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Abstract

Background: Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, especially
during gastrulation and organ formation. Furthermore EMT is widely observed in pathological conditions, e.g,, fibrosis,
tumor progression and metastasis. Madin-Darby Canine Kidney (MDCK) cells are widely used for studies of EMT and
epithelial plasticity. MDCK cells show an epithelial phenotype, while oncogenic Ras-transformed MDCK (MDCK-Ras)
cells undergo EMT and show a mesenchymal phenotype.

Methods: RNA-Seq and miRNA-Seq analyses were performed on MDCK and MDCK-Ras cells. Data were validated by
gRT-PCR. Gene signature analyses were carried out to identify pathways and gene ontology terms. For selected
miRNAs target prediction was performed.

Results: With RNA-Seq, mRNAs of approximately half of the genes known for dog were detected. These were
screened for differential regulation during Ras-induced EMT. We went further and performed gene signature analyses
and found Gene Ontology (GO) terms and pathways important for epithelial polarity and implicated in EMT. Among
the identified pathways, TGF1 emerged as a central signaling factor in many EMT related pathways and biological
processes. With miRNA-Seq, approximately half of the known canine miRNAs were found expressed in MDCK and
MDCK-Ras cells. Furthermore, among differentially expressed miRNAs, miRNAs that are known to be important
regulators of EMT were detected and new candidates were predicted. New dog miRNAs were discovered after
aligning our reads to that of other species in miRBase. Importantly, we could identify 25 completely novel
miRNAs with a stable hairpin structure. Two of these novel miRNAs were differentially expressed. We validated the
two novel miRNAs with the highest read counts by RT-qPCR. Target prediction of a particular novel miRNA highly
expressed in mesenchymal MDCK-Ras cells revealed that it targets components of epithelial cell junctional complexes.
Combining target prediction for the most upregulated miRNAs and validation of the targets in MDCK-Ras cells with
pathway analysis allowed us to identify two novel pathways, e.g., JAK/STAT signaling and pancreatic cancer pathways.
These pathways could not be detected solely by gene set enrichment analyses of RNA-Seq data.

Conclusion: With deep sequencing data of mRNAs and miRNAs of MDCK cells and of Ras-induced EMT in MDCK cells,
differentially regulated mRNAs and miRNAs are identified. Many of the identified genes are within pathways known to
be involved in EMT. Novel differentially upregulated genes in MDCK cells are interferon stimulated genes and genes
involved in Slit and Netrin signaling. New pathways not yet linked to these processes were identified. A central
pathway in Ras induced EMT is TGF signaling, which leads to differential regulation of many target genes, including
miRNAs. With miRNA-Seq we identified miRNAs involved in either epithelial cell biology or EMT. Finally, we describe
completely novel miRNAs and their target genes.
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Background

During development, epithelial-mesenchymal transition
(EMT) and the reverse process of mesenchymal-epithelial
transition (MET) are important for the spatial and temporal
distribution of cells within the embryo and for proper organ
formation [1]. After terminal differentiation, mesenchymal
or epithelial tissue states are generally stable. Epithelial cells
are immotile, show a clear apico-basal polarity, contact the
basal membrane, and maintain tight cell-cell contacts
laterally. On the other hand, mesenchymal cells do not
show apico-basal polarity, favour cell-matrix interactions
instead of cell-cell or basement membrane contacts, and
are often motile and invasive. Under special circumstances
epithelial cells acquire mesenchymal characteristics; this
transdifferentiation process is referred to as EMT. In adult
tissues, EMT occurs physiologically in, e.g., wound healing
and pathologically in, e.g., organ fibrosis and cancer. In late
stage tumorigenesis, cells that underwent EMT are motile
and may invade other parts of the body to form distant
metastases [2].

On the molecular level, EMT is defined by the loss of
expression of epithelial and polarity genes, e.g., E-Cadherin
and tight junction proteins, and the de novo expression of
mesenchymal marker genes, e.g., Vimentin, Fibronectin
and N-Cadherin [3]. E-Cadherin is a marker gene of epi-
thelial cells and an important component of the adherens
junction complex [4]. Expression of E-Cadherin is re-
pressed by EMT-specific transcription factors (EMT-TF)
[5]. Many signaling pathways inducing EMT converge on
the transcriptional level to downregulate E-Cadherin
expression and can act either synergistically or on their
own to induce EMT. TGFf/Smad signaling is prominent in
EMT [6]. Furthermore, activation of receptor tyrosine
kinase (RTK) signaling by either the ligand or by a mutation
activating the receptor constitutively leads to EMT [7].
RTKs act upstream of Ras signaling and thereby influence
cellular behavior including migration, growth and differen-
tiation. Furthermore, oncogenic Ras signaling induces EMT
in different cell types in the presence of TGEP1 signaling
[8-11]. Among other functions, TGFp1 stimulates the
synthesis of many extracellular matrix (ECM) proteins and
matrix remodeling enzymes.

ECM proteins are not just static substrates for cells;
rather, ECM components signal by binding to integrins
located in the cell membrane [12]. Integrins are hetero-
dimers composed of alpha and beta subunits, which
activate downstream signaling upon ligand binding. This
signaling regulates, e.g., cell differentiation, proliferation,
apoptosis, cell adhesion, migration and invasion [13].
Changes in the expression and surface localisation of
integrins during EMT have been documented [14, 15].

Another pathway capable of inducing EMT is the WNT/
[B-Catenin pathway [7]. WNTs are secreted growth factors
binding to cell surface receptors of the frizzled family.
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Activated WNT signaling then stabilizes 3-Catenin which
translocates to the nucleus and stimulates gene expression
via LEF/TCF transcription factors [16].

Besides these signaling pathways, other processes regu-
lating gene expression are important in EMT. miRNAs in-
fluence protein expression and thereby the state of a cell.
They are important for maintaining the normal physio-
logical properties of cells [17]. Furthermore, involvement
of miRNAs has also been studied in pathological situations,
e.g., in fibrosis or cancer [18—-20]. As noted above, the im-
pact of EMT on these pathologies is well accepted and
miRNAs regulating EMT have been identified [21, 22].

Generally, fibrosis is a disease of a tissue involving
stromal and immune cells, which are activated and secrete
factors (including TGFfB1) that induce cells to massively
deposit ECM components. It is well known that EMT
plays a crucial role in fibrosis [23-25], since a part of the
fibroblastoid cells found in fibrotic tissues arise from epi-
thelial cells that underwent EMT [26].

Recently, miRNAs driving fibrosis have been identified
[18, 27, 28]. These so called fibromiRs include pro-fibrotic
and anti-fibrotic miRNAs. In the context of EMT, changes
in the expression of some of these miRNAs have also been
described and reviewed [29, 30]. Especially members of the
miR-200 family (miR-200a/b and miR-141) act via blocking
pro-fibrotic and pro-EMT TGEFp1 signaling. Negative feed-
back loops of miRNAs and EMT-TFs have been shown for
members of the miR-200 family and ZEB1 and ZEB2 [31],
and for miR-203 and SNAI1 [32]. Recently, the effect of
exogenous expression of EMT-TFs in MDCK cells on the
expression of miRNAs has been shown [33].

Since in vivo EMT is a complex process, in vitro cell
systems have been employed to study EMT. A system to
study epithelial polarity and plasticity is the Madin-Darby
Canine Kidney (MDCK) cell line [34, 35].

MDCK cells, isolated from the distal tubule of the
kidney nephron, have been used as a model to study
EMT. Several ways of inducing EMT in MDCK cells
have been documented [36-39]. Specifically, Ha-Ras
transformed MDCK (MDCK-Ras) cells undergo EMT
in the presence of TGFp signaling [15, 40, 41]. This
has been used to study different aspects of this
process including plasma membrane remodelling [15],
extracellular matrix composition, changes in the lipid
composition of the plasma membrane [42] and secreted
factors [40, 41]. Changes in the composition of exosomes
have also been reported [43].

