are known, only one parent is known or no parents are
know, respectively. This was done in order to allow for
the residuals to retain the portion that was due to inbreed-
ing that would have been accounted for when A was con-
structed based on the Meuwissen and Luo [43] algorithm
in ASReml. The random residual, eijk, was weighted by
wijk for the kth individual according to Garrick et al. [44]
to account for the fact that individuals may have
multiple yield deviation records. The formula used to
calculate wijk was:

1−h2
� �

h2 þ 1þr2 l−1ð Þ
l −h2

;

where h2 refers to the heritability, r2 refers to the repeat-
ability and l refers to the number of records. The h2 and
r2 values used for all three milk yield traits were 0.25
and 0.43, respectively. The h2 and r2 values used for CI
were 0.08 and 0.17, respectively.

Stage two
Single marker regression A single marker regression
approach was applied using the following model:
yij = μ + ROH4Mbj + eij (Model 3)

where yij refers to the yield deviation for MY, FY, PY, or
CI and μ is the intercept, ROH4Mbj is the ROH4Mb sta-
tus for SNPj and eij is the random residual. One of the
drawbacks with GWAS is deriving the correct threshold
to use, so that the number of false positives arising
through multiple testing is minimized. Our approach
was to use a permutation test to empirically derive a
statistical threshold and consequently reduce the num-
ber of false-positives due to multiple hypotheses being
tested [23]. A permutation sample was constructed by
randomly shuffling the phenotypes, while leaving the
ROH4Mb status the same and rerunning Model 3. The
process was repeated 2500 times to obtain a distribution
of random false positives. Significance was reported as
the number of times the observed test statistic was
greater than a permutation sample test statistic across
all SNP. Regions that had at least 3 contiguous signifi-
cant SNP were declared significant.

Gradient boosting machine Machine learning algo-
rithms such as gradient boosting machines (GBM) that
generate a decision tree provide a convenient and com-
putationally efficient way to explore high order interac-
tions. We used GBM to explore the degree of ROH4Mb
by ROH4Mb interaction that occurs across traits. The
GBM algorithm, which was introduced by Friedman
[45], produces an ensemble of regression tree predictors
and each individual tree is grown to a user-specified
number of splits [17]. A decision tree generated from
the GBM algorithm, as illustrated in Fig. 1, partitions
the space of input variables by splitting the observations
into homogenous quadrants and each tree split cor-
responds to an if-then rule for a predictor variable. At
each split point in each tree, a different subset of SNP
predictor variables (i.e. ROH4Mb status of SNP) is
evaluated to determine the best SNP for splitting. This
structure of a decision tree naturally encodes and mo-
dels the interactions between predictor variables [46].
Previous research has shown that GBM performs as well
or better than the more popular random forest (RF) and
it has a much lower computational burden compared to
RF [15, 47]. A description of the algorithm can be found
in Friedman [45] and a review by Natekin and Knoll
[46]. Briefly, a decision tree such as the one illustrated in
Fig. 1 is grown by splitting the sample into two parts, re-
ferred to as “daughter nodes”, based on the ROH4Mb
value (i.e. 0 or 1). The criterion to select a SNP and its
split point is to achieve the best increase in homogeneity
in the daughter nodes by minimizing a loss function. For
each iteration of the GBM algorithm, a small tree is
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added to the model as a predictor followed by searching
for the next tree that optimally reduces the residual [47].
The variable importance measure, which is based on the
number of times a variable is selected for splitting re-
gardless of the interaction depth, is then used to assess
the importance of a SNP on a given phenotype [47].
In the current study, the “gbm” R package [48] was

used to carry out the analysis within each population
and trait. The SNP that had a p-value from the permuta-
tion test of less than 0.10 for the single marker regres-
sion analysis were used as predictor variable in order to
reduce computational time. A Gaussian distribution was
assumed across all analysis and a 4 fold cross-validation
was used to determine the optimal number of trees to
construct, interaction depth and shrinkage. The shrink-
age parameter minimizes the degree of overfitting of the
model. The optimal parameter was chosen by starting
with high and low values for each parameter and either
increasing or decreasing them until the minimum mean
square error was reached. The final model for all traits
based on minimizing the mean squared error was con-
structed from 1200 trees at an interaction depth of 5
and a shrinkage parameter of 0.0075. It has been shown
that linkage disequilibrium introduces a bias in the rela-
tive importance measure due to a correlation among
predictor variables [49]. In order to reduce the cor-
relation among predictor variables, within each chro-
mosome if the correlation between SNP, based on
ROH4Mb status, exceeded 0.1 as outlined by Lubke et
al. [47] and only the SNP with the largest impact based
on the single marker regression analysis was kept for the
final analysis. The final number of SNP utilized for milk
production traits and fertility was 115 and 81 for the US
dataset and 100 and 105 for the AU dataset, respectively.
The identification of epistatic interactions between the

