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Abstract

Background: Long intergenic noncoding RNAs (IincRNAs) are endogenous non-coding RNAs (ncRNAs) that are
transcribed from ‘intergenic’ regions of the genome and may play critical roles in regulating gene expression
through multiple RNA-mediated mechanisms. MicroRNAs (miRNAs) are single-stranded small ncRNAs of
approximately 21-24 nucleotide (nt) that are involved in transcriptional and post-transcriptional gene regulation.
While miRNAs functioning as mRNA repressors have been studied in detail, the influence of miRNAs on lincRNAs
has seldom been investigated in plants.

Methods: LincRNAs as miRNA targets or decoys were predicted via GSTAr.pl script with a set of rules, and [incRNAs
as miRNA targets were validated by degradome data. Conservation analysis of lincRNAs as miRNA targets or decoys
were conducted using BLASTN and MAFFT. The function of lincRNAs as miRNA targets were predicted via a
lincRNA-MRNA co-expression network, and the function of lincRNAs as miRNA decoys were predicted according to
the competing endogenous RNA (ceRNA) hypothesis.

Results: In this work, we developed a computational method and systematically predicted 466 lincRNAs as 165
miRNA targets and 86 lincRNAs as 58 miRNA decoys in maize (Zea mays L.). Furthermore, 34 lincRNAs predicted as
33 miRNA targets were validated based on degradome data. We found that lincRNAs acting as miRNA targets or
decoys are a common phenomenon, which indicates that the regulated networks of miRNAs also involve lincRNAs.
To elucidate the function of lincRNAs, we reconstructed a miRNA-regulated network involving 78 miRNAs, 117
lincRNAs and 8834 mRNAs. Based on the lincRNA-mRNA co-expression network and the competing endogenous
RNA hypothesis, we predicted that 34 [incRNAs that function as miRNA targets and 86 lincRNAs that function as
miRNA decoys participate in cellular and metabolic processes, and play role in catalytic activity and molecular
binding functions.

Conclusions: This work provides a comprehensive view of miRNA-regulated networks and indicates that lincRNAs
can participate in a layer of regulatory interactions as miRNA targets or decoys in plants, which will enable in-depth
functional analysis of lincCRNAs.
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Background

Long noncoding RNAs (IncRNAs) are generally long
transcripts of more than 200 nucleotide (nt) that lack a
coding sequence (CDS) or open reading frame (ORF)
[1, 2]. Despite exhibiting lower expression levels com-
pared with mRNAs, IncRNAs can regulate gene expres-
sion at the transcriptional and post-transcriptional levels
[3—7]. As one of the largest classes of IncRNAs, long inter-
genic noncoding RNAs (lincRNAs) are endogenous
IncRNAs that are transcribed from ‘intergenic’ regions of
the genome. They play critical roles in regulating multiple
important biological processes in humans and other ani-
mals, including cell cycle regulation, immune surveillance
and embryonic stem cell differentiation [8—14], while they
primarily participate in the environmental stimulus re-
sponse, vernalization and nodulation in plants, including
Arabidopsis thaliana [15], Triticum aestivum [16), Cucu-
mis sativus [17], Setaria italic [18], Populus trichocarpa
[19] and Zea mays [20—22]. However, compared with ani-
mal lincRNAs, the functions of plant lincRNAs and their
regulatory roles remain largely undiscovered.

Unlike lincRNAs, plant microRNAs (miRNAs) are ap-
proximately 21-24 nucleotide (nt) single-stranded, small
non-coding RNAs that typically form near-perfect du-
plexes with their targets and mediate cleavage or transla-
tion repression at the post-transcriptional level [23, 24].
They play vital roles in regulating a broad range of bio-
logical metabolic processes, including roles in plant de-
velopment, flowering time, leaf morphogenesis, hormone
signaling and responses to environmental stresses, such as
phosphate or/and sulfate stress [25-30]. miRNAs usually
regulate the expression of their mRNA targets through
cleavage in plants [31, 32]. However, recent studies sug-
gest that miRNAs function in a more sophisticated way
than was initially assumed. In addition to protein-coding
RNAs acting as miRNA targets, lincRNAs can also be dir-
ectly targeted by miRNAs for cleavage [19, 33-35].

More interestingly, lincRNAs can also serve as miRNA
decoys, miRNA sponges, target mimicry, or target
mimics to interfere with the miRNA-mediated regulation
of their mRNA targets. Similar to the sequence-dependent
interactions of miRNAs with their mRNA targets, miRNA
decoys also rely on the sequence-dependent interaction of
miRNAs with lincRNAs, except for the bulges in the mid-
dle of miRNA-lincRNA duplexes. If lincRNAs acting as
miRNA decoys and mRNAs acting as miRNA targets can
be bound by the same miRNAs, then lincRNAs could
function as competing endogenous RNAs (ceRNAs); they
could directly interact with the specific miRNA and
sequester it in a type of target mimicry to protect target
mRNAs from repression, which is known as the “ceRNA
hypothesis” [36, 37]. In animals, the long noncoding RNA
linc-MD1 can act as a miR133 and miR135 sponge and
up-regulate muscle-specific expression of the respective
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miR133 and miR135 targets MAMLI1 and MEF2C [38]. In
plants, the classical example of an miRNA decoy is IPS1,
which is a long non-coding RNA that contains an ath-
miR399 decoy site and can serve as an miRNA decoy to
inactivate ath-miR399 and up-regulate the expression of
the ath-miR399 primary target PHO2 [39]. In rice, it has
been reported that two lincRNAs that act as decoys of
miR160 and miR164 can regulate floral and/or seed devel-
opment [40]. Recently, 25 miRNA decoys from Arabidop-
sis and 94 miRNA decoys from rice were identified;
overexpressing the decoys of miR160 and miRNA166 can
alter plant development, indicating that ncRNAs, short
ORF encoding genes and intergenic sequences acting as
miRNA decoys are functional in plants [41].

Maize (Zea mays L.) is one of the most important
crops worldwide. It serves as a food source for people
around the world and as a model organism in genetics
research [42]. With the release of the maize genome,
increasing amounts of transcriptome data; degradome
data; and specific data on miRNAs, lincRNAs and
mRNAs have been accumulated. It is now possible for
us to investigate the function of lincRNAs as miRNA
targets or decoys in maize. Here, lincRNAs acting as
miRNA targets were initially identified based on degra-
dome data, and lincRNAs that may act as miRNA
decoys were subsequently predicted. To explore the
function of lincRNAs acting as miRNA targets or de-
coys, a genome-scale network among miRNAs, lincR-
NAs acting as miRNA targets, lincRNAs acting as
miRNA decoys, and mRNAs was first constructed. Then,
the functions of lincRNAs acting as miRNA targets were
predicted and annotated via a co-expression network
between lincRNAs and mRNAs, and the functions of
lincRNAs acting as miRNA decoys were predicted and
annotated according to the ceRNA hypothesis. Our
research demonstrates that lincRNAs can act as miRNA
targets or decoys to mediate the regulation of gene expres-
sion, and the annotation of lincRNA functions will facilitate
the validation of the lincRNA functions in the future.

