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Genomic insight into Aquimarina longa
SW024T: its ultra-oligotrophic adapting
mechanisms and biogeochemical functions
Tingting Xu1†, Min Yu1†, Heyu Lin1, Zenghu Zhang1, Jiwen Liu1 and Xiao-Hua Zhang1,2*

Abstract

Background: South Pacific Gyre (SPG) is the largest and clearest gyre in the world, where the concentration of
surface chlorophyll a and primary production are extremely low. Aquimarina longa SW024T was isolated from
surface water of the SPG center. To understand how this bacterium could survive in this ultra-oligotrophic oceanic
environment and its function in biogeochemical cycle, we sequenced the genome of A. longa SW024T and
performed extensive genomic analyses.

Methods: Genomic DNA was extracted and sequenced using Illumina Hiseq 2000 and Miseq platform. Genome
annotation, genomic comparison and phylogenetic analyses were performed with the use of multiple
bioinformatics tools like: BLAST+ 2.2.24, Glimmer3.0, RAST server, Geneious 4.8.5, ClustalW2 and MEGA5.
Physiological and morphological features were tested by bacterial culture, electron microscopy,
fluorescence microscopy and exopolysaccharides extraction.

Results: Analysis of seven Aquimarina genomes and 30 other genomes of Flavobacteriaceae isolated from seawater
showed that most of the strains had low DNA G + C contents, and Aquimarina had larger genomes than other
strains. Genome comparison showed varying genomic properties among seven Aquimarina genomes, including
genome sizes and gene contents, which may warrant their specific adaptive strategies. Genome of A. longa SW024T

was further compared with the genomes of two other Aquimarina species which were also isolated from the SPG
and A. longa SW024T appeared to have much more genes related to replication, recombination and repair. As a
copiotroph, A. longa SW024T is long in length, and possesses large genome size and diverse transporters. However,
it has also evolved many properties to survive in the oligotrophic marine environment. This bacterium grew better
on solid medium than in liquid medium, suggesting it may be liable to attach to particle surfaces in order to
survive in the nutrient-limiting environment. Gliding motility and the capacity to degrade various polymers possibly
allow the bacterium to grow on detritus particles and use polymeric substances as carbon and energy sources.
Moreover, genes related to carbon, nitrogen, and sulfur metabolisms were identified, which showed that A. longa
SW024T might be involved in various elemental cycles.

Conclusions: Genomic comparison of Aquimarina genus exhibits comprehensive capabilities of the strains to adapt to
diverse marine environments. The genomic characteristics of A. longa SW024T reveal that it evolves various strategies to
cope with both copiotrophic and ultra-oligotrophic marine environment, which provides a better understanding of the
survival abilities of bacteria in prevalent and even extreme oceanic environments. Furthermore, carbon, nitrogen and
sulfur utilization of A. longa SW024T may represent its potential functions in the global biogeochemical cycle.
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Background
Among the major taxa of marine bacterioplankton, mem-
bers of the Bacteroidetes are frequently found enriched on
organic matter particles and are specialists for degrading
high molecular weight compounds of both dissolved and
particulate marine organic matters, implying a major role
they play in the marine carbon cycle [1, 2]. Bacteroidetes
have been shown to comprise the largest fraction of
bacteria consuming chitin, polysaccharides and proteins,
but the smallest fraction consuming amino acids [3].
Luo [4] found that Bacteroidetes clades had a greater frac-
tion of genes encoding periplasmic proteins and a lower
fraction of genes encoding inner membrane proteins in
their metatranscriptomes than in their genomes and meta-
genomes, corroborating the macromolecule degradation
process requiring cell surface associated or extracellular
hydrolases. Some representatives of the Bacteroidetes
phylum such as Flavobacteriaceae were frequently found
attached to aggregates and appeared during an algae-
bloom collapse [5]. They were also known to move over
surfaces by gliding motility. The genus Aquimarina is a
member of the family Flavobacteriaceae [6] and was first
described in 2005 [7]. Up to now, a total of 18 species in
the genus Aquimarina have been recognized, and all of
them were isolated from marine environments.
South Pacific Gyre (SPG) is the largest gyre in the

world, which has the lowest surface chlorophyll a (Chl
a) concentration [8] and is believed to be the clearest
water in the world [9]. Comparing with the gyre edge,
the low concentration of Chl a, ammonium, nitrate and
phosphate in the gyre center makes the region an ultra-
oligotrophic oceanic environment [8]. Aquimarina
longa SW024T was a new species isolated from the sur-
face water of a station (U1367) located in the central
gyre of SPG [10, 11]. It is long-rod in shape, 0.3 μm in
width and 3.0–66.0 μm in length, non-flagellated and
motile by gliding. Colonies on marine agar 2216 (MA;
Becton Dickinson) are yellow, producing pigment with
maximum absorption at 453 nm and 479 nm. Some
substrates can be hydrolyzed by this bacterium, including
chitin, gelatin, DNA, and Tweens 20, 40 and 80. It is also
resistant to many antibiotics, such as benzylpenicillin,
carbenicillin, cefuroxime, cephalosporin V, polymyxin B,
gentamicin, kanamycin, neomycin, tetracycline, cefopera-
zone and streptomycin. The specific cellular morphology
and the physiological function of this bacterium may pro-
vide some advantages for its survival in the ultra-
oligotrophic environment.
Nowadays, more and more bacterial genomes have