Previously, microarray technology has been used to ob-
tain mRNA and miRNA expression patterns of MDCK
cells and growth factor induced phenotypic changes of
MDCK cells [44—46, 33]. Since microarrays cover only the
subset of probes present on the array they thus provide an
incomplete picture of the changes in gene expression dur-
ing EMT. On the other hand, large scale next generation
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sequencing provides unbiased data to identify novel genes
and gene sets important to EMT.

In this article, we used the Next Generation Sequencing
(NGS) technology to complement and extend the tran-
scriptome and miRNAome of epithelial MDCK cells and
mesenchymal MDCK-Ras cells. In addition, we provide
gene signature analysis using GO categories and pathways
enriched with differentially expressed genes. Further we
present completely novel miRNAs and provide information
on miRNAs not yet linked to EMT and discuss their
targets. Thus we increase knowledge on the transcriptional
landscape of mRNAs and miRNAs in MDCK cells and in
MDCK cells that underwent EMT induced by oncogenic
Ras.

Methods

Cell culture

Since several divergent strains of MDCK cells exist, it is
important to specify the particular strain used for ana-
lysis [47]. In our study we used MDCK type II.

The canine origin of MDCK and MDCK-Ras cells
(MDCK cells expressing oncogenic Ha-Ras) was confirmed
by a species-specific PCR restriction fragment length poly-
morphism pattern (RFLP; Additional file 1: Figure S1A).
Expression of V12-Ha-Ras in MDCK-Ras cells was
confirmed by immunoprecipitation (IP) of Ha-Ras
followed by immunoblot for pan-RasV12 (Additional
file 1: Figure S1B). MDCK and MDCK-Ras cells (both
from H. Beug, IMP Vienna; [48]) were cultivated in
DMEM/F12 (Gibco) high glucose medium supplemented
with 10 % FCS (PAA), 2 mM L-Glutamine (PAA), 10 mM
HEPES pH7, 100 LU Penicillin (PAA) and 100 pg/ml
Streptomycin (PAA) in a humified incubator at 5 % CO,.
Cells were grown to confluency, washed with 1xPBS
(Sigma), scraped off, resuspended in 1xPBS and centri-
fuged at 1500 rpm for 5 min. The resulting cell pellet was
stored at —80 °C and used for further analysis. All samples
of MDCK and MDCK-Ras cells tested negative for
mycoplasma infection by PCR using the Venor"GeM
Classic PCR-Kit (Minerva Biolabs; #11-1050) according
to the manufacturer’s instructions. Reporter gene assays
were performed as described in [49].

Restriction fragment length polymorphism analysis

Following DNA isolation, a single fragment in the mito-
chondrial 16S rRNA gene was amplified using the primers
16S uni F (5- TAA CGA GCC TGG TGA TAG CTQG)
and 16S uni R (5- GAT TAT GCT ACC TTT GCA CGG
T). PCR was performed in a final volume of 25 pL, con-
taining 200 uM each dNTP, 1.5 mM MgCl,, 500nM each
primer, 1U Taq polymerase and DNA according to avail-
ability in 1xPCR buffer. Amplification was carried out
after an initial denaturation at 95 °C for 5 min for 35 cycles
(94 °C for 30 s, 52 °C for 40 s, 72 °C for 40 s), followed by
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a final extension at 72 °C for 5 min. A multiple restriction
digest (Vspl, HindIll and Hinfl) of 20 uL PCR product was
performed in a final volume of 30 uL 1x restriction buffer,
containing 1U of each restriction enzyme. The reaction
was incubated over night at 37 °C and subsequently
loaded onto a 2 % agarose gel.

Protein analysis

For protein extraction, cells were washed with ice-cold
PBS and lysed for 20 min on ice with RIPA (Radiolmmu-
noPrecipitationAssay) buffer (150 mM NaCl, 50 mM Tris
pH7.4, 1 % NP40, 1 % sodium-deoxycholat, 1 mM EDTA,
1 mM NazVO, 25 mM NaF, 1 mM PMSE 5 mM
beta-glycerolphosphat, protease inhibitor cocktail tablets
(Complete mini; Roche)). Total cell lysates were cleared
by centriguation (10 min, 4 °C, 10,000 g). Protein concen-
tration was measured with the Bradford ProteinAssay
(BioRad). Western blots were performed as described in
[50] with the following antibodies: anti-Fibronectin: Santa
Cruz, sc-9068; anti-ZO1: Zymed Laboratories, 33—-9100;
anti-E-Cadherin: BD Transduction Laboratories, 610181;
anti-Vimentin: Sigma, V2258; anti-Actin: Sigma, A2066;
anti-phospho-AKT (Ser473): Cell Signaling, 9271; anti-
total-AKT: Cell Signaling, 9272; anti-phospho-ERK1/2:
Sigma, M8159; anti-total-ERK1/2:Sigma,M5670; anti-
Pan-Ras: Calbiochem, OP38.

For immunoprecipitation, cells were lysed as described
for Western blotting. Equal amounts of protein were in-
cubated with anti-v-H-Ras antibody (Calbiochem, OP01)
overnight at 4 °C. Then ProteinA/G plus beads (Santa
Cruz) were added and samples were incubated for 1 h at
4 °C. Thereafter, immune complexes were collected by
centrifugation, washed twice with ice cold RIPA buffer
and subjected to SDS PAGE and Western blotting.

RNA isolation, reverse transcription (RT) and quantitative
real-time PCR (qPCR)
Total RNA was isolated from 4 biological replicates from
each cell type using peqGOLD TriFast (Peqlab) according
to the manufacturer’s instructions. Amount and quality of
RNA samples were checked by spectrophotometric
analysis and agarose gel electrophoresis. After a DNA
digestion step (RQ1 RNAse-Free DNAse, Promega), RNA
(1 pg /20 pl reaction volume) was reverse transcribed using
the iScript cDNA synthesis kit (Bio-Rad, Vienna, Austria).
To evaluate epithelial and mesenchymal transcriptional
characteristics of MDCK and MDCK-Ras cells, RT-qPCR
of two epithelial and five mesenchymal markers was per-
formed. 2 pl of 1:4 diluted cDNA was used in a 25 pl
mastermix, containing 2.5 mM MgCl,, 200 nM of each
dNTP (MBI Fermentas), 1 x QuantiTect primer assay
(Qiagen), 0.2 x EvaGreen (Biotium), 1 Unit HotFire DNA
polymerase (Solis Biodyne), and 1 x reaction buffer B (Solis
Biodyne). The following cycling conditions were used on a
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Stratagene Mx3000P machine using: Initial denaturation at
95 °C for 15 min, 40 cycles of 95 °C for 15 s, 55 °C for 30 s
and 72 °C for 30 s. Melting curve analyses were performed
in order to check amplicon specificity. Assay specifications
are listed in Additional file 2: S1. The data were analyzed
using the Mx3000P Analysis software. The expression
levels of target genes were normalised to the expression
level of the reference gene GAPDH. Comparable efficien-
cies between target and reference genes were confirmed by
calibration curves, which were also used to determine the
dynamic range of the assays. Samples with Ct-values >35
were considered “not detectable”. The fold changes were
obtained using the AAC, method [51].

Statistical analyses were performed using linear models
after log transformation using the “R” programming
language [52]. Genes, where all samples were above the de-
tection limit (i.e., with a Ct < 35), were tested for significant
differences between MDCK and MDCK-Ras with t-tests.
For genes, where at least one sample in one of the conditions
(MDCK or MDCK-Ras) was below the detection limit, the
mean and its 95 % confidence interval in the condition
with complete data were calculated. Based on these values
a conservative test was derived: if the confidence interval
did not overlap the detection limit (i.e., a delta Ct of 35
minus the maximal Ct value for the housekeeping gene),
the two conditions were considered significantly different.