Methods

LincRNA and cDNA data

Primary data on lincRNAs were first integrated from
three published studies on maize, consisting of 1704
high-confidence IncRNAs, 439 lincRNAs, and 664 puta-
tive maize IncRNAs [20-22]. Then, IncRNAs that were
not located in intergenic regions and lincRNAs that were
small RNA precursors were filtered out, and a total of
1831 lincRNAs were obtained and used in further analyses
(Additional file 1). To distinguish the lincRNAs from these
three data sources, the first authors’ names were added to
the IDs of the lincRNAs. Maize cDNA data were down-
loaded from MaizeGDB ftp://ftp.ensemblgenomes.org/
pub/plants/release-22/fasta/zea_mays/.)
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miRNA data

Data on mature miRNAs were downloaded from miR-
Base (version 21: June 2014, http://www.mirbase.org/)
[43, 44], and 321 maize miRNAs were extracted. A total
of 203 unique miRNAs were obtained after merging
these sequences with different miRNA IDs.

Degradome data

The degradome data from maize were downloaded from
NCBI's Gene Expression Omnibus (GEO) with the
accession numbers of SRX222260, SRX222262,
SRX222264, SRX222266 (http://www.ncbinlm.nih.gov/
sra/?term=SRP018376) [45-47]. The raw reads from the
above data were first processed using the FASTAX-
Toolkit to trim adapter sequences with many “N” and
ignored reads that were less than 18 nt. Then, the redun-
dant reads were merged and 3268059, 4106567, 2682186
and 2965163 unique reads were obtained from the op-
tional nitrate root tip, low nitrate root tip, low nitrate leaf
and optional nitrate leaf, respectively (Additional file 2).

Prediction of miRNA targets

The miRNA targets of lincRNAs or cDNAs were predicted
using GSTAr.pl script, and the minimum free energy
(MFE) of miRNA-lincRNA or miRNA-cDNA duplexes
was calculated with the RNAhybrid program [48-50].
Then, a modified version of the CleaveLand4 program was
used to identify the potential cleavage sites of miRNAs in
the corresponding targets based on degradome data http://
sites.psw.edu/axtell/software/cleaveland4/) [51]. To obtain
high-quality lincRNAs acting as miRNA targets and to dis-
tinguish those lincRNAs acting as miRNA decoys, the fol-
lowing rules were used: at most, one mismatch or indel
was allowed between the 9" and 12 positions of the 5
end of miRNA sequences, the total number of bulges or
mismatches in the other regions was not allowed to exceed
4 nt, and no continuous mismatches were allowed [41, 51].
In addition, target plots indicating the abundance of each
distinct read for the lincRNAs acting as miRNA targets
were generated.

Prediction of miRNA decoys

LincRNAs potentially acting as miRNA decoys were pre-
dicted based on Wu’s methods with a slight modification
[41, 52]. Generally, the following set of rules was used:
(1) the number of mismatches or indels should be larger
than 1 and less than 6 between the 9™ and 12™ positions
of the 5" end of the miRNA sequences; (2) perfect
nucleotide pairing was required between the 2" and 8™
positions of the 5" end of miRNA sequences; and (3) the
number of mismatches and indels should be no more
than 4 in other regions. These rules were implemented
using in-house Perl scripts.
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Conservation analysis of lincRNAs acting as miRNA
targets or decoys

To investigate the conservation of lincRNAs acting as
miRNA targets or decoys, five genomes of other mono-
cotyledons (monocots) (Sorghum bicolor, Setaria italica,
Panicum virgatum, Oryza sativa and Brachypodium dis-
tachyon) were downloaded from Phytozome (v9.1)
(http://www.phytozome.net/) [53], and the lincRNA
regions that paired with miRNA targets or decoys were
searched against the 5 monocot genomes using BLASTN
with a cutoff threshold of an E-value less than le-1 [54].
Then, the significantly matched regions plus their flank-
ing regions (100 bp in total) were obtained [55]. Finally,
multiple sequence alignment was conducted with
MAFFT v6.864b, using parameter settings of maxiterate
1000 and localpair [56]. If the identities between the
conserved sites were greater than 80%, then the
conserved sites were highlighted.

Construction of miRNA-lincRNA-mRNA networks

To infer the function of lincRNAs, networks were con-
structed based on the complementary pairs between
miRNAs and lincRNAs and between miRNAs and
mRNAs. The nodes in the networks consisted of miR-
NAs, lincRNAs acting as miRNA targets, lincRNAs act-
ing as miRNA decoys, mRNAs acting as miRNA targets,
and mRNAs acting as miRNA decoys. The miRNA-
lincRNA-mRNA networks were visualized with Cytos-
cape 3.1.1 [57].

Functional prediction of lincRNAs acting as miRNA targets
based on the lincRNA-mRNA co-expression networks
Fifty-four datasets, including 30 RNA-seq experiments
performed in 13 different tissues (leaf, immature ear,
immature tassel, seed, endosperm, embryo, embryo sac,
anther, ovule, pollen, silk, root and shoot apical tissues),
were applied to construct a co-expression network
between lincRNAs acting as miRNA targets and mRNA
genes [58-63]. The construction method was similar to
that of Liao [64] and Hao [17]. In general, the pipeline
for constructing the co-expression network was as fol-
lows: (1) genes, including mRNAs and lincRNAs, whose
variances ranked in the top 75 % of the expression profiles
were retained; (2) the p-value of Pearson’s correlation co-
efficient (Pcc) was calculated for each pair of genes using
Fisher’s asymptotic test in the WGCNA library of R [65],
and these values were adjusted using the Bonferroni
correction method; and (3) co-expression relationships
showing adjusted p-values of less than 0.05 and ranking in
the top 5 % and bottom 5 % of Pcc were selected for fur-
ther analysis. The Bonferroni multiples test was executed
using the multtest package from R. The co-expression
networks were also visualized using Cytoscape [57].
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Table 1 LincRNAs acting as miRNA targets validated using degradome data