been sequenced and analyzed, however, the genomes of
genus Aquimarina which is closely associated with mar-
ine environment have not been analyzed systematically,
except for A. agarilytica ZC1T, which was isolated from
marine red alga and had been proved to have agarolytic

activity [12]. In this context, the present study aims to
provide a better understanding of the survival mecha-
nisms and biogeochemical role of A. longa SW024T in
the ultra-oligotrophic environment by extensive genomic
analyses. In addition, comparison with other publicly
available genome sequences from members of Aquimar-
ina reveals that they are diverse in their genome sizes
and gene contents, which might warrant their specific
adaptive strategies.

Methods
Bacterial growth and DNA extraction
A. longa SW024T was routinely grown aerobically in
marine broth 2216 (MB; BD) or on MA at 28°C. A series
of dilutions (1:2, 1:5, 1:10, 1:20 and 1:50) of MB and MA
media were used to determine its growth in nutrient-
limiting conditions. After being inoculated in MB or
streaked on MA, the bacteria were cultured at 28°C for
two weeks. Genomic DNA was extracted from the cells
by using phenol-chloroform-isoamylic alcohol extraction
protocol described by Marmur [13], and the 16S rRNA
genes were sequenced to validate the obtained strains.

Genome sequencing, analysis and annotation
The genome of A. longa SW024T was sequenced using
the Illumina Hiseq 2000 with 2 kb and 3 kb mate-pair
libraries and Illumina Miseq with a 400 bp paired-end
library, achieving about 241-fold coverage. The reads
were assembled using GS de novo assembler software.-
Putative genes were identified using GLIMMER 3.0 [14].
Annotation was performed with BLAST+ 2.2.24 [15]
searching against databases, including the National
Center for Biotechnology Information (NCBI) non-
redundant proteins (NR) [16], Clusters of Orthologous
Groups of proteins (COG) [17], Kyoto encyclopedia of
genes and genomes (KEGG) [18] and Gene ontology
(GO) [19]. The criteria used to assign function to a
protein translated by predicted open reading frames
(ORFs) were a minimum cut-off of 30% identity and at
least three best hits among the NR, COG, KEGG and
GO databases.

Genomic comparison
The genomes of A. pacifica SW150T, A. megaterium
XH134T and A. macrocephali JAMB N27T were previ-
ously sequenced in the lab, in which the first two strains
were also isolated from SPG [20, 21] (Table 1). The gen-
ome sequences of A. latercula DSM 2041T, A. muelleri
DSM 19832T, A. agarilytica ZC1T and 30 other Flavo-
bacteriaceae strains were obtained from NCBI (Table 1,
Additional file 1). The ORFs of all these genomes
were predicted conformably using RAST server [22] and
translated to amino acid by Geneious 4.8.5 [23]. Ortho-
logous proteins were defined as reciprocal best hit
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proteins with a minimum 50% identity and 70% of the
length of the query protein [24], calculated by the
BLAST algorithm. Proteins existed in all genomes subse-
quently were aligned using ClustalW2 [25], the resulting
alignments were concatenated to provide the whole-
genome alignment. Phylogenetic analysis was performed
by using the MEGA5 software package [26] and the
neighbor-joining tree [27] was constructed and validated
with 1000 bootstraps. Genomic features and function
annotation of predicted proteins from A. longa SW024T

were first compared with those of the six genomes from
the same genus and then further compared with the two
strains isolated from SPG, using BLASP with an E-value
cut-off of 1e-5. Pan-genome and orthologous cluster
analyses were performed with pan-genome analysis pipe-
line [28].

Cellular morphology and chitinase activity
A. longa SW024T was cultured in MB for one day, and
then observed with a transmission electron microscope
(TEM-1200EX, JEOL, Tokyo, Japan). It was also stained
with DAPI and viewed by fluorescence microscopy
with a ×100 oil immersion lens (Nikon Eclipse 50i,
Japan). The intracellular structure was shown using
ultramicrotomy and observed with transmission elec-
tron microscope. Chitinase activity was observed using
chitin agar following the method described by Hsu
and Lockwood [29].

Exopolysaccharides (EPS) analyses
EPS extraction and analyses were followed the method
described by Balsanelli et al. [30] with some modifica-
tion. Briefly, A. longa SW024T was grown in MB
medium at 28°C and 170 rpm. After 3 days, 10 ml
of the bacterial cultures were centrifuged and the
supernatant were precipitated with 3 volumes of cold
ethanol for 24 hours at 4°C and centrifuged for 10 minutes
at 4°C and 8,000 g. The precipitate was dissolved in

deionized water and dialyzed against MilliQ water. The di-
alyzed sample was lyophilized and resuspended in 1 ml
of distilled water. Total sugar concentration of the sam-
ples was determined with phenol/sulfuric acid [31],
using glucose as standard. Three independent experi-
ments were performed and the mean concentration was
calculated.