RNA-Seq - library preparation and sequencing
Concentration and quality of the RNA samples from 4
biological replicates (RNA prepared as described above) per
cell line (MDCK and MDCK-Ras) were determined using
the Agilent Bioanalyzer according to the manufacturer’s
instructions. RNA poly(A) + selected cDNA libraries were
prepared from a starting amount of 15 pg total RNA
following a protocol preserving the strand information
based on the dUTP method [53]. Strand specific and
indexed sequencing libraries with 200 — 700 bp insert
size were generated using the NEBNext® Ultra™ DNA
Library Prep Kit for Illumina® New England Biolabs).
Each library was loaded into 4 different lanes (technical
replicates) of an Illumina HiSeq 2000 flowcell. 100 bp
paired-end sequencing was performed according to the
manufacturer’s protocol (Illumina).

RNA-Seq reads quality control, alignment, expression
profiling and analysis of differential expression

Read quality was checked with FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc). The
first 10 bp at the start of each read were trimmed-off using
an in-house python script, because their nucleotide (A, T,
G, C) content ratio did not conform to Chargaff’s rule. At
the 3" end of each read, low quality reads were trimmed
using the “trim-fastq.pl” script of the PoPoolation Toolbox
[54], which is based on a modified Mott algorithm. Reads
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of length less than 40 bp were discarded. Quality controlled
reads were mapped to the dog genome (Ensemble’s
CanFam3.1; release 68) using GSNAP [55] (with the param-
eters: “—nthreads =4, —-d CanFam3, -D path to genome
index, —-novelsplicing=1, --use-splicing=CanFam3_1_
68_gtf splicesitesfile and —format=sam”); the resulting
alignments were saved in the SAM format. Reads from
technical replicates were merged together. With SAMtools
[56] uniquely mapped reads mapped in proper pairs were
extracted and fed to HTSeq [57] to count reads mapped to
each gene using the gene annotation file (gtf) from Ensem-
ble (CanFam3.1; release 68). Genes with a mean mapped
read count of less than 50 were considered as low expressed
and discarded. Differential expression analysis was per-
formed using DESeq [58]. The mapped read count per gene
of each sample library was normalized by its respective
effective library size. The variance of counts was computed
as in [58]. Differential expression between the two condi-
tions (MDCK vs. MDCK-Ras) for each gene was tested with
the negative binomial test at a significance level of 0.05.

RT-qPCR validation of RNA-Seq results

26 genes were chosen for RNA-Seq validation by RT-
qPCR. Selected genes and Assays (Qiagen) are listed in
Additional file 2: S1. ¢cDNA preperation and RT-qPCR
was performed on four new independent MDCK and
MDCK-Ras samples as described above.

Gene ontology (GO) analysis

GO annotations for the dog species were downloaded
from the Gene Ontology consortium website (http://
geneontology.org/). The average differential expression
of genes (z-scores of log2 fold change) belonging to a
specific GO category was tested for deviation from the
average of all other genes using a z-test. A FDR<5 % was
used as cutoff to select significantly enriched GO terms.

Gene set enrichment analysis for canonical pathways
Canonical pathway gene sets of REACTOME, KEGG and
PID were downloaded from MSigDB [59] and were tested
using Gene Set Enrichment Analysis (GSEA) tool [59] for
enrichment in our list of differentially expressed genes.
Ranking of these genes was based on log2 fold change
derived from DESeq. A FDR <10 % was used as cutoff to
select significantly enriched pathways. For selected miRNA
target genes, pathway analysis was performed via DAVID
[60]. A FDR of <10 % was used as cutoff to select signifi-
cantly enriched pathways.

miRNA Sequencing- library preparation and Illumina
sequencing

Quality and quantity of total RNA from MDCK and
MDCK-Ras cells isolated with peqGOLD TriFast (Peqlab)
were checked on an Agilent Bioanalyzer using the Agilent
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RNA 6000 Nano Kit (Agilent). The miRNA sequencing
libraries were prepared from four biological replicates per
experimental condition with the Ilumina Small RNA
Sample Prep v1.5 (Illumina, San Diago, CA USA) as
described in the corresponding protocol. Amplified cDNA
libraries were size fractionated on a 2 % low-melt agarose gel
and fragments with a length between 90 to 110 nucleotides
were excised. Eluated template libraries were quantified and
quality checked using the Qubit dsDNA HS Assay kit
(Invitrogen) and on an Agilent Bioanalyzer (Agilent). Each
library was loaded into a single lane of Illumina Genome
Analyzer 1I flowcell. 36 bp single-end sequencing was per-
formed according to the manufacturer’s protocols (Illumina).

miRNA-Seq reads quality control, alignment, miRNA
detection and prediction, expression profiling and
analysis of differential expression

Quality of reads was checked with FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc), dur-
ing which an overrepresentation of “Illumina Small RNA
3p Adapter 1” was found. Cutadapt [61] was used to trim
this adaptor sequence from reads. At the 3’ end of each
read, low quality reads were trimmed using “trim-fastq.pl”
script of the PoPoolation Toolbox [54]. FASTQ files were
converted into FASTA format using the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). Reads with a
length less than 17 bp were discarded and identical reads
were collapsed using the miRDeep2 [62] tool. Furthermore,
reads that aligned to other non-coding RNAs (e.g., tRNA,
snRNA, snoRNA, scRNA, rRNA etc.) sequences present in
Rfam database (release 11.0) [63] were discarded using
Bowtie [64], allowing one mismatch in the whole
alignment region. Finally, these quality controlled reads
were aligned to the dog genome (Ensemble’s CanFam3.1;
release 68) using Bowtie, again allowing one mismatch in
the whole alignment region. Using the miRDeep2 tool and
miRBase (release 21), sequences were matched to miRNAs
known in dog, then to miRNAs known in humans, and,
subsequently, in other species. For canis, a miRDeep2 log-
odds score cutoff of greater or equal to four was used, which
yielded signal-to-noise ratio of at least 10:1. For all other
species, the prediction of the hairpin secondary structure
was also used for identification of miRNAs using the pro-
gram RNAfold implemented within miRDeep2 toolkit with
default options. For human specific miRNAs, also a log-
odds score cutoff of four was used; for miRNAs of other
species and also for novel miRNAs, a miRDeep2 log-odds
score cutoff greater or equal to six was used, which yielded
signal-to-noise ratio of at least 14:1. Differential expression
analysis was performed as described above for RNA-Seq.

Validation of miRNA-Seq results
For validation, miRNAs were isolated from four new
independent MDCK and MDCK-Ras samples using the
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miRNeasy Mini Kit (Qiagen). Mature miRNAs were
reverse-transcribed with the miScriptll RT-Kit using
High spec buffer (1,8 pg total RNA starting material). The
resulting cDNAs were diluted 1:20 and RT-qPCR was per-
formed using miScript SYBR-Green PCR-Kit, miScript
universal Primer and miScript Primer Assays (Additional
file 3: S2) according to the manufacturer’s protocol on a
Stratagene MX3000P (Agilent Technologies). Thereafter,
miRNA expression levels were normalized to the en-
dogenous control RNU6B. Fold changes were calculated
and statistical tests performed as described in the RT-
qPCR section above. Validation of the novel miRNA#1-3
was performed as described above with customised primer
assays (Qiagen) designed to amplify the mature sequence
of these miRNAs.

miRNA clustering based on family and genome
coordinates

Differentially expressed miRNAs were grouped according
to family information and their genome coordinates (in-
ter-miRNA distance <10 kb) using miRBase (release 21).

miRNA target prediction

For all differentially expressed genes identified by RNA-
Seq, 3'UTR sequences were downloaded from Ensemble
(Canfam3.1) and the genes were tested for being targeted
by the differentially expressed miRNAs using TargetScan
(v6.2) perl scripts [65]. Context Specific Score (CSS) of less
than —0.1 was used as a cutoff for significant target-miRNA
pairs. To refine predictions, the inverse correlation between
expression of a miRNA and its target mRNA was used [66].

Data accessibility

RNA-Seq and miRNA-Seq data are available in the
ArrayExpress  database  (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-3301 (RNA-Seq) and
E-MTAB-3302 (miRNA-Seq).