zma-miRNAs? Transcripts® start-end®  MFEratio? Category® P-valuef Degradome data file?
zma-miR156e-3p Li_TCONS_00080887 75-95 0.674311926605505 4 0.071329710792311 LN_root
zma-miR156e-3p zhang_TCONS_00012690 489-511 0.768348623853211 4 0.020921336970078 LN_root
zma-miR156h-3p zhang_TCONS_00012690 625-646 0.713936430317848 4/4/4 0.0514855197295749/0.046703544571294/0.0376430084254001  LN_root/LN_leaf/
HN_root
zma-miR159d-3p:zma-miR159c-3p  Boerner_Z27kG1_14953  633-654 0.723192019950125 4 0.0382439063811821 HN_leaf
zma-miR15%-5p Boerner_zZ27kG1_09751  293-312 0.686602870813397 4/4 0.046703544571294/0.0376430084254001 LN_leaf/HN_root
zma-miR159e-5p Boerner_727kG1_15115  817-837 0.657894736842105 4 0.0750252163870715 HN_leaf
zma-miR160b-3p:zma-miR160g-3p  Boerner_Z27kG1_08283  74-94 0.691588785046729 4 0.0302295095199341 HN_root
zma-miR160c-3p Boerner_7Z27kG1_16361  1423-1444  0.689156626506024 4 0.0824909413024753 LN_leaf
zma-miR160c-3p Boerner_7Z27kG1_23317  2302-2323  0.667469879518072 4/2/4 0.155614651330728/0.0297578023818319/0.117310766689232 bl,V\J_rlooF/LN_leaf/
ea
zma-miR162-5p Boerner_7Z27kG1_13892  28-48 0.659605911330049 4/4 0.155614651330728/0.115544761245953 LN_root/HN_root
zma-miR164b-3p Boerner_7Z27kG1_01046  97-117 0.67175572519084  1/0/0/0 0.0137287981463647/0.00691182420446057/ LN_root/LN_leaf/
0.00821020675558204/0.00827523084432658 HN_root/HN_leaf
zma-miR164d-3p Boerner_zZ27kG1_22106  573-593 0.693506493506494 4 0.181974073806857 LN_root
zma-miR164e-3p Boerner_7Z27kG1_03819  109-130 0.660831509846827 4 0.141916540983859 LN_leaf
zma-miR166h-5p Boerner_zZ27kG1_17085  280-301 0.688836104513064 4 0.0282897431510059 LN_leaf
zma-miR166i-5p Boerner_z27kG1_06707  85-104 0.757009345794392 4 0.0189498889103007 LN_leaf
zma-miR166i-5p Boerner_Z27kG1_17308  553-572 0.77803738317757  4/2/4/3 0.0105159612050723/0.00188631556542906/ LN_root/LN_leaf/
0.00764459114629912/0.00047103572965379 HN_root/HN_leaf
zma-miR166n-5p Boerner_7Z27kG1_01291  759-780 0.65281173594132 4 0.262254475002389 HN_leaf
zma-miR169¢-3p Boerner_Z27kG1_22188  252-273 0.686635944700461 4 0.0312172902072148 LN_root
zma-miR169f-3p Boerner_727kG1_15675  450-471 0.696517412935323 0 0.00163062708112194 LN_leaf
zma-miR169i-3p:zma-miR169j- Boerner_Z27kG1_23086  819-837 0.665753424657534 4 0.457851673892433 LN_leaf
3p:zma-miR169k-3p
zma-miR1691-3p Boerner_zZ27kG1_06005  556-575 0.661498708010336 4 0.0736720564421364 LN_leaf
zma-miR169m-3p zhang_TCONS_00011169 341-360 0.660220994475138 2/3/3 0.04068724565891/0.0034421015727073/0.0103116935935227 LN_Ileaff/HN_root/
HN_lea
zma-miR171b-5p Boerner_Z27kG1_16154  453-472 0.654285714285714 4 0.128405843607718 LN_root
zma-miR2118d Boerner_z27kG1_20838  4-26 0.660674157303371 4 0.0907587348469249 LN_root
zma-miR2275a-3p Li_TCONS_00089775 205-227 0.669724770642202 4 0.108447036911749 LN_leaf
zma-miR394b-3p:zma-miR394a-3p  Boerner_Z27kG1_16154  1242-1260 0.691516709511568 4/2/4/4 0.0414049715995405/0.00752393997803091/ LN_root/LN_leaf/
0.0302295095199341/0.0307139613443539 HN_root/HN_leaf
zma-miR3950-3p Boerner_727kG1_21671  386-406 0.67479674796748 4 0.00764459114629912 HN_root
zma-miR399e-5p Boerner_zZ27kG1_03819  175-196 0.652173913043478 4/4/4/2
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Table 1 LincRNAs acting as miRNA targets validated using degradome data (Continued)

zma-miR399e-5p
zma-miR399e-5p
zma-miR408b-3p:zma-miR408a

zma-miR408b-5p

zma-miR444a:zma-miR444b
zma-miR482-3p

zma-miR482-3p

zma-miR482-3p

zma-miR482-3p
zma-miR528a-3p:zma-miR528b-3p

zma-miR528a-3p:zma-miR528b-3p
zma-miR528a-3p:zma-miR528b-3p
zma-miR529-3p
zma-miR529-5p
zma-miR827-5p

Boerner_z27kG1_15755
Boerner_z27kG1_22850
Boerner_727kG1_01046

zhang_TCONS_00011169

Boerner_z27kG1_20838
Boerner_727kG1_08283
Boerner_727kG1_22204
Li_TCONS_00030374
Li_TCONS_00055761
Boerner_727kG1_01046

Boerner_727kG1_08632
Boerner_727kG1_23730
Boerner_z27kG1_17308
zhang_TCONS_00077805
Boerner_7Z27kG1_13480

72-93
800-821
94-115

185-204

5-25
600-621
94-112
285-304
33-52
97-118

462-482
573-593
93-112
55-76
1365-1385

0.678743961352657
0.70048309178744
0.655097613882863

0.675438596491228

0.728291316526611
0.696022727272727
0.735795454545454
0.732954545454545
0.784090909090909
0.68957345971564

0.665876777251185
0.665876777251185
0.650872817955112
0.723785166240409
0.654434250764526

4
4
2/0/2/0

4/4/3

4/0

2

4/4

4

4
1/0/0/0

N w N~ b

4

0.301930016223076/0.277645717435721/0.22965334757042/

0.0560077959605969
0.166191501641553
0.0457153546791773

0.0743714637805463/0.00893560703937002/
0.0431631594963204/0.0106960643831452

0.108447036911749/0.0879746832508639/0.0056378079964241

0.0414049715995405/0.000941738699572037
0.0781478318804442
0.207510626541854/0.155345100314279
0.170699850059004

0.0531287606730582

0.0109982003430358/0.00610115440783998/
0.00657357579419915/0.00730523957678519

0.368800900766741
0.348799968161408
0.025580206396939
0.0312172902072148
0.249470323366813

LN_root/LN_leaf/
HN_root/HN_leaf

LN_leaf
HN_leaf

LN_root/LN_leaf/
HN_root/HN_leaf

LN_leaf/HN_root/
HN_leaf

LN_root/HN_root
HN_leaf
LN_root/HN_root
HN_leaf
HN_leaf

LN_root/LN_leaf/
HN_root/HN_leaf

HN_leaf
HN_leaf
HN_leaf
LN_root
LN_leaf

®miRNA data from miRBase 21.0. PTargeted lincRNA genes for the miRNAs. “The starting and terminating sites on the lincRNAs when it is bound by miRNAs. “MFEsite/MFEperfect, the calculation based on the method
in Tafer et al.[50]. °Classification of the splicing signal of the alignments; the classifications corresponded to the degradome data files. fp-value for the degradome reads in different degradome data files. SThe evidence

file for the alignments
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250-ACCARGTCGGCGARTGTTTTTTACAAGAGG T TGCGGAGCGGGCGTTATTT T TG TGGARTARTGACCATATCGAGAGTCTGATCARACAGARTAGTAGGGTTATACATCTARG - 363

ACCAAGTCGGCGAATGTTTT LN leaf 61: HN leaf 1
.CCAAGTCGGCGARTGTTTTT LN leaf 2........
.CCAAGTCGGCGARTGTTT_LN leaf 11..
.CCAAGTCGGCGMTGﬂmT_m_leaf_3
.CCAAGTCGGCGATGTTTT_LN leaf 3..
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. mm‘mcnrnmaccu LN root .-
..T!‘TTGTGGAM‘MTGACCM BN {_root ! 15: I.N root 12 _LN leaf : 23 HN leaf 26