Nucleotide sequence accession numbers
The genome project has been deposited in the Genome
On Line Database (GOLD) under the accession number
Gi0050938. This Whole Genome Shotgun project has
been deposited at DDBJ/EMBL/GenBank under the
accession number AVQK00000000. The version de-
scribed in this paper is version AVQK01000000.

Results and discussion
Genome features of A. longa SW024T and other
Aquimarina bacteria
The genome of A. longa SW024T was composed of
5,506,799 bp, and the calculated G + C content was
31.45 %. A total of 90 contigs ranging from 616 bp to
487,322 bp (the N50 and N90 contig sizes were
288,357 bp and 66,130 bp, respectively) were obtained
and combined into 67 scaffolds ranging from 1130 bp to
837,171 bp (the N50 and N90 scaffold sizes were
309,215 bp and 66,130 bp, respectively). A total of
4822 ORFs were identified within the A. longa SW024T

genome (Table 1). Among the predicted genes, 2507
(51.99 %) were found in COG categories, 1455 (30.17 %),
4168 (86.44 %) and 1939 (40.21 %) genes were applicable
within the KEGG, NR and GO databases, respectively.
General information of seven Aquimarina genomes used

for comparison and analysis was summarized in Table 1.
The contig numbers of the draft genomes ranged from 31
to 170. The genome sizes ranged from 4.25 to 6.24 Mb,
with a mean size of 5.49 Mb.

Table 1 Summary of genomic information of seven Aquimarina genomes

Strains Size
(Mb)

G + C
content (%)

Contig
No.

ORF
No.

Orthologous
cluster No.

Specific
genes

GenBank
accession No.

Isolation environment

A. longa SW024T 5.50 31.45 90 4822 4521 1522 AVQK00000000 Surface seawater of SPG

A. pacifica SW150T 5.26 33.49 145 4368 4230 1280 JACC00000000 Surface seawater of SPG

A. megaterium XH134T 6.21 32.93 170 5425 5206 1039 JACB00000000 Surface seawater of SPG

A. macrocephali JAMB N27T 6.06 32.93 169 5414 5211 1088 JACA00000000 Marine sediment off Kagoshima, Japan

A. latercula DSM 2041T 6.24 32.21 31 5522 5165 1831 AUMK00000000 Outflow of a marine aquarium in La Jolla,
California, USA

A. muelleri DSM 19832T 4.90 31.33 106 4085 3942 869 AUML00000000 Seawater of Amursky Bay, Sea of Japan

A. agarilytica ZC1T 4.25 32.81 131 3571 3451 1711 AHHE00000000 Surface of marine red alga, collected near
Nan Ao Island, Guangdong province, China

Xu et al. BMC Genomics  (2015) 16:772 Page 3 of 12



Phylogenetic and functional properties of Aquimarina
genomes
Although it is more popular to use 16S rRNA gene to
explain phylogenetic relationship of bacteria, phylogen-
etic tree constructed using orthologous proteins appears
to be more accurate to elucidate the genetic relationship
among different microbes [32]. In addition to all the
seven Aquimarina genomes, genomic sequences of 30
other Flavobacteriaceae strains isolated from seawater
were also obtained to construct an orthologous proteins
tree (Fig. 1, Additional file 1). As expected, genomes of
the same genus gathered together, and the genera Meso-
nia, Gillisia, Gramella and Salegentibacter formed a clade
which was closely related with the genus Aquimarina.
Although there is diversity among Flavobacteriaceae,
the adaptation to the degradation of polymeric sub-
stances seems to be a common theme [1, 2].
Analysis of the seven Aquimarina genomes and 30

other genomes of Flavobacteriaceae isolated from

seawater [Additional file 1] showed that ORF numbers
were proportional to their genome sizes, with the larger
genomes containing greater number of ORFs. The DNA
G + C contents of most of these strains were relatively
low, ranging from 30 % to 40 % (Fig. 2). Low G + C con-
tent may be an adaptive strategy for bacteria to nitrogen
limitation [33], because AT base pairs use less nitrogen
than GC pairs. The relative availability and/or energetic
expenditure incurred by different nucleotides is another
explanation for the low G + C content, by the reason
that GTP and CTP are energetically more costly to
generate than ATP and UTP. Therefore, low G + C
content in this genus may help bacteria save energy and
would be favored over their GC-rich counterparts when
living in the nutrient limited or energetic constraint
marine environments.
Meanwhile, orthologous clusters among the seven