Results
Characterisation of MDCK and MDCK-Ras cells
First we analysed the phenotypes of MDCK and
MDCK-Ras cells (Fig. 1a). MDCK cells show an epithelial
morphology and grow as epithelial island in subconfluent
cultures (Fig. 1a; left upper panel). In confluent cultures
they form hemicysts, typical for epithelial cells (black
arrow in Fig. 1a; left lower panel). In contrast, MDCK-Ras
cells display a fibroblastoid phenotype, clearly visible in
subconfluent cultures (Fig. 1a; right upper panel). Confluent
MDCK-Ras cells show an overgrowth phenotype without
contact inhibition (Fig. 1a; right lower panel). The pheno-
type of MDCK-Ras cells is very similar to the phenotype
described in [48].

Next we analysed mRNA and protein expression of
epithelial and mesenchymal markers in six biological
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Fig. 1 Characterization of MDCK and MDCK-Ras cells. a Phase contrast pictures of subconfluent (upper panel) and confluent (lower panel) cultures
of MDCK (black arrow in MDCK indicate domes) and MDCK-Ras cells. b RT-gPCR and (c) Western Blot analysis of epithelial and mesenchymal
markers. Actin was used as loading control. d Western blot analysis of pAKT, AKT, pERK1/2 and ERK1/2. Stars in (b) indicate significance values:

5~ MDCK p
™ MDCK-Ras ** } I
i m
=
N &
0 B 0
CDH1 TJP1 VIM FN1 CDH2 TGFB1 CCND1

replicates of each cell type by RT-qPCR and Western
blotting, respectively. The epithelial-specific markers
E-Cadherin (CDHI) and Tight Junction Proteinl (7JP1
also known as ZOl), both important components for
maintaining cell-cell contacts in epithelial cells, were
clearly expressed in MDCK cells and strongly reduced in
mesenchymal MDCK-Ras cells (Fig. 1b, ). In contrast, ex-
pression levels of the mesenchymal markers Vimentin
(VIM), Fibronectin (FN1), N-Cadherin (CDH2) and Trans-
forming growth factor Pl (TGFBI) as well as Cyclin D1
(CCNDI) were clearly enhanced in MDCK-Ras cells
(Fig. 1b, ¢). Additionally we analysed Ras downstream
signaling in MDCK and MDCK-Ras cells. MDCK-Ras
cells display strong activation of PI3K and ERK1/2 sig-
naling, two major downstream pathways of Ras [67].
Phosphorylation levels of AKT at Ser473 and of ERK1
and ERK2 were higher in MDCK-Ras cells compared to
MDCK cells, implicating active Ras signaling (Fig. 1d).
In summary, these results confirmed the epithelial
phenotype and characteristic gene expression pattern of
MDCK cells, and the mesenchymal phenotype and gene
expression pattern of MDCK-Ras cells. Additionally, the
presence of hyper-activated Ras downstream signaling in

MDCK-Ras cells was shown. We therefore proceeded
with mRNA and miRNA deep sequencing.

mRNA expression patterns in MDCK and MDCK-Ras
cells

For RNA-Seq we sequenced four biological replicates of
MDCK and MDCK-Ras cells each by Illumina HiSeq
2000. To avoid possible technical bias due to different
lanes on the flow cell, we pooled all eight samples and
sequenced them on four lanes of the same flow cell.
Specific indexing adaptors were used to identify and
demultiplex the eight samples later. This setup resulted
in 4 technical replicates of each biological replicate; i.e.,
in total 32 samples. The sequencing run yielded 25-81
million 100 bp paired-end reads per biological replicate,
with a total of 424 million paired-end reads (Additional
file 4: Table S1).

Read quality control and mapping

A summary flowchart of the bioinformatics pipeline is pre-
sented in Fig. 2. Reads were trimmed to remove adaptor
sequences and bad quality regions, and filtered according
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Fig. 2 Flowchart of the bioinformatics pipeline. Parallelogram boxes represent input/output. Rectangular boxes represent processing steps. Tools,

to length. On average, 96 % of reads were retained after
these quality control steps (Additional file 4: Table S1).
Quality-controlled reads were mapped to the dog genome
(Ensemble’s CanFam3.1; release 68) using GSNAP [55]. On
average, 79.3 % of the raw paired-end reads of RNA-Seq
data could be uniquely mapped with a proper alignment of
the paired ends (Additional file 4: Table S1). Out of 24580
genes annotated in the dog genome, we could identify
12130 (49 %) in our samples (Additional file 5: Table S2).
The transcriptome of MDCK and MDCK-Ras cells is avail-
able in Additional file 6: S3.

Differential expression analysis of genes

Sample-to-sample heat map analysis of RNA-Seq data
showed a uniform expression pattern among the bio-
logical replicates (Additional file 7: Figure S2). Using
DeSeq [58], 4705 genes out of 12130 identified genes,
were found to be significantly differentially expressed
(p <0.05) between MDCK and MDCK-Ras cells with
2276 genes upregulated in MDCK and 2429 genes up-
regulated in MDCK-Ras cells (Additional file 5: Table S2).
Furthermore, we also report genes with at least two-fold
change, which may represent biologically meaningful

differential expression levels. The numbers of genes are
present in parentheses in Additional file 5: Table S2.

Validation of RNA-Seq data

We validated selected differentially expressed genes using
real time quantitative PCR (RT-qPCR). Table 1 shows
expression values obtained by RNA-Seq for genes, which
we subsequently validated. For comparison, we included
genes known or suspected to be involved in EMT, but also
others not yet discussed in the process of Ras induced
EMT of MDCK cells. For some genes, mRNA levels in
either MDCK or MDCK-Ras were below the detection
limit in at least one biological sample (i.e., with a Ct > 35).
For these cases, we used a conservative test of differential
expression (see Methods).

We confirmed enhanced expression of E-Cadherin
(CDH1I), EA7-like factor 3 (ELF3), Mitogen Activated
Protein Kinase 4 (MAPK4) and Podocalyxin (PODXL).
The expression of these genes was high in MDCK cells
and strongly reduced in mesenchymal MDCK-Ras cells
(Fig. 3a). Furthermore, we validated the increased
expression of Claudin2 (CLDNZ2), kidney epithelium
specific Annexin13 (ANXA13), Epidermal Growth Factor
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Table 1 RNA-Seq data of genes selected for validation by RT-qPCR.
Listed are genes sorted according to their log2 fold change

Gene ID Gene name  log2 fold change  p value
MDCK:

ENSCAFG00000031946  CLDN2 —6.259056032 547E-12
ENSCAFG00000016608  SLIT2 —6.215152318 4.30E-13
ENSCAFG00000013287  MAPK4 —6.192289989 1.03E-29
ENSCAFG00000001015  ANXAT3 —5.819849287 2.37E-08
ENSCAFG00000001531  SMO —5.748090387 131E-20
ENSCAFG00000011532  EGF —5.740353485 6.84E-27
ENSCAFG00000001403  PODXL —4.106838157 4.13E-11
ENSCAFG00000010602  ELF3 —3.946262741 8.64E-31
ENSCAFG00000020397  CDH16 —2.380998977 1.40E-09
ENSCAFG00000020305  CDH1 —1.352645238 0.000860681
MDCK-Ras:

ENSCAFG00000007923  MSC 7653897777 9.15E-05
ENSCAFG00000006138  LUM 7.532307731 3.38E-10
ENSCAFG00000015054  MMP1 7.288819658 201 E-07
ENSCAFG00000006766 ~ DLCT 7.217480395 6.66E-14
ENSCAFG00000029321  WNT5A 706017597 6.47E-06
ENSCAFG00000007673  MMP14 7.008651621 2.60E-14
ENSCAFG00000002525  COL15A1 6.927033269 2.69E-09
ENSCAFG00000011197  SULF1 6.905784034 641 E-09
ENSCAFG00000005497  ZEB2 6753561154 5.82E-13
ENSCAFG00000017943  ANXA6 6.741711305 6.71 E-64
ENSCAFG00000004023  ZEBT 6.167816343 7.14E-16
ENSCAFG00000002528  TGFBRI 497741794 4.72E-37
ENSCAFG00000006638  SNA2 4785172701 4.54E-07
ENSCAFG00000011499  SNAIT 1.367598098 0.035198575