Degradome 5' end Frequency

L HIIHIH llyll l}ll

0 200 400 600 800 1000 1200

... .ACAGANTAGTAGGGTTATAC_LN _ xoot 2
Transcript Position
Fig. 1 Target plots (t-plots) of the confirmed zma-miR166h-5p target and the distribution of degradome reads among lincRNAs. a Cleavage characteristics
of Boerner_7Z27kG1_17085, which functions as a zma-miR166h-5p target. The abundance of each sequenced read is plotted as a function of the position
of its 5" end in the transcripts. The peaks of the signatures at the validated cleavage sites of the corresponding miRNAs are shown in red
(dots). b miRNA:lincRNA alignment: the reads of the degradome with 5’ ends at the indicated positions are shown in black, while the
reads at position 9, 10, 11, or 12 of the inset miRNA target alignment are shown in purple (the cleavage site was counted from the 5" end of the purple
reads, which was position 10 in this example)

Based on the co-expression network between lincR-  lincRNA-mRNA networks. AgriGO, an integrated web-
NAs acting as miRNA targets and mRNAs, we used the based GO analysis toolkit, was employed for the
AgriGO toolkit and input the list of mRNA genes to  functional annotation and enrichment analysis [66].
predict the function of these lincRNAs [66]. The IDs of all of the listed mRNAs connected with

lincRNAs acting as miRNA decoys were submitted
Functional prediction of lincRNAs acting as miRNA decoys  for GO analysis, and the overrepresented GO terms
based on miRNA-lincRNA-mRNA networks in the “biological process”, “cellular component” and
Based on the ceRNA hypothesis and gene ontology “molecular function” categories were obtained using
(GO) analysis, the function of lincRNAs acting as  Fisher’s exact test and the Bonferroni multiples test
miRNA decoys can be speculated based on the miRNA-  (P-value < 0.05).

a
Boerner_Z27kG1_01291: S' CACCGAGUCGAGGUCGAC-GUCC 3'
Litititel Tie loll olll
zma-miR166n-5p: 3' GUGGCUCGG-UCU-GUUGUUAGG S5'
2
L1
; (s ! 0. 4 et ¢ CC Al TC
A c «T A T“TA CTeCcc Ce c S Sr e T VaT. (,Tc cCAc,T CA
-M-"woe:ue:u:uarsmannnnan»maanknns.u:ws $3854838858385 asuasxse..Ln..nrn:u.n:nans.nau=ng§gg§§§§§ggggg;g ,
5 3
I
zma-targetmiR166n-5p s AGGAGAAG GCAGGCA AGAGCACG A ACTC-====-- ACA A A CCATTIGGGA
bdi-tarqetmiR166n-5p_1 CCGACTCCCCCTCCGCCCCCGCGG 2fde T GGCGTG A ccTecaacce
bdi-targetmiR166n-Sp 2 ---- -GGAGGGTGTTCGTGARAATGCCCGAC G T T CTGATGTTGAG-

bdi-targetmiR166n-5p_3 AGAGCCGGTITCCGCCTCCACCTCCGCCCCCGCGACC
bdi-targetmiR166n-Sp_4 AGAGCCGTITTCCGACTCCACCTICCGCCCCCGCAGIC
bdi-targetmiR166n-5p_S GGGGCCGITTCTGACTCCACCTICCGCCCCCGCGGTICC
pvi-targetmiR166n-Sp  ------------- AGGATAATCAGGTTCGGGTAATT
sit-targetmiR166n-5Sp CG--CCCACCCGGGGGACCACGGGCAGTACATICTICC

ACCGRGCCTIGTTCCGGGCGCGAGCGCACTTG
CCTI CTAATCCGCGCGCGGGCGCACTIG
CGIITAAGT C--CGGGTAGGAGTCIARCCCGI TAGGAGTCGAACCGAGG
—————————— CGGCGTCGGTTCCCIITCCACCAGC.\GAAGCCGC

Fig. 2 zma-miR166n-5p target sites in liNCRNAs in maize. a The predicted alignment between zma-miR166n-5p and its target in lincRNA. b Sequence
alignments of lincRNA targets and the surrounding regions for zma-miR166n-5p in maize and 3 other species. The target sites pairing
with zma-miR166n-5p are underlined with black boxes. The conservation status of the sequences was analyzed and presented using
Weblogo. The logo consists of stacks of symbols, with one stack for each position in the sequence. The overall height of the stack indicates the
sequence conservation at that position, while the height of symbols within the stacks indicates the relative frequency of nucleic acids at that position
(bdi: B. distachyon; pvi: P. virgatum; sit: S. italica)




Table 2 LincRNAs acting as miRNA decoys

zma-miRNAs® Transcript ° start-end® MFEperfect® MFEsite® MFEratio’

zma-miR156a-3p Li_TCONS_00044513 70-90 —41.7 -273 0.654676258992806
zma-miR156b-3p Li_TCONS_00088709 477-501 —-40.8 —28.28 0.693137254901961
zma-miR159a-5p Li_TCONS_00096446 109-129 —364 —238 0.653846153846154
zma-miR159b-5p:zma-miR159-5p:zma-miR159j-5p Boerner_7Z27kG1_11801 143-162 -353 -23.7 0.671388101983003
zma-miR159b-5p:zma-miR159-5p:zma-miR159j-5p Boerner_Z27kG1_16385 143-162 -353 -237 0.671388101983003
zma-miR159b-5p:zma-miR159%-5p:zma-miR159j-5p Li_TCONS_00012571 604-627 -353 —234 0.662889518413598
zma-miR159d-3p:zma-miR159¢-3p zhang_TCONS_00029225 1271-1291 —40.1 =273 0.680798004987531
zma-miR159e-3p Boerner_zZ27kG1_01522 880-899 —-382 -252 0.659685863874345
zma-miR159e-3p Boerner_727kG1_22626 192-211 —-382 -253 0.662303664921466
zma-miR159e-3p Li_TCONS_00012087 121-141 —382 -269 0.704188481675393
zma-miR159e-3p zhang_TCONS_00056321 208-228 —-382 —2848 0.745549738219895
zma-miR159e-5p Li_TCONS_00071752 34-50 -41.8 —275 0.657894736842105
zma-miR159g-3p Boerner_7Z27kG1_05478 507-526 -37.6 -253 0.672872340425532
zma-miR159g-3p Boerner_7Z27kG1_09702 320-340 -37.6 =277 0.736702127659574
zma-miR159g-5p:zma-miR159h-5p:zma-miR159i-5p Boerner_7Z27kG1_11801 143-162 -37.8 —27.2 0.719576719576720
zma-miR159g-5p:zma-miR159h-5p:zma-miR159i-5p Boerner_Z27kG1_16385 143-162 -37.8 -27.2 0.719576719576720
zma-miR159g-5p:zma-miR159h-5p:zma-miR159i-5p Li_TCONS_00012571 604-627 -378 -273 0.722222222222222
zma-miR159g-5p:zma-miR159h-5p:zma-miR159i-5p Li_TCONS_00059484 191-211 -37.8 —24.88 0.658201058201058
zma-miR160c-3p Boerner_zZ27kG1_01735 212-233 —415 -274 0.660240963855422
zma-miR160d-3p Boerner_z27kG1_01291 1077-1102 —444 -30.1 0.677927927927928
zma-miR160f-3p Li_TCONS_00062998 301-321 —46.8 =31 0.662393162393162
zma-miR162-5p Li_TCONS_00020299 306-326 —40.6 =271 0.667487684729064
zma-miR164b-3p Boerner_Z27kG1_17564 219-235 -39.3 -273 0.694656488549618
zma-miR164b-3p Li_TCONS_00023489 142-160 -393 —275 0.699745547073791
zma-miR164b-3p Li_TCONS_00023490 142-160 -393 -27.5 0.699745547073791
zma-miR164b-3p Li_TCONS_00052687 45-68 -393 -321 0.816793893129771
zma-miR164b-3p Li_TCONS_00062623 8-31 -393 —-30.08 0.765394402035623
zma-miR164c-3p:zma-miR164h-3p Li_TCONS_00048247 268-291 —39.7 —26.1 0.657430730478589
zma-miR164c-5p:zma-miR164a-5p:zma-miR164b-5p:zma-miR164g-5p:zma-miR164d-5p Li_TCONS_00011715 349-371 —443 —32.8 0.740406320541761
zma-miR164c-5p:zma-miR164a-5p:zma-miR164b-5p:zma-miR164g-5p:zma-miR164d-5p Li_TCONS_00031357 1-20 —443 -309 0.697516930022573
zma-miR164f-5p Li_TCONS_00011715 349-371 —44.3 —34.1 0.769751693002257
zma-miR164f-5p Li_TCONS_00031357 1-20 —443 -303 0.683972911963883
zma-miR164h-5p Li_TCONS_00011715 349-371 —43.6 =311 0.713302752293578
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Table 2 LincRNAs acting as miRNA decoys (Continued)