Aquimarina genomes were also analyzed. The number
of orthologous clusters contained in each individual
genome ranged from 3451 to 5211 (Table 1). Among
the strains, A. muelleri DSM 19832T had the smallest
number of specific genes (869), while A. latercula
DSM 2041T had the largest (1831). Sixty-three per-
cent (8976) of the total clusters (14,249) were specific
genes (Fig. 3), and the proportion was higher than
that reported in other genera, such as Glaciecola
(59 %), Shewanella (48 %) and Streptococcus (18 %)
[32, 34, 35]. In addition, the percentage of core genes
(1268, approximately 8.9 %) was lower than that of
the specific genes (Fig. 3). These results indicated a
high degree of gene content variation in Aquimarina
genomes, which may be due to the geographic segregation
of these strains. Strains of Aquimarina in different
geographic locations would be unable to exchange
genetic information. Instead, they may exchange DNA
among surrounding bacteria, thus leading to the high
genetic diversity.
The power law and exponential decaying models were

used to describe the pan- and core-genome of the genus
Aquimarina, respectively. The pan-genome curve can
perfectly fit a power law function with an exponent of
0.62, which indicates that the pan-genome of Aquimar-
ina is open and new orthologous clusters will be added
when a new genome of Aquimarina is sequenced [36].
The core genome decreased sharply from an average of
4532 to 2300 when the first two genomes were added
[Additional file 2].
Functional characterization of COG (Table 2) showed

that Aquimarina had higher proportions of genes for
translation, ribosomal structure and biogenesis (J), signal
transduction mechanisms (T), and secondary metabo-
lites biosynthesis, transport and catabolism (Q) com-
pared to the mean values of 115 genomes calculated by
Konstantinidis and Tiedje [37]. The Aquimarina core

Fig. 1 Phylogenetic relationships of the family Flavobacteriaceae.
The tree was constructed with concatenated alignment of orthologous
proteins using Neighbour-joining method with 1000 bootstrap
replications. Type species Bacteroides fragilis NCTC 9343T from
Bacteroidaceae served as outgroup
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gene sets were enriched in genes that encode proteins
involved in translation, posttranslational modification, as
well as metabolism of amino acid, nucleotide, coenzyme
and lipid (COG categories J, O, E, F, H and I) when
compared with dispensable genes (Fig. 4). These genes
are retained in all the genomes since they are related to
central metabolisms and are essential to survival. Similar
enrichment was also observed in the genera Glaciecola
and Shewanella [32, 34]. However, the lower proportions
of core gene sets corresponding to transcription (K)
and signal transduction mechanisms (T) indicate that
different genomes may have evolved different transcrip-
tional and signal transduction systems, or alternatively
the transcriptional and signaling genes are not well
conserved in this genus.

Comparison of three Aquimarina strains isolated from SPG
A. longa SW024T [10], A. pacifica SW150T [21] and A.
megaterium XH134T [20] were isolated from surface

seawater of the SPG at stations U1367, U1369 and
U1371, respectively, as shown in [11]. The COG-based
analysis among the specific and orthologous proteins
showed that the largest proportion of orthologous genes
of the three bacteria belong to amino acid transport and
metabolism (E), while that of specific genes in A. longa
SW024T, A. pacifica SW150T and A. megaterium XH134T

belong to replication, recombination and repair (L), cell
wall/membrane/envelope biogenesis (M) and transcription
(K), respectively (Fig. 5). The different genome contents
among these bacteria may be likewise correlated with
diverse phylogenies, trophic strategies and ocean environ-
ments, as described in roseobacters [38]. For instance, A.
longa SW024T possesses four photolyases PhrB, while
three and only one PhrB coding genes were identified in
A. pacifica SW150T and A. megaterium XH134T, respect-
ively. This might be one of the reasons to explain their
diverse distributions. With the lowest Chl a in station
U1367, bacteria in this place suffer more UV damage than
those in other stations and therefore needs more PhrB.

Bacterial shape and growth of A. longa SW024T

Cells of A. longa SW024T usually appear as filamentous
and are relatively long in length (Fig. 6a), the maximum
length grown in MB is 66 μm [10], about 100 times lon-
ger than the smallest bacteria observed in oligotrophic
ocean environment [39]. Moreover, it is thin and the
width is only about 0.3 μm (Fig. 6d). A. megaterium
XH134T, which was also isolated from SPG, is even lon-
ger (up to 77.8 μm) and harbors a larger genome
(6.21 Mb, Table 1). Large genome brings large nucleic
acids and proteins, therefore the cell must have suffi-
cient room to include all the nucleic acids, proteins, mo-
lecular complexes and other gears required for survival

Fig. 2 Relationships of genome sizes, ORF numbers and DNA G + C contents. Data of seven Aquimarina strains and 30 other Flavobacteriaceae
strains isolated from seawater were chosen

Fig. 3 Numbers of orthologous gene clusters that are shared in a
given number of Aquimarina genomes. One and seven genomes
correspond to the unique and core gene clusters, respectively
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and proliferation [40]. The relatively long lengths might
confer an advantage for the bacteria attaching to particle
surfaces by increasing the contact area. Proteins func-
tioning in cell size control by maintaining cell shape
within normal ranges were found in the genome of A.
longa SW024T, such as FtsZ, penicillin binding protein 2
(PBP 2) and MreBCD.
Growth was measured in a series of diluted MB and

MA media to examine its survival in nutrient-limiting
conditions. The result showed that A. longa SW024T

could grow on 1:20 dilution of MA plate, but only in 1:2
dilution of MB liquid medium, after two weeks’ culture.
A. longa SW024T formed yellow colonies on agar plates
[Additional file 3] and tended to aggregate into flocks in
liquid culture (Fig. 6b). Abundant extracellular materials
were secreted which may help bacteria gather together
(Fig. 6c). The genome owns a large array of genes involved
in the synthesis and export of extracellular polysaccharide
material (e.g., 33 putative glycosyl transferases). These
results suggest that A. longa SW024T may grow in the