(EGF) and Smoothened (SMO) in epithelial MDCK cells.
These genes were strongly expressed in MDCK cells and
not detectable in MDCK-Ras cells (Fig. 3b). Expression
of epithelial Cadherin 16 (CDH16) and Slit homolog 2
(SLIT2) was validated in MDCK cells by RT-qPCR but
not detectable in MDCK-Ras cells. The conservative
statistical test was not significant (data not shown).
Expression profiling of MDCK-Ras cells clearly showed
a mesenchymal gene expression signature. We confirmed
enhanced expression of the EMT-TFs SNAI2 (Fig. 3a) and
ZEB?2 (Fig. 3b), of components of the extracellular matrix
(ECM), e.g.,, Collagen 15 (COL15), Lumican (LUM) and
ECM remodeling factors including members of the Matrix
Metalloprotease (MMP) family (MMPI, MMPI14) and
Sulfatase 1 (SULFI) in MDCK-Ras cells compared to
MDCK cells (Fig. 3b). Finally, we validated enhanced
expression of the TGFB-Receptor 1 (TGFBRI; Fig. 3a),
WNT5A and Annexin 6 (ANXA6) (Fig. 3b) in MDCK-Ras
cells compared to MDCK cells. For two low expressed
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genes, Musculin (MCS) and Deleted in liver cancer 1
(DLCI), we could validate the increased expression in
MDCK-Ras with RT-qPCR, but the conservative test was
not significant (data not shown). Importantly, we may
conclude from the successful validation with RT-qPCR of
a subset of genes that the expression of the remaining
genes found in our screen is reliable.

Gene set enrichment in MDCK and MDCK-Ras cells

After validation of our RNA-Seq data we went further
and analysed gene signatures to refine our understanding
of Ras induced EMT in MDCK cells.

Among GO categories upregulated in MDCK cells, the
top five GO terms (false discovery rate (FDR) <5 %) are
“Poly(A) RNA binding”, “Negative regulation of viral
genome replication”, “Glutathion peroxidase activity”,
“Chemokine activity” and “Nucleolus” (Fig. 4).
Conversely, among GO categories upregulated in
MDCK-Ras cells, the top 15 GO terms (FDR<5 %)
mainly refer to components of the ECM, e.g., “Protein-
aceous extracellular matrix” and “Extracellular matrix
structural constituent” (Fig. 4). Furthermore, GO-terms
referring to processes involving EMT were significantly
enriched, e.g., “Wound healing”, “Integrin mediated
signaling pathway” and “Cell adhesion” (Fig. 4).

Pathway analysis revealed the upregulation of canonical
pathways (REACTOME, KEGG and PID) for steady state
metabolism (“G2 M checkpoints”, “mRNA processing”,
“Synthesis of DNA”) in MDCK cells (FDR < 10 %; Fig. 5).
Interestingly, the most enriched pathways in MDCK cells
were “Interferon alpha beta signaling” and “Interferon
signaling” (Fig. 5). We selected a group of interferon
regulated genes with a log2 fold change >2 and a p-value
<0.05 from our RNA-Seq data (Fig. 6a; upper panel) and
validated their expression in MDCK and MDCK-Ras cells.
For IFIT1, IFIT2, IRF8 and CCLS5 we observed high
expression in MDCK cells, while expression was below
the detection limit in MDCK-Ras cells (Fig. 6a; lower
panel). These differences were significant in spite of the
conservative approach when testing.

Pathways upregulated in mesenchymal MDCK-Ras cells
(Fig. 5) include mainly those related to integrin signaling
(“Integrin 1 pathway”, “Integrin 3 pathway”, “Integrin 5
pathway” and “AVB3 integrin pathway”) and pathways
related to ECM (“ECM receptor interaction”, “Extracellular
matrix organisation”). We also found enrichment of genes
involved in AP1 signaling (“Fra pathway”, “AP1 pathway”)
and Plasminogen signaling (“UPA UPAR pathway”). These
pathways are known to be crucial for EMT and invasion
[49, 68, 69]. Enrichment of the “TGF beta signaling
pathway” (Fig. 5) suggests active TGFP1l signaling in
MDCK-Ras cells.

We validated activation of this particular pathway with
reporter gene assays. Cells were transfected with a
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Fig. 3 RT-gPCR validation of selected, differentially expressed genes. a Differential expression of selected genes validated by RT-gPCR, where all
samples were above the detection limit. Shown are delta-Ct values relative to the housekeeping gene, where bars indicate the mean + standard
error margins of four biological replicates; stars indicate significance values: ***: p < 0.001; **: p < 0.01. b RT-gPCR of selected genes, where at least
one sample was below the detection limit. Depicted are delta-Ct values relative to the housekeeping gene, where bars indicate the mean + 95 %
confidence interval of four biological replicates. n.d.: not detectable. Note that the confidence limits do not overlap the detection limit, i.e, the

reporter construct containing a Smad response element
(SRE) upstream of the luciferase gene. For normalisation
we used renilla luciferase. In MDCK cells we detected
basal reporter activity (Fig. 6b), probably due to the
presence of TGFpB1 in the serum, whereas mesenchymal
MDCK-Ras cells show a massive upregulation of the
reporter gene (Fig. 6b).

In summary, gene set enrichment analysis revealed GO
terms and pathways differentially expressed between epi-
thelial and mesenchymal cells that are implicated in EMT
(AP1 pathway, UPA UPAR signaling, TGF beta signaling).
Additional pathways particularly reflect the differences in
the composition of the ECM and integrin mediated
signaling during EMT. Interestingly, we also detected novel
GO terms and pathways not yet linked either to MDCK

cells (interferon signaling related pathways, “Netrin 1
signaling”) or the process of EMT (“Hematopoietic cell
lineage”, “Response to elevated platelet cytosolic calcium”;
Fig. 5). The role of these pathways and the genes therein
will be the focus of further research. We are confident that,
with this information on gene expression, new players and

mechanisms in the complex field of EMT will be identified.

miRNA expression patterns in MDCK and MDCK-Ras cells

For miRNA-Seq, we sequenced four biological
replicates of MDCK and MDCK-Ras cells (i.e., in total
8 samples) on an Illumina GAIL Sequencing runs
yielded 14-43 million 36 bp single-end reads per
sample, with a total of 207 million single-end reads
(Additional file 8: Table S3).
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Read quality control and mapping

A summary flowchart of the bioinformatics pipeline is
presented in Fig. 2. Adaptor sequences were removed,
read quality was checked, and reads were trimmed and
filtered for length. This reduced the average read length of

our data from 36 bp (originally sequenced) to 22-23 bp,
the expected length of mature miRNAs (Additional file 9:
Figure S3A). Reads that mapped to other non-coding
RNAs (e.g., tRNA, snRNA, snoRNA, scRNA, rRNA, etc.)
according to the Rfam database [63] were discarded. On
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b Smad2 dependent reporter gene assay shows strong activation of the reporter gene in MDCK-Ras cells compared to MDCK cells

average, about 52 % of the reads were retained after all
quality control and filtering steps (Additional file 8:
Table S3). Quality controlled reads were aligned to the
dog genome (Ensemble’s CanFam3.1; release 68) using
Bowtie [64]. Only 2 % of these quality controlled reads got
discarded during alignment, such that about 50 % of the
raw miRNA-Seq reads could be mapped (Additional file 8:
Table S3).

miRNA detection and prediction
Using miRDeep2 [62] and miRBase (release 21;
www.mirbase.org), we found in total 380 miRNAs present
in MDCK and/or MDCK-Ras cells of which 219 were
known dog miRNAs. Among the remaining 161 miRNAs,
94 were predicted to be homologous to humans and 42 to
miRNAs of other species present in miRBase. Twenty five
miRNAs were completely novel and not yet described in
miRBase (Additional file 10: Table S4). These completely
novel miRNAs varied widely in read counts of their pre-
dicted mature sequences. Information on mature and
precursor sequences, their respective read counts and
genome coordinates of these novel miRNAs is presented
in Additional file 11: S4. Sequences derived from the other
arm of the precurser miRNA (“star sequences”) are de-
graded quickly, such that their mapped read counts were
generally lower than those for predicted mature sequences
(Additional file 11: S4). All novel miRNAs make a stable
hair-pin structure as predicted by miRDeep2, using the
RNA secondary structure prediction algorithm (RNAfold).
For validation with qPCR, we chose the miRNAs with
the highest read counts, ie., novel miRNA#1-3. All three
novel miRNAs are located in the introns of different genes

in dog (intron 5 of GSN, intron 11 of c50rf165, and intron
17 of RGS3, respectively). In the human orthologs of these
genes, no miRNAs are annotated in any of these genes.
This further shows that the novel miRNAs are exclusively
expressed in dog.