zma-miR164h-5p
zma-miR166g-5p
zma-miR166n-5p
zma-miR166n-5p
zma-miR167e-3p
zma-miR167f-3p

zma-miR167j-3p

zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p
zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p
zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p

zma-miR1691-5p

zma-miR169m-3p
zma-miR169n-3p
zma-miR169n-3p
zma-miR169n-3p
zma-miR1690-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR169g-3p
zma-miR171a-5p

zma-miR171f-5p

zma-miR171f-5p

zma-miR171f-5p

zma-miR171h-3pzzma-miR171k-3p
zma-miR171h-3p:zma-miR171k-3p
zma-miR171k-5p:zma-miR171h-5p

zma-miR171n-5p

zma-miR172a:zma-miR172¢-3p:zma-miR172d-3p:zma-miR172b-3p
zma-miR172b-5p:zma-miR172d-5p

Li_TCONS_00031357
Li_TCONS_00014574
Boerner_727kG1_07658
Boerner_Z27kG1_17312
zhang_TCONS_00077767
Boerner_727kG1_02792
Li_TCONS_00096821
Boerner_7Z27kG1_15115
Li_TCONS_00032815
Li_TCONS_00091165
Li_TCONS_00023317
Li_TCONS_00034371
Li_TCONS_00064018
Li_TCONS_00064018
Li_TCONS_00096947
Boerner_Z27kG1_03458
Boerner_727kG1_03458
Li_TCONS_00041379
Li_TCONS_00064018
Li_TCONS_00064018
Li_TCONS_00096947
zhang_TCONS_00028666
zhang_TCONS_00056448
Boerner_727kG1_20123
Boerner_Z27kG1_04122
Li_TCONS_00027786
Li_TCONS_00096642
Boerner_7Z27kG1_10860
Li_TCONS_00082779
Boerner_727kG1_00580
Boerner_7Z27kG1_20123
Li_TCONS_00065651
Li_TCONS_00044327

1-20
19-43
926-945
433-455
493-515
196-221
264-283
783-800
227-244
524-540
7-30
236-259
104-127
129-152
82-105
184-205
189-205
300-317
104-127
129-152
82-105
216-234
36-59
1069-1091
35-55
158-178
338-357
672-691
252-270
730-750
1069-1091
597-618
23-44

—43.6
=379
-40.9
-40.9
—386
—43.5
—324
—365
-36.5
-36.5
—40.2
-36.2
—404
-404
—404
-40.8
—395
-39.5
-39.5
—395
-39.5
-39.5
—395
-358
-388
—-388
—-388
-374
-374
-354
-358
—332
—34.5

=311
-256
—289
-29.2
-255
—283
—2148
—26.1
=25
=242
—27.04
—248
—26.88
—26.88
—26.88
-29.1
—265
—263
=274
-274
=274
-269
-257
-234
-254
—26.1
-25.7
—24.7
—24.8
-236
-259
-236
=227

0.713302752293578
0.675461741424802
0.706601466992665
0.713936430317848
0.660621761658031
0.650574712643678
0.662962962962963
0.715068493150685
0.684931506849315
0.663013698630137
0.672636815920398
0.685082872928177
0.665346534653465
0.665346534653465
0.665346534653465
0.713235294117647
0.670886075949367
0.665822784810127
0.693670886075949
0.693670886075949
0.693670886075949
0.681012658227848
0.650632911392405
0.653631284916201
0.654639175257732
0.672680412371134
0.662371134020619
0.660427807486631
0.663101604278075
0.666666666666667
0.723463687150838
0.710843373493976
0.657971014492754
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Table 2 LincRNAs acting as miRNA decoys (Continued)

zma-miR172¢-5p

zma-miR172e
zma-miR319a-5p:zma-miR319¢-5p
zma-miR319a-5p:zma-miR319¢-5p
zma-miR393c-5p:zma-miR393a-5p
zma-miR394b-3p:zma-miR394a-3p
zma-miR394b-3p:zma-miR394a-3p
zma-miR394b-3p:zma-miR394a-3p
zma-miR394b-5p:zma-miR394a-5p
zma-miR394b-5p:zma-miR394a-5p
zma-miR395b-5p
zma-miR395b-5p
zma-miR395¢-5p

zma-miR395i-5p

zma-miR395i-5p

zma-miR395k-5p

zma-miR395k-5p

zma-miR395k-5p

zma-miR395k-5p

zma-miR395I-5p

zma-miR395n-5p
zma-miR395n-5p
zma-miR396b-3p:zma-miR396a-3p
zma-miR396g-5p:zma-miR396h
zma-miR396g-5p:zma-miR396h
zma-miR398b-3p:zma-miR398a-3p
zma-miR399d-5p
zma-miR399e-5p
zma-miR399e-5p
zma-miR399g-5p
zma-miR444a:zma-miR444b
zma-miR482-3p

zma-miR482-3p

Li_TCONS_00044327
Li_TCONS_00065651
Li_TCONS_00081252
zhang_TCONS_00063429
Li_TCONS_00080809
Boerner_727kG1_10860
Li_TCONS_00072326
Li_TCONS_00089213
Boerner_727kG1_06309
Boerner_727kG1_10706
Li_TCONS_00047895
Li_TCONS_00047896
Li_TCONS_00080157
Li_TCONS_00047895
Li_TCONS_0004789%
Boerner_7Z27kG1_14168
Boerner_727kG1_16395
Boerner_727kG1_21452
Li_TCONS_00051216
Li_TCONS_00062888
Li_TCONS_00047895
Li_TCONS_00047896
Li_TCONS_00019831
Boerner_727kG1_02332
Li_TCONS_00081264
Li_TCONS_00081462
Li_TCONS_00097416
Boerner_727kG1_08283
Li_TCONS_00097327
Boerner_727kG1_13975
Boerner_727kG1_21675
Boerner_7Z27kG1_19929
Li_TCONS_00031436