Table 2 Percentage of COG categories in each Aquimarina strain

COG
categories

A. longa
SW024T

A. pacifica
SW150T

A. megaterium
XH134T

A. macrocephali
JAMB N27T

A. latercula
DSM 2041T

A. muelleri
DSM 19832T

A. agarilytica ZC1T

B 0.036 0.038 0.029 0.030 0.031 0.037 0.046

C 4.753 4.641 4.548 4.519 4.734 4.978 5.251

D 0.756 0.761 0.583 0.667 0.611 0.780 0.883

E 7.886 7.607 8.192 8.098 7.086 8.841 7.574

F 2.233 2.396 2.012 2.032 2.046 2.489 2.463

G 3.277 4.108 4.052 3.518 5.559 3.306 5.112

H 5.041 4.869 4.548 4.580 4.276 5.163 4.879

I 3.169 3.119 3.528 3.397 3.787 3.975 3.253

J 5.906 6.162 4.956 5.126 5.162 6.241 7.342

K 8.246 8.406 11.079 10.889 8.888 7.578 6.831

L 6.158 4.336 3.236 4.246 3.940 4.755 5.762

M 7.742 8.939 6.239 6.127 8.125 7.355 9.201

N 0.360 0.380 0.262 0.303 0.458 0.371 0.743

O 3.745 3.728 3.178 3.518 3.635 4.123 4.507

P 5.149 5.401 4.519 4.610 4.795 4.866 5.390

Q 2.953 3.081 3.761 3.518 3.451 4.383 2.138

R 13.936 13.998 14.519 14.680 14.508 14.042 13.151

S 8.714 7.950 7.872 8.432 8.522 7.912 7.667

T 6.482 6.618 8.542 7.583 6.659 5.498 4.926

U 1.296 1.445 1.137 1.092 1.100 1.226 1.115

V 2.161 2.016 3.178 3.033 2.627 2.043 1.766

W 0.000 0.000 0.029 0.000 0.000 0.037 0.000

Function of COG categories: [B] Chromatin Structure and dynamics; [C] Energy production and conversion; [D] Cell cycle control, cell division, chromosome
partitioning; [E] Amino acid transport and metabolism; [F] Nucleotide transport and metabolism; [G] Carbohydrate transport and metabolism; [H] Coenzyme
transport and metabolism; [I] Lipid transport and metabolism; [J] Translation, ribosomal structure and biogenesis; [K] Transcription; [L] Replication, recombination
and repair; [M] Cell wall/membrane/envelope biogenesis; [N] Cell motility; [O] Posttranslational modification, protein turnover, chaperones; [P] Inorganic ion
transport and metabolism; [Q] Secondary metabolites biosynthesis, transport and catabolism; [R] General function prediction only; [S] Function unknown; [T]
Signal transduction mechanisms; [U] Intracellular trafficking, secretion, and vesicular transport; [V] Defense mechanisms; [W] Extracellular structures

Fig. 4 Comparison of the COG categories of the core and
dispensable gene sets coding proteins. The function of COG
categories is described in Table 2
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nutrient-limiting environment by attaching to surfaces
of particles.
After being precipitated with ethanol and lyophilized,

0.8 mg mL−1 EPS was obtained from A. longa SW024T

cultured in MB medium. This amount is equal to the
production of Herbaspirillum seropedicae [30], but less
than that of Pseudomonas atlantic (mean production is
2.7 mg mL−1) [41]. In natural aquatic environments,
nutrients required to support maximal microbial
growth are rarely present in sufficient quantities in the
water column. Microbial attachment and aggregates is
likely a strategy to increase the rate of substrate uptake
[42], and a porous matrix of exopolymer surrounding
microbial cells could sequester and concentrate dis-
solved organic compounds [41]. It thus could be in-
ferred that EPSs synthesized by A. longa SW024T might
act as a sponge to trap and concentrate nutrients in
flowing liquids and be able to help this bacterium
absorb dissolved organic material.
Smaller genomes, fewer gene duplications, and de-

pleted in DNA G +C contents, noncoding nucleotides,
and genes encoding transcription, signal transduction
and noncytoplasmic proteins have been identified as
indicators of genome streamlining and oligotrophy
[43, 44], all of which are opponent to A. longa
SW024T except the low DNA G + C content. Genome
of A. longa SW024T is overrepresented in dehydroge-
nases (77 predicted dehydrogenases), and is enriched
in COGs involved in defense mechanisms (V), tran-
scription (K) and signal transduction (T, Table 2),
consisting with the properties of copiotrophs pro-
posed by Lauro et al. [44]. With these genomic and
phenotypic features, we assume that A. longa SW024T

is a copiotroph but can survive in oligotrophic marine
environment probably by attaching to particles.

