
Rudolf et al. BMC Genomics  (2015) 16:1027 
DOI 10.1186/s12864-015-2055-6

METHODOLOGY ARTICLE Open Access

On the relevance of technical variation due
to building pools in microarray experiments
Henrik Rudolf1, Gerd Nuernberg1, Dirk Koczan2, Jens Vanselow1, Tanja Gempe3, Martin Beye3,
Gérard Leboulle4, Kaspar Bienefeld5 and Norbert Reinsch1*

Abstract

Background: Pooled samples are frequently used in experiments measuring gene expression. In this method, RNA
from different individuals sharing the same experimental conditions and explanatory variables is blended and their
concentrations are jointly measured. As a matter of principle, individuals are represented in equal shares in each pool.
However, some degree of disproportionality may arise from the limits of technical precision. As a consequence a
special kind of technical error occurs, which can be modelled by a respective variance component. Previously
published theory - allowing for variable pool sizes - has been applied to four microarray gene expression data sets
from different species in order to assess the practical relevance of this type of technical error in terms of significance
and size of this variance component.

Results: The number of transcripts with a significant variance component due to imperfect blending was found to
be 4329 (23 %) in mouse data and 7093 (49 %) in honey bees, but only 6 in rats and none whatsoever in human data.
These results correspond to a false discovery rate of 5 % in each data set. The number of transcripts found to be
differentially expressed between treatments was always higher when the blending error variance was neglected.
Simulations clearly indicated overly-optimistic (anti-conservative) test results in terms of false discovery rates
whenever this source of variability was not represented in the model.

Conclusions: Imperfect equality of shares when blending RNA from different individuals into joint pools of variable
size is a source of technical variation with relevance for experimental design, practice at the laboratory bench and
data analysis. Its potentially adverse effects, incorrect identification of differentially expressed transcripts and
overly-optimistic significance tests, can be fully avoided, however, by the sound application of recently established
theory and models for data analysis.

Background
In gene expression profiling pooling is a method to reduce
hybridization costs and compensate for insufficient
amounts of mRNA. In the subsequent statistical analyses
of gene expression data, where a log-transformation dur-
ing preprocessing is standard, it is important to consider
how the expectation and variance of the gene expression
of pools relate to individual samples. The impact of pool-
ing on the identification of differential gene expression has
been studied in Kendziorski et al. [1], separately for differ-
ent pool sizes. It has been shown that biological averaging
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occurs for most of the transcripts and differential expres-
sion inferences are comparable for individuals and pools.
In Zhang et al. [2] approximations for the expectation and
variance of pooled samples were derived. Furthermore,
it was shown that biases as well as heteroscedasticity
are introduced by variable pool sizes. Experiments with
unequal pool sizes therefore were recommended to be
avoided. As demonstrated in Rudolf et al. [3], however,
a wide class of experiments, in which pool size can be
handled as a nuisance effect and is cross-classified with
treatment, allows for tests of unbiased contrasts. In the
case of a balanced cross-classification the pool size effect
must not explicitly appear in the model at all, though
hypotheses on treatments remain unbiased, as shown in
Rudolf et al. [3]. In any case variable pool sizes have an
effect on the covariance of observations. This can be taken
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into account by considering how many individuals are
allocated to each pool and by introducing a random effect
for blending along with a corresponding variance compo-
nent. The latter can be interpreted as a second kind of
technical variability induced by inaccuracies in blending
slightly unequally-sized aliquots of mRNA from several
individuals into common pools. Though this subject has
been treated theoretically as described, investigation into
the practical importance of this second kind of technical
variability is lacking.
Consequently a study was performed, in which gene

expression data from experiments with four different
species were analyzed to investigate the relevance of the
aforementioned new kind of technical error in terms
of size and significance of the corresponding variance
component. Furthermore, we investigated potential con-
sequences on the number of transcripts identified as dif-
ferentially expressed between different treatments when
analyses neglect this kind of error.

Methods
This section offers a short recap of the underlying sta-
tistical models. The four experimental data sets are then
introduced. In all of them - whether from single- or two-
color arrays - there are more observations than pools (see
Table 1), which allows for the estimation of all desired
variance components. Data simulations are also described
and have been included as a useful aid for the interpreta-
tion of the experimental data results. Finally, the statistical
methods applied for parameter estimation and statistical
testing are described.

Random effects in gene expression experiments with
variable pool sizes
When aliquots of mRNA from different individuals are
blended into common pools, the inaccuracies of this
procedure may induce a special kind of technical error.
Respective random effects, together with a correspond-
ing variance component, were proposed [3] as a means
of modeling the variability of pooled observations in
gene expression experiments with variable pool sizes (i.e.
differing numbers of individuals per pool). Thus, for
background-corrected and normalized log-intensities y

Table 1 Characteristics of experimental data sets

Characteristics Mouse Rat Bee Human

Individuals 60 24 14 55

Pools 12 22 12 16

Pool size 5 2,3,12 2,4 3

Observations 44 56 22 30

1-/2- color-array 1 1 2 2

(length of vector y equals the number of arrays) of a
certain transcript, the model in matrix notation is:

y = Xβ + Z1u1 + Z2u2 + e, (1)

where X and Z are the design matrices of the fixed (β =
(μ,βt)

�) and random (u1,u2) effects. The distribution of
uj is assumed to be uj ∼ N(0,Gjσ