23-44
596-618
74-96
16-39
144-164
353-375
83-101
283-304
454-473
340-363
156-179
156-179
364-381
156-179
156-179
189-212
212-235
380-403
53-77
247-268
156-179
156-179
289-309
1122-1144
211-233
279-299
279-299
467-487
326-349
327-345
448-466
311-332
121-145

-36.5
—-36

-39.1
-39.1
-39.1
-389
-389
-389
-39.1
-39.1
—386
—-386
—40.6
-404
—404
-36.2
—36.2
—-36.2
—-36.2
—384
-383
-383
-329
-353
-353
—453
—44.2
-414
-414
-494
—35.7
—352
—35.2

=253
-235
—2642
-27.16
—25.7
—2644
=257
—263
-26.3
=273
—2868
—2868
=277
—31.38
—31.38
-236
-236
-236
—26.02
—286
—2838
—28.38
—234
=23
—23.78
-30.08
—28.88
-30.6
=27
-356
=252
—284
-30.2

0.693150684931507
0.652777777777778
0.675703324808184
0.694629156010230
0.657289002557545
0.679691516709512
0.660668380462725
0.676092544987147
0.672634271099744
0.698209718670077
0.743005181347150
0.743005181347150
0.682266009852217
0.776732673267327
0.776732673267327
0.651933701657459
0.651933701657459
0.651933701657459
0.718784530386740
0.744791666666667
0.740992167101828
0.740992167101828
0.711246200607903
0.651558073654391
0.673654390934844
0.664017660044150
0.653393665158371
0.739130434782609
0.652173913043478
0.720647773279352
0.705882352941176
0.806818181818182
0.857954545454545
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Table 2 LincRNAs acting as miRNA decoys (Continued)

zma-miR482-3p
zma-miR482-3p
zma-miR482-3p
zma-miR482-5p
zma-miR482-5p
zma-miR482-5p
zma-miR528a-3p:zma-miR528b-3p

Li_TCONS_00056585
Li_TCONS_00072944
Li_TCONS_00097147
Li_TCONS_00011383
Li_TCONS_00024356
Li_TCONS_00074927

zhang_TCONS_00045504

185-206
771-793
282-301
222-239
309-331
138-158
663-688

-35.2
—352
-35.2
-36.7
-36.7
-36.7
—42.2

-234
-253
~244
~24.1
—242
~2438
-306

0.664772727272727
0.718750000000000
0693181818181818
0.656675749318801
0.659400544959128
0.664305177111717
0.725118483412322

®miRNA data from miRBase 21.0. PDecoyed lincRNA genes for the miRNAs. “The starting and terminating sites in the lincRNAs when it is bound by the miRNAs. ®MFE of a perfectly matched site. °MFE of the alignments.

fMFEsite/MFEperfect, the calculation based on the method in Tafer et al [50]
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Results

Identification of lincRNAs as putative miRNA targets
Previous research has suggested that miRNAs play roles
in regulating the expression of mRNAs, but the compre-
hensive patterns of miRNA regulation of lincRNAs remain
unknown. To systematically investigate the miRNA-
mediated regulatory mechanism of lincRNAs, a method
for predicting miRNA targets among lincRNAs was
applied (see Materials and Methods). The results revealed
789 miRNA-lincRNA interactions (Additional file 3). In
total, 466 lincRNA targets were predicted for 165 miRNAs
in Zea mays.

To eliminate potential false-positive lincRNAs pre-
dicted as miRNA targets, we applied degradome reads
to validate miRNA targets using a modified version of
the CleaveLand pipeline [51]. The results showed that
42 miRNA-lincRNA duplexes were supported by the
degradome reads, which were formed by 33 miRNAs
and 34 lincRNAs (Table 1, Additional file 4). When
the degradome reads were mapped on each lincRNA,
the abundance of the degradome reads at each pos-
ition of the lincRNAs and the cleaved positions in
each lincRNA could be obtained. For example, the
abundance of degradome reads and cleavage sites in
the lincRNA Boerner Z27kG1_17085, which can act
as a target of zma-miR166h-5p, is shown in Fig. 1.
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Conservation of lincRNAs as miRNA targets between six
monocotyledons

To investigate the conservation of lincRNAs as miRNA
targets, the lincRNA regions that paired with miRNAs
were searched against the 5 genomes of monocots, and
the significant matched regions plus their flanking
regions were obtained. Conservation analysis was
performed, and 12 of 33 miRNAs were found to show
conserved target regions in lincRNAs among maize and
three to five other species. For example, the sequence
logo and multiple sequence alignment of zma-miR166n-5p
targets in lincRNAs provide a precise description of the
conservation of these target regions (Fig. 2). However, the
lincRNA regions outside of the predicted miRNA binding
sites were not conserved, except for the lincRNAs targeted
by zma-miR160b/g-3p and zma-miR1691-3p, which were
conserved among 4 and 5 species, respectively (Additional
file 5). In summary, lincRNAs acting as miRNA targets are
a common phenomenon among monocots.

Identification of lincRNAs acting as miRNA decoys

Previous studies have shown that the duplexes formed
by miRNAs and miRNA decoys usually contain bulges
or mismatches in the middle of the miRNA binding
sites, which is thought to block the interaction between
miRNAs and their specific mRNA targets [41, 52].

a Boerner_Z27kGl_04122: 5' AGGGGAGCCACUCCGGCGUCG 3'
© LI lloelolll
zma-miR171£-5p: 3' CUAACUCGGUACGGUUGUAGC S'

Li_TCONS_00027786: S' CGUUGAGCCUCGUCGACAUCC 3'
olllllll lololllll
zma-miR171£-5p: 3' CUAACUCGGUACGGUUGUAGC S'

Li TCONS_00096642: 5' GGUUGGGCUC-GUCGGCGUCG 3'
lolllollo loloololll
zma-miR171£-5p: 3' CUAACUCGGUACGGUUGUAGC 5'

: » 600 €, ¢ cc e T[ l

~AcAne - A ZcTk rec_Zeccalc

2zma-eTMmiR171£-5p_1
2ma-eTMmiR171£-5p_2
zma-eTMmiR171£-5p_3
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bdi-eTMmiR171£-5p_2
bdi-eTMmiR171£-5p_3
bdi-eTMmiR171£-Sp_4
©0sa-eTMmiR171£-Sp_1
o0sa-eTMmiR171£-5p_2
o0sa-eTMniR171£-5p_3
pvi-eTMmiR171£-Sp_1
pvi-eTMmiR171£-5p_2
pvi-eTMmiR171£-5p_3
sbi-eTMniR171£-5p_1
sbi-eTMmiR171£-Sp_2
sit-eTMmiR171£-5p_1
sit-eTMmiR171£-5p_2

EEERAARANRRARRAARAARKRRSSUITESRERAURARRE RAGSUOT

.