Gliding motility
A. longa SW024T has a complete set of genes involved
in gliding motility (gldA, gldB, gldC, gldD, gldE, gldF,
gldG, gldH, gldI, gldJ, gldK, gldL, gldM, gldN, sprA and
sprE), which could be beneficial in the exploration of
solid surfaces. A. longa SW024T attaches readily to
glass slide and displays rapid motility [10]. Previous
studies showed that cells with mutations in genes en-
coding these proteins were completely nonmotile in
Flavobacterium johnsoniae ([45] and references therein).
Mutants did not exhibit movement on agar or glass
surfaces, failed to propel latex spheres, and formed non-
spreading colonies. The gliding motility of Aquimarina
may be stimulated by the oligotrophic environment,
since it is beneficial to search insoluble macromolecular
substrates such as starch and chitin, which could be
utilized by Aquimarina as carbon resource. Moreover,
gliding motility can help bacteria position themselves at
optimal conditions of light intensity, oxygen, hydrogen
sulfide, temperature and other factors that influence
growth [46].

Adaptation strategies to the oligotrophic marine
environment
Survival of a bacterium in the ultra-oligotrophic surface
seawater depends on effective uptake of the primary
elemental ingredients for life, such as nitrogen (N),
phosphorus (P), sulfur (S) and iron (Fe). Many proteins
produced by A. longa SW024T are involved in these
processes (Table 3).
A. longa SW024T harbors nitrogen regulation proteins

NtrY and PII that are required for sensing and respond-
ing to N fluctuation in seawater. The PII signal transduc-
tion protein has a central position in the coordination of
carbon, nitrogen and energy status of the cells. Most of

Fig. 5 Relative abundance compared to all COG categories of the orthologous and specific proteins. Putative orthologous proteins are defined
as reciprocal best hit proteins with a minimum 50 % identity and 70 % of the length of the query protein, calculated by the BLAST algorithm.
The function of COG categories is described in Table 2
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the target proteins interacting with PII protein perform
or regulate crucial reactions in nitrogen assimilatory
pathways [47]. In addition, ammonium assimilation in
this bacterium is mediated via glutamine synthetase and
glutamate synthase. Nitrate is the most abundant N
species in ocean environments, a complete pathway of
denitrification exists in A. longa SW024T, helping the
bacterium acquire energy by this process.
P starvation may limit growth, and potentially con-

strain nitrogen fixation. Four genes in the genome
are involved in P acquisition, and all of them encode
putative alkaline phosphatases, which are necessary
for hydrolysis of dissolved organic phosphorus [48].
Two-component system PhoR/PhoP in the genome
may play a role in sensing and responding to changes
in external/internal P levels prior to activating com-
ponents of the P acquisition tool kit.

Although the classical ABC-type sulfate transport
system is missing in A. longa SW024T, it encodes
two proteins, i.e., a homolog of CysZ and a putative
sulfate permease, both of which could serve as a
sulfate transporter. Iron uptake mechanisms include
TonB-dependent siderophore receptor, ABC-type iron
transporter, ferrous iron transport protein, and ferric
enterobactin receptor.
Like other marine bacteria, A. longa SW024T encodes

a primary Na+ pump, the Na+-translocating NADH/ubi-
quinone oxidoreductase, and probably uses a sodium ion
gradient as the source of energy for nutrient uptake. In
addition, it encodes primary H+ pumps, namely, cyto-
chrome bd complex, and cytochrome c oxidase. Salt ac-
climation includes several ion transporters which serve
as exporters for sodium and chloride, the main toxic
ions in seawater, and importers for potassium, which is
essential for many cellular processes. Exporting of
Na+ ions at the expense of the proton gradient is per-
formed by a variety of Na+/H+ antiporters, including
NhaA, NhaB, NhaC and NhaP. In addition, A. longa
SW024T harbors Na+/proline symporter, Na+/phosphate
symporter, cation/acetate symporter, Na+/dicarboxylate
symporter, Na+/nucleoside permease, Na+/iodide cotran-
sporter, Na+/K+/Ca2+ exchanger, Na+/bile acid transporter,
Na+/multivitamin transporter, Na+/glucose cotransporter,
and proton/Na+-glutamate symporter. Besides, three aqua-
porins AqpZ could help the bacterium to withstand dra-
matic changes in extracellular osmolarity and adapt to
salinity stress [49].

Resistance to adverse effects
Oxidative DNA damage is a major source of mutation
load in living organisms by means of damaging DNA,
proteins and membranes of cells [50]. To avoid oxidative
damage, A. longa SW024T has set up several antioxidant
defense mechanisms comprising antioxidant enzymes
as well as antioxidative compounds. Three types of
superoxide dismutase (SOD, i.e., Cu-Zn SOD, Mn-
SOD, Fe-SOD) which catalyze the dismutation of O2

−

to O2 and H2O2, have been identified in the A. longa
SW024T genome. Genes encoding for two catalase-
peroxidases, KatG and KatE, catalyzing the decompos-
ition of hydrogen peroxide to water and oxygen are
present in the genome. Moreover, it was reported that
translation of the quinone-binding proteins was pro-
tected by the katE gene in tobacco leaves during ex-
posure to light stress [51]. These antioxidants might
also be crucial for bacteria survival during exposure
to other stresses such as UV radiation. The reactive
oxygen species-scavenging system in A. longa SW024T

also contains three peroxiredoxins (Prx), termed
thioredoxin peroxidases, including one PrxQ and two
2-Cys Prx, which catalyze the reduction of various