We performed RT-qPCR analyses for these miRNAs in
MDCK and MDCK-Ras cells and included, as negative
controls, mouse (EpH4 and RasXT cells; [8, 9]) and
human samples (prostate cancer cell lines PC-3 (ATCC:
CRL-1435), DU-145 (ATCC:HTB-81) and Ewing’s sar-
coma cell lines (A-673 (ATCC-CRL-1598) and TC-71)
too. As expected, novel miRNA #1 and novel miRNA #
2 could not be amplified in human and mouse samples
(data not shown), but could be amplified in MDCK and
MDCK-Ras cells (Fig. 7). With novel miRNA#3, the
assay was unspecific. We extended our search for ortho-
logs with bioinformatics analysis.

With the novel miRNAs, we could increase the number
of dog miRNAs in miRBase (release 21) by 1.4 times from
453 to 614. Mature and hairpin sequences of newly found
miRNAs in the dog will be deposited to miRBase and are
expected to be incorporated into the next release of
miRBase. The miRNAome of MDCK and MDCK-Ras
cells (mapped read counts and miRNAs computed for
differential expression) is available in Additional file 12: S5.

Differential expression analysis of miRNAs

A heat map analysis of miRNA-Seq data comparing the
eight samples showed uniform expression pattern within
the biological replicates and differences between MDCK
and MDCK-Ras cells (Additional file 9: Figure S3B). Using
DeSeq [58], 87 miRNAs were found to be differentially
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regulated (p <0.05) (Additional file 10: Table S4). Eighty
miRNAs were already annotated for dog, of which 36 were
expressed in MDCK and 44 in MDCK-Ras. Numbers of
miRNAs with a fold change of at least 2 are presented in
parentheses in Additional file 10: Table S4. Two of the
differentially expressed miRNAs were predicted to be
homologous to human miRNAs and three to other species
(mouse and platypus). All five miRNAs from human,
mouse and platypus were MDCK-specific (Additional file
10: Table S4). Two out of 25 completely novel miRNAs
were differentially expressed: one was MDCK-specific, the
other significantly higher expressed in MDCK-Ras cells
(Additional file 10: Table S4). Differentially expressed
miRNAs were grouped into their families based on
sequence similarity and according to their proximity in the
genome (inter-miRNA distance <10 kb) (Fig. 8).

miRNA expression in epithelial MDCK cells and
mesenchymal MDCK-Ras cells

It has been shown that miRNAs are differentially expressed
in the process of EMT in MDCK cells induced by EMT
transcription factors [33]. This study utilized MDCK
cells individually overexpressing the transcription
factors TWIST1, TWIST2, SNAII, SNAI2, ZEBI, ZEB2
and E47 and the EMT inducer LOXL2. Furthermore, the
expression pattern of miRNAs and the changes thereof in
the process of EMT were analysed [33]. Since this study
partially overlaps with our work, we compared our
miRNA data obtained with NGS technology with this
published dataset obtained with microarray technology
(Table 2). Approximately one third of the miRNAs present

in MDCK cells in our dataset were seen previously (Table 2;
[33]). miRNAs detected in MDCK cells in both analyses in-
cluded members of the epithelial-specific miR-200 family
(miR-200a,b,c, miR-141), and the miR-96, miR-182 and
miR-183, which are within a single genomic cluster
(Table 2; Fig. 8). In our NGS dataset of miRNAs expressed
in MDCK cells we further detected miR-450a/b and miR-
503, which belong to a single cluster, and the kidney-
specific miR-192 and miR-194 (Table 2; Fig. 8). Additional
miRNAs detected exclusively by our NGS analysis or found
in both analyses are listed in Table 2. Similarly, we found a
clear overlap with miRNAs strongly expressed in MDCK-
Ras cells and the data on miRNA expression from MDCK
cells overexpressing EMT inducers described in [33]
(Table 2, left column). Furthermore, with NGS we found
additional miRNAs present in mesenchymal MDCK-Ras
cells not previously described in [33] (Table 2, right col-
umn). This includes all members of the miR-181 family and
the miR-1/133 cluster. Notably, this cluster contains the
miRNAs with the highest fold change during EMT (miR-1:
log2 fold change ~ 10; miR-133c: log2 fold change ~ 8). We
next performed RT-qPCR validation of the expression level
of selected miRNAs detected with NGS and present exclu-
sively in our dataset (Table 3). For epithelial MDCK cells,
we chose miR-194, miR-675, miR-802 and, for mesenchy-
mal MDCK-Ras cells, miR-1, miR-181b and miR-889
(Table 3). Importantly, we could validate the miRNA-Seq
pattern of all selected miRNAs (Fig. 7).

Additionally, we included the novel miRNAs into differ-
ential expression analysis of the miRNAs detected in our
screen. Two out of these 25 novel miRNAs (novel
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miRNA#2 and novel miRNA#3) were significantly differ-
entially expressed between MDCK and MDCK-Ras cells.
These miRNAs had relatively high mature read counts
(Additional file 11: S4). Novel miRNA#2 was higher
expressed in MDCK cells than in MDCK-Ras cells; novel
miRNA#3 in the reverse fashion. For validation of the
novel miRNAs (including the differentially expressed
novel miRNAs#2 and #3) we selected the top three
miRNAs with the highest read counts. Novel miRNA#1 is
equally present in MDCK and MDCK-Ras cells (Fig. 7).
This is in accordance with differential expression analysis
(Additional file 12: S5). Novel miRNA#2 is significantly
higher expressed in MDCK cells compared to MDCK-Ras
cells (Additional file 12: S5 and Fig. 7). Differential expres-
sion analysis revealed higher expression of novel miRNA#3
in MDCK Ras cells compared to MDCK cells (Additional
file 12: S5). Unfortunately, the expression pattern of this
miRNA could not been validated, because the RT-qPCR
assay was not specific.

miRNA target prediction

miRNA-target pairs computed by TargetScan [65] were
further refined by the expectation that the expression of
miRNAs and their target genes is negatively correlated
[66]. This resulted in a total of 1975 differentially expressed
gene targets. Targets of miRNA-133c were of special inter-
est, as this miRNA was highly and significantly upregulated
in MDCK-Ras cells (log2 foldchange = 8.2) and its role in
EMT has not yet been studied well. Table 4 summarizes

predicted targets of four selected miRNAs. For each
miRNA, we show the top 5 targets (bold) and targets of
special interest (Table 4). The reduced expression of spe-
cific targets of miR-133c (e.g, ANXAI3, EGE PODXL,
CLDN2, ELF3) in MDCK-Ras cells has already been
validated (Fig. 3). Interestingly, miR-133c target genes are
annotated for the interferon signaling pathway (e.g., IFIT1
and IFIT2) (Table 4). Their reduced expression in
MDCK-Ras cells was validated by RT-qPCR (Fig. 6).
Pathway analysis of its target genes via DAVID [60] showed
enrichment (FDR <5 %) of genes in the Jak-Stat signaling
pathway, including several receptors of interleukins
(PTPN6, IL22RA1, CREBBP, IL28RA, IL15RA, PIK3RS,
STATS3; Table 4) and pancreatic cancer pathways (VEGFC,
ACVRIB, PIK3RS5, EGEF, STAT3; Table 4). Furthermore,
targets of miR-1 were computed (Table 4) but these were
too few to perform gene set enrichment analysis.