Trve.2tc
NRANREAARSHAZRRERRSZVEIE

. Ncc e GTCQICCIC;E ot sof

WG3BBEBRRSHEIBALARE5UB3EEEE
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CCTCCTCTTCCICGTICGTICG

GTGG---ACGGGGACGTAGTICCTCGAGC

Fig. 3 zma-miR171f-5p decoy sites in lincRNAs in maize. a The predicted alignments between zma-miR171f-5p and its decoys in lincRNAs.
b Sequence alignments of decoys in lincRNAs and the surrounding regions for zma-miR171f-5p in maize and 3 other species. The decoy
sites pairing with zma-miR171f-5p are underlined with a black box. The conservation status of the sequences was analyzed and presented
using Weblogo (bdi: B. distachyon; osa: O. sativa; pvi: P. virgatum; sbi; S. bicolor; sit: S. italica.)
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GSTAr.pl can efficiently identify sites with large bulges
in the alignments between miRNAs and lincRNAs.
Therefore, we used a computational pipeline to identify
lincRNAs acting as miRNA decoys in maize. In total, we
found that 86 lincRNAs that may act as miRNA decoys
could be bound by 58 miRNAs and formed 104 miRNA-
lincRNA duplexes (Table 2, Additional file 6).

Conservation of lincRNAs as miRNA decoys between six
monocotyledons

Similar to the analysis of the conservation of lincRNAs
as miRNA targets, a conservation analysis of lincRNAs
acting as miRNA decoys was also performed between
the lincRNA regions that paired with miRNAs.
Altogether, 10 of 58 miRNAs showed conserved decoy
regions in lincRNAs among four to six species. For
example, the sequence logo and multiple sequence align-
ment of zma-miR171f-5p decoys provide a precise
description of the conservation of decoy regions (Fig. 3).
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Except for the zma-miR15%e-3p and zma-miR482-3p
decoys, other lincRNAs as miRNA decoy sites were
conserved, but all of the surrounding regions were non-
conserved (Additional file 7).

LincRNAs may participate in miRNA-lincRNA-mRNA
networks

Previous research has demonstrated that engineered
miRNA decoys can affect the regulation of miRNAs in
plants [39, 52, 67]. To investigate the function of lincR-
NAs acting as miRNA targets or miRNA decoys, com-
prehensive genome-wide networks mediated by miRNAs
were constructed. The networks were composed of 9402
nodes and 10,529 edges, and the nodes included 78 miR-
NAs, 117 lincRNAs (lincRNAs acting as miRNA targets,
lincRNAs acting as miRNA decoys) and 8834 mRNAs
(mRNAs acting as miRNA targets, mRNAs acting as
miRNA decoys) (Fig. 4, Additional file 8). There were 42
interactions between miRNAs and lincRNAs acting as
miRNA targets, which included 33 miRNAs and 34

2465_T01

b, c and d were extracted from (a)

MT:GRMZM2G1.

LT:zhang_ TCONS_00077805

Fig. 4 Genome-wide miRNA-regulated networks. Pink nodes: miRNAs. Yellow nodes: lincRNAs that may be miRNA targets. Green nodes: lincRNAs
that may be miRNA decoys. Cyan nodes: mRNAs that may be miRNA targets. Blue nodes: mRNAs that may be miRNA decoys. Grey edges: correlations.
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lincRNAs, and 104 interactions between miRNAs and
lincRNAs acting as miRNA decoys, which included 58
miRNAs and 86 lincRNAs. Moreover, 3714 mRNAs as
78 miRNA targets and 5490 mRNAs as 78 miRNA
decoys are also shown. Interestingly, we found that the
majority of nodes participated in other miRNA-
regulated networks, but only three miRNAs including
zma-miR529-5p, zma-miR399g-5p and zma-miR393c-
5p:zma-miR393a-5p, formed separate sub-networks.

To further investigate the patterns of the miRNA-
lincRNA-mRNA networks, we compared the number of
four types of RNAs, including lincRNAs acting as
miRNA targets, lincRNAs acting as miRNA decoys,
mRNAs acting as miRNA targets and mRNAs acting as
miRNA decoys, and found that the numbers of the four
types were unevenly distributed for each miRNA.
Additionally, the number of miRNA decoys was often
greater than that of miRNA targets in most sub-networks,
and only a small number of sub-networks had more
miRNA targets than decoys (Fig. 5).

Furthermore, we found that miRNAs could bind to one
or more lincRNAs (Fig. 6, Additional file 9). For example,
Boerner Z27kG1_07658 and Boerner Z27kG1_17312 acted
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as decoys of zma-miR166n-5p, and Boerner_7Z27kG1_01291
acted as a target of this miRNA. We also found that
some lincRNAs could be bound by miRNAs from the
same or different miRNA families. For example, Li_T-
CONS_00096947 and Li TCONS_00064018 could be
bound by zma-miR169n-3p and zma-miR169q-3p, and
Boerner_7Z27kG1_01046 could be bound by zma-miR408b-
3p:zma-miR408a, zma-miR528a-3p:zma-miR528b-3p and
zma-miR164b-3p (Fig. 6). Amazingly, the same lincRNA
could be used as both a miRNA target and decoy using
different binding sites in the lincRNAs. For example,
Boerner_7Z27kG1_08283 could be a target of zma-
miR160b-3p:zma-miR160g-3p and zma-miR482-3p, and it
could act as a decoy for zma-miR399e-5p (Fig. 6).

Functional prediction of lincRNAs acting as miRNA targets
based on the lincRNA-mRNA co-expression network

To speculate on the functions of the 34 validated lincR-
NAs acting as miRNA targets, a co-expression network
between lincRNAs and mRNAs was first constructed
and then visualized (see materials and methods). The
lincRNA-mRNA co-expression network was composed
of 32 lincRNA nodes, 9043 mRNA nodes and 17968
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edges (Fig. 7, Additional file 10), and we were able to
infer that 32 lincRNAs could be co-expressed with 9043
mRNAs. In the network, we could see that one or more
mRNAs were centered around lincRNAs and were
connected to lincRNAs based on the Pearson correlation
coefficient. Therefore, we could infer the function of
each lincRNA based on the function of connected
mRNAs. Through GO enrichment and functional ana-
lysis of the mRNAs that were co-expressed with lincR-
NAs, we found that lincRNAs mainly participate in
cellular, metabolic and other biological processes, such
as regulation of biological processes, metabolic processes,
cellular processes, as well as in the response to stress
(Fig. 8, Additional files 11 and 12). These lincRNAs were
also highly enriched in cellular component terms includ-
ing thylakoid and photosynthetic membrane (Additional
files 11 and 13). Moreover, we found that the GO terms
“hydrolase activity, acting on acid anhydrides”, “tetrapyr-
role binding”, “iron ion binding” and “heme binding” were
enriched in the “molecular function” category (Additional
files 11 and 14).

Functional prediction of lincRNAs acting as miRNA decoys
based on miRNA-lincRNA-mRNA networks
Based on the ceRNA hypothesis, which suggests that
when lincRNAs acting as miRNA decoys and mRNAs
are targeted by the same miRNAs, the function of the
lincRNAs acting as miRNA decoys can be inferred from
the mRNAs, we speculated on the function of 86 lincR-
NAs acting as 58 miRNA decoys. After using the
AgriGO toolkit to perform GO analysis of mRNAs that
could be targeted by the same miRNAs acting on lincR-
NAs [66], we found that lincRNAs acting as miRNA
decoys were involved in multiple biological processes,
participated in the formation of many cellular compo-
nents, and influenced the activities of molecular functions
(Fig. 9, Additional file 15). They were mainly involved in
cellular and metabolic processes, and the molecular func-
tions of lincRNAs acting as miRNA decoys were focused
on catalytic activity and binding functions (Fig. 9).