Fig. 6 Bacterial shape of A. longa SW024T. Fluorescence microscopy
of A. longa SW024T stained with DAPI, bar = 5 μm (a). Transmission
electron microscopy of A. longa SW024T culturing in MB medium
without staining, bar = 10 μm (b) and magnification of aggregate
section in the boxed area, bar = 1 μm (c). Transmission electron
microscopy of A. longa SW024T using ultramicrotomy, including
transections and longitudinal section, bar = 50 nm (d)
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hydroxyperoxides. Prx proteins mainly function when
the concentration of H2O2 is low, while catalases
mainly detoxify high H2O2 levels [52], although both
of them decompose H2O2. Several genes encoding
thioredoxins (Trx) and Trx-like proteins are also
found in the genome, including TrxA and TrxB. In
addition, A. longa SW024T possesses gene encoding
for MutY which may prevent mutations arising from
oxidatively damaged guanine residues [53].
Inhabiting in such clear surface seawater, A. longa

SW024T has evolved several genetic potentials for UV
radiation defense. Corresponding genes involved in the
biosynthetic pathways of C40 carotenoids (i.e., crtE, crtB,
crtI, crtY, crtZ) could be identified in the genome of A.
longa SW024T. In addition to protecting cells against
damaging radicals resulting from the degradation of het-
erocycles [54], carotenoids can also function in resisting
to photodestruction [55]. Hence, the synthesis of carot-
enoids may protect A. longa SW024T from UV damage
in the clear seawater. Moreover, A. longa SW024T pos-
sesses four putative photolyases PhrB, which are DNA
repairing flavoproteins that response to blue light and
repair cyclobutane pyrimidine (mainly thymine) dimers
created by UV light. One BLUF domain protein which
has been shown to sense blue light is found in the gen-
ome. Similar domain was also found in other marine
Flavobacteriaceae bacteira [2]. In addition, genes in-
volved in nucleotide excision repair (NER) are also
found in A. longa SW024T, including uvrA, uvrB, uvrC
and uvrD [56]. The NER system has an advantage over
photolyase in that it can repair UV lesions in the dark.
Moreover, the key protein in the transcription coupled

Table 3 Genes related to oligotrophic marine environment
adaption

Function Encoded gene product Gene

Nitrogen sensing and
regulation

nitrogen regulation protein ntrY

nitrogen regulatory protein glnB

Ammonium assimilation glutamine synthetase glnA

glutamate synthase,
NADH/NADPH small subunit

gltD

glutamate synthase,
NADPH/NADH large subnit

gltB

Denitrification nitrate reductase napA

nitrite reductase nirK

nitric oxide reductase norB

nitrous oxide reductase nosZ

Hydrolysis of dissolved
organic phosphorus

alkaline phosphatase phoD

Sensing and responding
to changes in external/
internal P levels

PhoP family transcriptional regulator phoP

histidine kinase phoR

Sulfate transport putative sulfate transporter cysZ

sulfate permease sulP

Iron uptake TonB-dependent siderophore
receptor

/

iron(III) ABC transporter /

ferrous iron transport protein B feoB

ferrous iron transport protein A feoA

ferric enterobactin receptor /

Primary Na + pump Na+-translocating NADH/ubiquinone
oxidoreductase subunit A

nqrA

Na+-translocating NADH/ubiquinone
oxidoreductase subunit B

nqrB

Na+-translocating NADH/ubiquinone
oxidoreductase subunit C

nqrC

Na+-translocating NADH/ubiquinone
oxidoreductase subunit D

nqrD

Na+-translocating NADH/ubiquinone
oxidoreductase subunit E

nqrE

Na+-translocating NADH/ubiquinone
oxidoreductase subunit F

nqrF

Primary H+ pump cytochrome d ubiquinol oxidase
subunit I

cydA

cytochrome d ubiquinol oxidase
subunit II

cydB

cytochrome c oxidase subunit I coxA

cytochrome c oxidase subunit II coxB

cytochrome c oxidase subunit III coxC

cytochrome c oxidase subunit IV coxD

protoheme IX farnesyltransferase cyoE

Exporting of Na+ ions Na+/H+ antiporter nhaA

Na+/H+ antiporter nhaB

Table 3 Genes related to oligotrophic marine environment
adaption (Continued)