We next performed target prediction for novel miRNA#2.
The top 5 targets are shown in bold (Table 4). miRNA#2
targets Vascular Endothelial Growth Factor A (VEGFA) and
Platelet-derived Growth Factor beta (PDGFB) (Table 4).
Each of these growth factors promotes EMT (3, 70-72]. In
our RNA-Seq data these predicted targets of novel
miRNA#2 are significantly downregulated in MDCK cells.

Target prediction of novel miRNA#3 with significantly
downregulated genes in MDCK-Ras cells followed by gene
set enrichment analysis suggests an influence of this
particular miRNA on cell division and growth factor activity.
Furthermore, we identified genes of cellular adhesion
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Table 2 miRNAs differentially expressed during EMT in MDCK
cells: Comparison of miRNAs detected in two independent
screens. Left column: Common miRNAs detected by microarray
in [33] and by NGS in our study; right column: miRNAs detected
exclusively by NGS
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Table 3 miRNAs differentially expressed during EMT in MDCK
cells: miRNAs selected for validation. Expression levels of
miRNAs from miRNA-Seq data that were selected for validation
with RT-gPCR. miRNAs are sorted according to their log2 fold
change

Common miRNAs detected on miRNA ~ miRNAs detected exclusively

array and by NGS: by NGS:
MDCK MDCK-Ras MDCK MDCK-Ras
miR-9 miR-129 miR-10a let-7e
miR-25 miR-132 miR-26a miR-1
miR-92a miR-152 miR-30a miR-21
miR-95 miR-155 miR-126 miR-24
miR-96 miR-224 miR-147 miR-27a
miR-141 miR-340 miR-153 miR-27b
miR-182 miR-411 miR-192 miR-29a
miR-183 miR-455 miR-194 miR-29b
miR-200a miR-574 miR-301a miR-30b
miR-200b miR-345 miR-99b
miR-200c miR-429 miR-107
miR-203 miR-450a miR-125a
miR-330 miR-450b miR-133c
miR-375 miR-454 miR-134
miR-486 miR-503 miR-146a
miR-675-3p miR-181a
miR-802 miR-181b
miR-1307 miR-181c
miR-1388-3p miR-181d
miR-1388-5p miR-197
miR-1844 miR-222
miR-3605-5p miR-299
miR-7689-3p miR-365
miR-8826 miR-378
miR-379
miR-380
miR-381
miR-485
miR-494
miR-582
miR-874
miR-889
miR-8859a

complexes (e.g., Tight junction protein 1 (7/PI) and Clau-
din 2 (CLDN2)) (Table 4), which are targeted by novel
miRNA#3. The expression of these targets is low in
MDCK-Ras cells as shown by qRT-PCR analysis (Fig. 1 and
Fig. 3b). The top five targets are shown in bold (Table 4).
FARSB and RASGRP1 were significantly downregulated in

miRNA ID log2 fold change p value
MDCK:

cfa-miR-194 —4.142446835 1.29E-18
hsa-miR-675-3p —4.685451438 7.94E-08
cfa-miR-802 —7.829687531 3.70E-26
MDCK-Ras:

cfa-miR-1 10.03297657 7.04E-54
cfa-miR-181b 2281692113 3.17E-07
cfa-miR-889 6.167513751 4.26E-14

MDCK-Ras cells as shown by RT-qPCR (Fig. 3a). Other
predicted targets of novel miRNA#3 are significantly down-
regulated in MDCK-Ras cells in our RNA-Seq data.

Discussion

In this article, we employed the well known MDCK
cell system during Ras induced epithelial-mesenchymal
transition (EMT) to complement and extend earlier
insights into the transcriptome and miRNAome. RNA-Seq
and bioinformatical analysis showed that approximately half
of the genes annotated in the dog genome are expressed in
MDCK and/or MDCK-Ras cells. With miRNA-Seq, we
detected in total 380 miRNAs. 219 are described as dog
miRNAs, 161 were newly predicted miRNAs, of which 136
were known in either human or other species and 25 were
completely novel.

Among the genes identified with RNA-Seq, approxi-
mately one third were differentially expressed between
MDCK and MDCK-Ras cells. As expected, expression
patterns of genes in MDCK cells show an epithelial-
specific signature and those in MDCK-Ras cells a
mesenchymal-specific signature.

We found that overexpression of oncogenic Ras in
MDCK cells induced the combined expression of EMT-
TFs. We find that transcription factors of the ZEB (ZEBI;
ZEB2) and snail (SNAII; SNAI2) families are highly
expressed in MDCK-Ras cells. Because TWIST1 is not
annotated in the CanFam3.1 (release 68), its expression
could not be analysed. TWIST2 had no reads in MDCK
cells and too few in MDCK-Ras cells to perform differential
expression analyses.

Furthermore, with RNA-Seq we detected a signifi-
cantly higher expression of SLIT2 and SLIT3 in MDCK
cells compared to MDCK-Ras cells. In vertebrates, three
different slit genes are known, SLIT1, SLIT2 and SLIT3. Slit
proteins are secreted glycoproteins that bind to receptors of
the roundabout (Robo) family [73]. The Slit/Robo signaling
pathway is important in axon guidance [73] and has been
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Table 4 Predicted gene targets for miR-133, miR-1, novel miRNA#2 and miRNA#3: Top five targets are shown in bold; other targets

listed are of special interest

Targets of miR-133c:

Gene ID Gene name
ENSCAFG00000009617 IFIT1
ENSCAFG00000014621 MECOM
ENSCAFG00000008937 KANSL2
ENSCAFG00000017030 RANGRF
ENSCAFG00000003692 sToOM
ENSCAFG00000001015 ANXAT3
ENSCAFG00000007357 ACVRIB
ENSCAFG00000008409 VEGFC
ENSCAFG00000011532 EGF
ENSCAFG00000001403 PODXL
ENSCAFG00000031946 CLDN2
ENSCAFG00000030698 IL22RA1
ENSCAFG00000028524 IL28RA
ENSCAFG00000017387 PIK3R5
ENSCAFG00000010602 ELF3
ENSCAFG00000005213 IL15RA
ENSCAFG00000015213 STAT3
ENSCAFG00000014463 PTPN6
ENSCAFG00000019251 CREBBP
ENSCAFG00000009612 IFIT2
Targets of novel miRNA#2:
Gene ID Gene name
ENSCAFG00000032470 HS2ST1
ENSCAFG00000024890 NMT2
ENSCAFG00000001058 TXNDC15
ENSCAFG00000012913 HDLBP
ENSCAFG00000015628 SGMS1
ENSCAFG00000001938 VEGFA
ENSCAFG00000001356 PDGFB

Targets of miR-1:

Gene ID Gene name
ENSCAFG00000015835 HNRNPU
ENSCAFG00000032594 PEX12
ENSCAFG00000004084 Cé6orf70
ENSCAFG00000016719 SFXN1
ENSCAFG00000031727 sTC2
ENSCAFG00000014621 MECOM
ENSCAFG00000009612 IFIT2
Targets of novel miRNA#3:
Gene ID Gene name
ENSCAFG00000016094 FARSB
ENSCAFG00000024214 UsP4
ENSCAFG00000017895 ZNF396
ENSCAFG00000018982 MY05B
ENSCAFG00000008674 RASGRP1
ENSCAFG00000014009 CLDNT16
ENSCAFG00000010407 TIP1
ENSCAFG00000031946 CLDN2

shown to inhibit signaling by Hepatocyte growth factor
(HGF), WNT and Stromal cell-derived factor-1 (SDF-1;
also known as CXCL12) [74-76]. Slit2 also acts as a tumor
suppressor by maintaining E-Cadherin/pB-Catenin func-
tions in breast cancer [75]. Additionally, Slit2 blocks cell
motility and tumorigenesis by downregulation of CXCR4
in a mammary tumor model [76]. SLIT2, SLIT3, and other
genes in the gene set “Reactome Netrin 1 signaling”
(DCC, UNCS5, NTN1, and NEOI) are higher expressed in
MDCK cells, whereas CXCR4 is higher expressed in
MDCK-Ras cells. Slit and Netrin signaling could therefore
contribute to suppress an invasive phenotype in MDCK
cells.