To obtain a global function of lincRNAs acting as
miRNA decoys, we performed enrichment analysis again,
and found that these 86 lincRNAs may participate in
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Fig. 7 The network of lincRNAs acting as miRNA targets that are co-expressed with mRNAs. Pink nodes represent lincRNAs, and blue nodes represent

mRNAs. The edges represent connected nodes that exhibit a high correlation
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Fig. 9 GO term enrichment analysis of lincRNAs acting as miRNA decoys in maize. In the bar chart, the GO annotation is presented on the X axis
legend and the percent of genes on the Y axis legend. In the figure, blue bars represent the enrichment status of the GO terms among the 58
miRNA targets in mRNAs, and green bars represent the percentage of the total annotated maize genes that were aligned to the GO terms. The
GO analysis was performed using the AgriGO toolkit, selecting the “Zea mays ssp V5a” as a control set

diverse biological processes, such as cellular component
organization; cellular component biogenesis; cellular pro-
cesses; and metabolic processes, including macromolecu-
lar complex subunit organization, nucleosome assembly,
DNA packing, superoxide metabolic processes, ribosome
biogenesis, oxidation reduction, biosynthetic processes
and translation (Additional file 16). They could also be
involved in the formation of cells, macromolecular
complexes, cell projections, cytoplasm, microtubules and
protein-DNA complexes (Additional file 17). Moreover,
these lincRNAs might modulate the effects of multiple
molecular functions, including binding, structural molecu-
lar activity, transporter activity, catalytic activity, and elec-
tron carrier activity, and they may exhibit translation
elongation factor activity, unfolded protein binding activ-
ity, monooxygenase activity, ammonia-lyase activity and
GTPase activity (Additional file 18).

Discussion

lincRNAs can be direct miRNA targets in maize

With their importance in regulating gene expression,
lincRNAs have garnered significant attention in the life
science field. Although increasing lincRNAs have been
predicted and identified in plants [15-22], the relation-
ship between miRNAs and lincRNAs have seldom been
investigated by comparing the mRNAs as miRNA targets
[19, 33, 34]. Recently, 51 lincRNAs were identified as
putative targets of 30 miRNAs in Populus trichocarpa
[19], but the evidence of lincRNAs acting as miRNA
targets in plants are still lacking.

In plants, degradome sequencing is a new technology
to identify and validate targets of miRNAs [68-72], and
it has been used to directly validate miRNA targets in
plants. Currently, only mRNAs as miRNA targets, but
not lincRNAs as miRNA targets, have been validated by
degradome data. Thus, using degradome data, we vali-
dated 34 lincRNAs as 33 miRNA targets, which indicates
that, similar to mRNAs acting as miRNA targets, lincR-
NAs can also directly act as miRNA targets.

LincRNAs can also be miRNA decoys in maize

Functional target mimicries (miRNA decoys) were first
studied in Arabidopsis [39]; consequently, computational
methods have been used to identify miRNA decoys, but
most of the identified miRNA decoys were protein-coding
genes [52, 73, 74]. Only few studies were performed in
ncRNAs as putative miRNA decoys [19, 41, 55], and no
lincRNAs as miRNA decoys had previously been investi-
gated in maize.

In our study, we found that a portion of lincRNAs
could not be directly cleaved by the miRNA-associated
silencing complex due to the existence of mismatches or
large bulges at the 9™ to 12™ nucleotide positions of the
miRNA-lincRNA pairing site. Using bioinformatics, we
identified 86 lincRNAs acting as 58 miRNA decoys in
maize and found that the miRNA decoy sites were con-
served; however, most of the flanking regions of the
miRNA decoy sites were not conserved. Our results
indicate that lincRNAs acting as miRNA decoys widely
exist in plants, which supports previously published data
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that lincRNAs as miRNA decoys could also be regulators
of miRNA [19, 41].

The potential function of lincRNAs as miRNA targets or
decoys

To investigate the function of maize lincRNAs acting as
miRNA targets or decoys, two methods were used in
this study: a co-expression network and the ceRNA
hypothesis. The co-expression network, which is com-
monly used to predict gene function [64, 75, 76], was
used to predict the function of lincRNAs as miRNA tar-
gets. By using the co-expression network, we predicted
the function of 32 maize lincRNAs, and these lincRNAs
were enriched in signaling processes, the regulation of
biological processes, multicellular organismal processes,
metabolic processes and immune system processes.
Interestingly, these lincRNAs were enriched in multiple
molecular functions, mainly in the catalytic activity and
binding categories. Furthermore, when comparing with
drought response lincRNAs previously reported, we
found that three lincRNAs as miRNA targets in stress
category were differentially expressed between the
control and drought-stressed leaves (Additional file 19),
which indicated that lincRNAs as miRNA targets may
be involved in drought-stress [22].

The ceRNA hypothesis implies a network relationship
between miRNAs, lincRNAs as miRNA decoys, and
mRNA as miRNA targets; in these networks, lincRNAs
could act as miRNA decoys, sequestering miRNAs and
thereby favoring the expression of repressed mRNA tar-
gets [36, 77], and such networks can be used to predict
the function of lincRNAs as miRNA decoys. Here, the
functions of 86 lincRNAs acting as 56 miRNA decoys
were predicted, and it was found that they can inhibit
miRNA functions in a spatial- or temporal-specific man-
ner, thus contributing to the regulation of transcript
complexity in maize. Furthermore, when comparing the
lincRNAs as miRNA decoys in the stress category using
the previously reported drought response lincRNAs, 7
lincRNAs as miRNA decoys had been investigated previ-
ously and were differentially expressed between the con-
trol and drought-stressed leaves (Additional file 19),
which indicated that lincRNAs associated with drought
stress could potentially regulate miRNAs through lincR-
NAs as miRNA decoys.

Of the 1831 identified lincRNAs in maize, the number
of lincRNAs that had the inferred function (34 lincRNAs
as miRNA target, 86 lincRNAs as miRNA decoys) was
still limited, which is consistent with the diverse mech-
anism of action of lincRNAs [15, 22]. We think that the
lincRNAs as miRNA targets or miRNA decoys are just
one type of lincRNAs, and we hope to investigate the
function of other types of lincRNAs by using other
methods, such as lincRNA-protein interaction prediction.
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In summary, our study lays a solid foundation for elucidat-
ing the regulatory mechanisms of miRNAs in maize and
provides a source for exploring the function of lincRNAs
in the future.

Conclusions

This study employed a computational pipeline for the
systematic analysis of putative miRNA-lincRNA du-
plexes to better understand the role of lincRNAs. We
found that 42 miRNA-lincRNA duplexes remained after
filtering based on degradome evidence, and they were
composed of 33 miRNAs and 34 lincRNAs that may be
directly cleaved by miRNAs. Furthermore, 32 of the 34
lincRNAs could be co-expressed with mRNAs, and 86
lincRNAs were predicted as miRNA decoys that may
competitively bind to miRNAs. According to the obtained
co-expression networks and the ceRNA hypothesis, we
effectively predicted the function of lincRNAs as miRNA
targets or decoys. Future experimental studies are re-
quired to elucidate the mechanisms of miRNA-lincRNA
duplexes and to reveal the functions of these lincRNAs
in plants.
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