Na+/H+ antiporter nhaC

Na+/H+ antiporter nhaP

Other sodium dependent Na+/proline symporter /

Na+/phosphate symporter /

cation/acetate symporter actP

Na+/dicarboxylate symporter /

Na+/nucleoside permease /

Na+/iodide cotransporter /

Na+/K+/Ca2+ exchanger yrbG

Na+/bile acid transporter /

Na+/multivitamin transporter /

Na+/glucose cotransporter /

proton/Na+-glutamate symporter /

Extracellular osmolarity and
salinity stress adaption

MIP family channel protein
aquaporin

aqpZ
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repair process is a transcription repair coupling factor
(TRCF) encoded by the mfd gene [57]. Mfd recognizes
RNA polymerase stalled at a non-coding template site of
DNA damage, disrupts the transcription complex to re-
lease the transcript and enzyme, and binds UvrA via the
UvrA-binding domain 2 that is very similar to domain 2
of UvrB thereby recruiting the NER machinery to the
DNA lesion [56]. Further, three 6-O-methylguanine-
DNA methyltransferases can also help repair alkylated
forms of guanine and thymine that can lead to G:C to
A:T transversions in DNA [58].
The in vitro antibiotic sensitivity test demonstrated

multidrug resistance pattern of A. longa SW024T, with
resistance to 12 antibiotics [10]. A variety of known
antibiotic-resistance proteins, such as β-lactamase (AmpC),
outer membrane proteins (OmpA, OmpW), and potential
drug transporters were found in the genome of A. longa
SW024T. The bacterium is resistant to β-lactam antibiotics,
i.e., benzylpenicillin, carbenicillin, cefuroxime and cephalo-
sporin. Several β-lactamases encoding genes were identified
in the genome. Thus, the inactivation of the antibiotics via
degradation by β-lactamases seems to be an intrinsic resist-
ance mechanism. It is also resistant to aminoglycosides,
i.e., gentamicin, kanamycin, neomycin and streptomycin.
Multidrug efflux pumps also play important roles in A.
longa SW024T antimicrobial resistance. A large number of
drug transporters and efflux pumps were identified in the
genome, including multidrug ABC transporter, SMR family
multidrug resistance protein, cation/multidrug efflux
pump, ABC efflux pump, Na+ driven efflux pump and
MATE efflux pump. These multidrug transporters
recognize lipophilic drugs by their physic-chemical
properties that allow them to intercalate into the lipid
bilayer, and transport these agents from the lipid bi-
layer to the exterior. Antimicrobial activity is of help
for A. longa SW024T to compete with opponents in
the same environment for survival, and might also help
the bacterium use antibiotics-like substances as energy
source and adapt to the ultra-oligotrophic marine
environment.

Potential role in biogeochemical cycles
Chitin is the most abundant renewable biopolymers in
the marine environment. It has been estimated that 1011

tons of chitin are produced annually in marine systems,
primarily in the form of zooplankton exoskeletons, and
this polymer must be continually remineralized to sup-
port sustained primary production in the oceans [59].
Thus, degradation of chitin may reflect one of the most
important extracellular enzymatic processes in the mar-
ine environment and create important trophic links
within bacterioplankton communities. From the chiti-
nase activity assay, chitin can be hydrolyzed by A. longa
SW024T [Additional file 3]. Chitinase is a glycosyl

hydrolase which catalyzes the degradation of chitin.
Based on amino acid sequence similarity, chitinases are
classified into families 18 and 19 of glycosyl hydrolases
[60, 61]. A. longa SW024T harbored seven genes encod-
ing chitinase, four of which belong to family 19 (blast
using UNIPROTKB database), which is an interesting
result because most of the family 19 chitinases were
found in higher plants. In recent years, genus Aqui-
marina was isolated in many oceanic areas, and it
may play a role in the cycling of nutrients especially
for carbon in the oceans.
Denitrification constitutes one of the main branches

of the global nitrogen cycle sustained by bacteria. For
nitrogen metabolism, a complete pathway of denitrifi-
cation was found in the genome of A. longa SW024T,
which is the process of converting nitrate (NO3

−) to
nitrite (NO2

−), nitric oxide (NO), nitrous oxide (N2O)
and dinitrogen gas (N2), making use of N oxides as
terminal electron acceptors for cellular bioenergetics.
Moreover, genes involved in the pathway of assimila-
tory sulfate reduction were also found in the genome,
which converts sulfate to sulfide. The ability to con-
sume a wide array of carbon, nitrogen and sulfur
substrates indicates that the bacterium might play an
important role in biogeochemical cycles.

Conclusions
Genome comparison of Aquimarina strains suggest that
the genome contents of these bacteria are in line with
their living environments. The general features of
A. longa SW024T genome are consistent with its life
style in the surface ocean. With large genome size, a
large number of ORFs and COG categories comparable
to other copiotrophs, A. longa SW024T is assumed to be
a copiotroph. Living in the ultra-oligotrophic marine
environment, A. longa SW024T is more likely abundant
on particles than free-living in the water column, and
search for polymers by its gliding ability. A series of
adaptation strategies to oligotrophic marine environ-
ment including uptake of the primary elemental ingredi-
ents such as N, P, S and Fe were identified in the
genome. Antioxidative enzymes and compounds as
well as other antibiotic activity proteins here might
help the bacterium resistant to adverse effects such as
DNA damage. Carbon, nitrogen and sulfate metabolism
indicate that the bacterium may play a role in biogeo-
chemistry cycle. The analysis of the genome of A. longa
SW024T presented here provides a better understanding
of its survival mechanisms and ecophysiological func-
tions in the ultra-oligotrophic marine environment.

Availability of supporting data
The data sets supporting the results of this article are
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