Interestingly, genes in pathways related to interferon sig-
naling were upregulated in MDCK cells relative to
MDCK-Ras cells and we validated the expression of genes
within these pathways (e.g., I[FIT1, IFIT2, IRF8, CCL5) by
RT-qPCR. Ras/MEK signaling has been shown to suppress
IEN regulated genes in human cancer cells [77] probably
by suppressing IRF1 [78]. Similar to this, expression of
IRFI and interferon regulated genes in our dataset was
significantly higher in MDCK cells compared to MDCK-
Ras cells. In MDCK cells we also detected expression of
epithelial specific IL28RA, which is no longer present after
Ras-transformation. Downstream signaling of this
receptor for type III interferon [79] is very similar to type
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I interferon signaling [80] and results in the induction of a
similar gene set. The enrichment of interferon regulated
genes in MDCK cells might therefore also be due to
IL28RA activation. IL28RA acts in a functional complex
with IL10R2 [81]. ILI0ORB is expressed in MDCK cells and
might cooperate with IL28RA in activating IFN-type III
signaling. Furthermore, we found that miR-133c targets
many genes within IEN signaling. miR-133c is highly
upregulated in MDCK-Ras cells. The expression of IFN
signaling related genes in these cells might be suppressed
by miR-133c.

Among genes upregulated in MDCK-Ras cells compared
to epithelial MDCK cells, TGFP pathway gene sets were
enriched. Complementing this downstream analysis, a
strong induction of a reporter gene containing a Smad
response element upstream of the luciferase gene was
found exclusively in MDCK-Ras. This suggests that
MDCK-Ras cells produce bioactive TGFB1, which is able
to stimulate the receptor in an autocrine manner.
The upregulation of TGFBRI in MDCK-Ras cells
might potentiate this autocrine loop. Nevertheless, we
do not exclude the possibility of a constitutive active
TGEPB-Receptor in MDCK-Ras cells.

TGFB1 is a pleiotropic growth factor acting in a
context- and cell type-specific manner. In addition to
other functions, TGFP1 also exerts immunoregulatory
functions acting on the expression of immune genes
[82]. Thus, the enhanced expression of interferon regu-
lated genes in MDCK cells but not in MDCK-Ras cells,
may not only be due to direct Ras effects or targeting of
these genes by miR-133c but also due to Ras induced
TGEP1 signaling. TGFP1 also stimulates the synthesis of
many extracellular matrix (ECM) proteins and matrix
degrading enzymes. In MDCK-Ras cells, mRNA levels of
genes involved in ECM remodeling and known to be in-
duced by TGFp are upregulated, e.g., MMPs, collagens,
FNI and tenascin-C (TNC). Our transcriptome data cor-
respond to published data on the protein level [15, 41].

ECM components signal by binding to integrins located
at the cell membrane. The expression of integrins and
their ligands is altered by TGFB1 [83, 84]. Our data show
that Ras-induced EMT changes the mRNA expression
patterns of integrins dramatically. These changes parallel
those described on the protein level [15, 41]. Correspond-
ing to the gene expression pattern of integrins, gene
signature analysis showed the presence of many pathways
related to the interaction between integrins and ECM in
MDCK-Ras cells. Changes in the expression and compos-
ition of integrin heterodimers during EMT also modify the
impact of growth factor stimuli, the structure of the
cytoskeleton and gene expression patterns [3, 85].
Profound changes of integrin heterodimers are described
during Ras/TGEp induced EMT in breast cancer cells [14]
and during tumor progression in vivo [85, 86].
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An additional pathway capable of inducing EMT is the
WNT/ p-Catenin pathway [7]. We detected strong
upregulation of WNT5A, WNT5B and WNT7A in
MDCK-Ras cells. Similarly, proteomics profiling of Ras/
TGEP induced EMT in MDCK cells shows upregulation
of WNT family members during EMT [15]. Additionally
we find upregulated expression of the WNT receptors
frizzled 2 (FZD2) and frizzled 4 (FZD4) in MDCK-Ras
cells. WNT5A and WNT5B are ligands for and bound by
FZD2 and FZD4, and this binding has been shown to
drive EMT and is elevated in metastatic tumors [87].
Furthermore, we find upregulation of WNT target genes
(e.g., TCF4, SNAI2, MYC and JUN) in MDCK-Ras cells
which supports the assumption of active WNT signaling
in these cells.

Sustained WNT signaling has been shown to contribute
to the pathogenesis of kidney fibrosis [88]. We detect
upregulation of pro-fibrotic genes, especially TGEfSI,
collagens, FN1, MMPs, integrins and growth factors like
PDGF and EGF. Activation of Ras oncogenes and
downstream pathways is also reported in renal fibrosis
[89]. Obviously, MDCK-Ras cells (epithelial MCDK cells
that had undergone EMT) resemble fibrotic cells and
might be used to study aspects of (kidney) fibrosis.

Recently, miRNAs involved in fibrosis have been
identified [18, 27, 28]. We could detect the differential
expression of pro-fibrotic miRNAs (miR-21, miR-155,
miR-27) in MDCK-Ras cells, whereas anti-fibrotic miRNAs
(miR-200a/b, miR-141, miR-194, miR-204 and miR-26a)
were significantly reduced in MDCK-Ras cells compared to
MDCK cells. We find upregulation of the miR-183-96-182
cluster in MDCK cells, probably regulated by Myc [90],
which is strongly expressed in MDCK cells. In MDCK-Ras
cells miRNAs (miR-134, miR-299, miR-379, miR-380,
miR-381, miR-411, miR-485, miR-494 and miR-889)
within a single chromosomal region (chromosome 8:
69253808—-69284297) were upregulated, suggesting a
common regulator. Additionally, we find a strong induc-
tion of the miR-1/miR-133 cluster in MDCK-Ras cells.
Gene signature analysis of the computationally predicted
target genes of miR-133c showed enrichment of “JAK/
STAT signaling” and “pancreatic cancer” pathways. The
most prominently induced miRNA was miR-1 (log2 fold
change >10). Computationally predicted targets of miR-1
were too few to show enrichment of any gene signature.
Moreover, miR-1 is annotated as muscle and heart specific
[91-93] and induced by IEN-B [94]. IEN-B is not
expressed in MDCK-Ras cells, suggesting a different way
of induction. In addition, we find a clear upregulation of
all members of the miR-181 family. This family of
miRNAs is induced by TGFp1 and promotes breast cancer
metastasis [95]. TGEPL signaling is active in MDCK-Ras
cells thereby possibly stimulating the expression of the
miR-181 family. Finally we found completely novel
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miRNAs (not yet described in any species as per miRBase
release 21) and validated their expression. Two of these
miRNAs (novel miRNA#2 and novel miRNA#3) were
differentially expressed in canine MDCK and MDCK-Ras
cells. No orthologs were detected in human and mouse
cell lines by RT-qPCR or bioinformatical approaches.
Furthermore, with target prediction we show that
mesenchymal MDCK-Ras specific novel miRNA#3 targets
components of the cell-cell junctions, which were shown
to be downregulated in MDCK-Ras cells. The influence of
miRNAs on the expression of components of cell-cell
junctions has been studied and is reviewed in [96]. Further
functional studies of our novel miRNAs will reveal their
role and importance in different biological processes.

Conclusion

We present here the transcriptome and miRNAome of
epithelial MDCK and mesenchymal MDCK-Ras cells. In
addition to miRNAs known previously to exist in the dog
genome, we identified others that were either known from
other species or are completely novel. We could confirm
the signature of many pathways known to regulate the
epithelial and mesenchymal state as well as EMT, in
particular TGEP1 as a central factor involved at different
levels of EMT. Additionally, pathways novel for MDCK
cells e.g., interferon signaling and slit and netrin signaling,
were identified. Our data set and analysis will be useful for
people working with MDCK cells not only with focus on
epithelial polarity and EMT, but also on other aspects of
research utilizing MDCK cells.
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