ROH4Mb status of a SNP was carried out using the
methodology outlined by Yao et al. [18]. Based on Fig. 1,
assume SNP B and D have a large epistatic interaction
on a trait. The SNP pairs are represented based on the
levels at which they appear, such that SNP D was
derived from a split produced by SNP B and therefore
represent a parent (i.e. SNP B) and child (i.e. SNP D)
descendent pair. The SNP B and D will appear more
frequently in the same branch of a tree due to the pair
having an epistatic interaction. The lower level descend-
ent pair such as parent (i.e. A) grandchild (i.e. D), will
also be referred to as a descendent pair. Therefore, the
level of the interaction (i.e. 2-way, 3-way, etc.) is not ex-
plicitly generated. Based on the tree generated in Fig. 1,
adding SNP D reduces the residual conditionally on the
split produced by its ancestor, which appears at a
higher-level branch [18]. The identification of SNP with
independent effects, such as SNP B and C will also ap-
pear frequently within the trees, but they won’t be

tagged as descendent pairs due to SNP B and C being
on separate branches. Based on this approach, the fre-
quency of a descendent pair across all trees was tabu-
lated for each trait and population. The number of levels
that separate two descendent pairs was also tabulated in
order to give an idea of whether the descendent pairs
occurred more frequency as a parent-child or parent-
grandchild. For example based on Fig. 1, the number of
levels that separate SNP A and B is 1 and is 2 for SNP A
and D.
The significance of the frequency of a descendent pair

and variable importance value was declared based on a
permutation test (n = 2,500 samples) [23]. Within each
population the phenotypes were shuffled while the
ROH4Mb status remained unchanged and the GBM
algorithm and tabulating the frequency of a descendent
pair was repeated for each sample. Significance was
reported as the number of times the observed variable
importance value or descendent pair frequency was
greater than the permutation sample across all SNP.

Relationship between additive and ROH4Mb status
SNP Effects In order to determine the relationship
across the genome for the additive genetic effect and
ROH4Mb status, the Bayesian LASSO of Park and
Casella [24] was used to estimate all SNP effects simul-
taneously. The LASSO algorithm was used due to its
shrinkage properties and the mean rank correlation
across the subset of SNP utilized in the GBM algorithm
between single marker, GBM and the LASSO analysis
was 0.60. For the LASSO analysis that estimates the
additive effect of a SNP, the genotypes were coded as 0
for the homozygote, 2 for the other homozygote and 1
for the heterozygote. Yield deviations from Model 1
were used as phenotypes. An analysis that captures the
inbreeding effects based on ROH4Mb status of a SNP
was conducted based on the residuals of Model 2 as
phenotypes. The LASSO analysis was performed using
the ‘BLR’ package in R [50]. A total of 800,000 iterations
were run with the first 200,000 discarded as burn-in and
a thinning rate of 50. Convergence was checked using
the ‘coda’ package [51] by constructing trace plots. To
characterize the relationship between the additive gen-
etic value of a SNP and its impact on inbreeding depres-
sion across the genome 500 kb, overlapping windows
were used to estimated the GEBV variance for a given
window for both analysis. The covariance was estimated
to determine the direction of the relationship between
the two. Then the 10 largest regions based on their ab-
solute covariance were characterized across all traits and
countries. The covariance was used instead of the correl-
ation due to unstable correlations due to a small denom-
inator term when computing the correlation.
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Annotation Regions that had contiguous significant
(P-value < 0.001) SNP based on the single marker re-
gression and had a significant SNP-by-SNP interaction for
the GBM analysis were investigated further using cow
positional candidate genes using Bos Taurus assembly
(UMD3.1; Ensemble 78) for functional characterization.
Candidate genes were chosen based on their location rela-
tive to the SNP with the largest significance. Furthermore,
a gene network work analysis was undertaken using Gene-
MANIA [52] in order to identify pathways that are in
common across genes within regions that were examined
further.
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