2
j ), j = 1, 2 with

covariance matrices Gjσ
2
j (σ 2

j are the variance compo-
nents) and the residuals are e ∼ N(0, Iσ 2

e ). Random
effects of single individuals are assumed to be indepen-
dently identically distributed with a biological variance
σ 2
1 , while observations from a number of γi pooled indi-

viduals have a biological variance σ 2
1

γi
. The vector u1 may

comprise biological effects of single individuals as well
as average biological effects of groups of individuals con-
stituting common pools, according to the experimental
design.
The random effect of blending (i.e. for the technical pro-

cedure of building a pool) only applies to observations
from pools and not to observations from single individ-
uals. Therefore, u2 consists of one effect per mixture,
which had been prepared in the lab. The associated vari-
ance component is σ 2

2 . So, the variance of the observations
becomes:

V(y) = Z1G1Z�
1 σ 2

1 + Z2G2Z�
2 σ 2

2 + Inσ 2
e . (2)

The model of this variance structure is based on the
closed form approximation of the variance of pools on the
scale of log-intensities, proposed in [2]

vi ≈
(
eσ

2
b − 1

) 1
γi

+
(
eσ

2
b − 1

)
σ 2
z

γi − 1
γ 2
i

, (3)

where σ 2
z is the pooling technical variance and σ 2

b is the
biological variance of individuals. The substitutions σ 2

1 :=
eσ

2
b −1 and σ 2

2 := (eσ
2
b −1)σ 2

z led to our assumed variance
structure (2).
In the following, the relevance of accounting for the

blending error variance component σ 2
2 is investigated in

four experimental data sets by comparing the described
full model (m2) described above with a reduced one
(m1) that lacks this particular variance component. The
methodology was checked by a simulation beforehand.

Experimental data
Mouse data
Mouse data consisted of observations from 44 one-color
microarrays. RNA for this experiment was extracted from
the ovaries of 60 female mice, 30 of which came from a
long-term selection line with an extraordinary litter size.
All others came from a control line. Pooled samples were
built by blending RNA from five mice per sample. Each
mouse was only represented in a single pool. For the
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sake of technical replication, all 12 pooled samples were
measured twice by preparing two microarrays per sam-
ple. Additionally, animals from two pools per line (ten
animals per line) were measured individually. These indi-
vidual measurements were not included in the previously
published analysis of this data [4], where more details of
the experiment can be found.
Twenty-eight (14 per line) different biological effects

were defined per transcript. The dimensions of the design
matrix Zm

1 are therefore 44 × 28. In detail, random bio-
logical effects were assigned to all individually measured
mice (individuals 1 to 10 within each line) and corre-
sponding entries in Zm

1 equal 1. The biological effects
of the same ten individuals (in two groups of five) were
assigned to the observations from the first and second
pooled samples in each line (two observations per pool
due to technical replication). In this case, non-zero entries
in Zm

1 are 1/5. However, pooled samples numbered three
to six within each line each had a biological effect of their
own, modeling the average effect of the five respective
members of each pool. Note that for the pools three to
six the corresponding non-zero entries in Zm

1 are 1. The
28×28 covariancematrixGm

1 scales the random biological
effects and has non-zero entries only on the diagonal, each
of them equals the inverse pool size 1/γi. The 22 observa-
tions from the first line are represented in the upper part
of the design matrix Zm

1 :

The technical variability due to blending individual sam-
ples only comes into play when observing pooled samples,
not for measurements of individuals. Since blending was
done only once per pool, there are 12 different effects
due to imperfect blending. Therefore, the 44 × 12 design
matrix Zm

2 (see Additional file 1) contains zero rows
for observations from single animals. The corresponding
12 × 12 covariance matrix Gm

2 is diagonal with entries
γ−1
γ 2 = 4

25 , according to Eq. (3).
This study did not involve in vivo experiments. Animals

were housed according to the German law for animal pro-
tection (TierSchG) and in compliance with the European
legislation on the care and use of animals.

Rat data
This data set was analyzed by Kendziorki et al. [1] and
contains one-color array data. Rats of the treatment group
were treated with Retinoic acid. For the details of data gen-
eration and preprocessing, please see the original paper
[1]. Rats from the groups A (control) and B (treatment)
were measured individually and in pools of various sizes.
Each of the twelve rats from both groups was used four
times, for an individual measurement and in pools of 2,
3, and 12. For the sample composition we again defined
the random effects from the smallest disjunct elements.
Therefore, with the help of thematricesGr

1 andZ
r
1, convex

linear combinations were built from the 24 individuals.

Zm
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Here,Gr
1 is the 24 × 24 unity matrix andZr

1 contains a row
for eachmeasurement with entries according to reciprocal
pool sizes. Per group, there are 28 measurements parti-
tioned into 12 individual samples, 6 pools of 2, 4 pools
of 3, and one of 12, plus 5 technical replications. Thus,
the dimensions of the matrix Zr

1 are 56 × 24, detailed in
the Additional file 1. In each group, there were 11 pools,
and the diagonal matrix Gr

2 has the dimensions 22 × 22
with entries

{ 2
9 ,

1
4 ,

2
9 ,

1
4 ,

2
9 ,

1
4 ,

1
4 ,

1
4 ,

2
9 ,

1
4 ,

11
144 , ...

}
. The matrix

Zr
2 was constructed analogously to Zr

1.

Honey bee data
This data set stems from a honeybee project dealing
with differences in the pathogen resistance of so-called
hygienic and non-hygienic worker bees as far as they
are reflected in gene expression differences. Bees desig-
nated as ’hygienic’ were observed to open brood cells and
assisting the removal of diseased brood. The bees’ activ-
ities were recorded on a Varroa-parasitized section of a
brood comb. Pooling was applied in a preliminary exper-
iment with a limited number of bees and microarrays.
For seven hygienic bees and seven control bees, mRNA
was extracted from nerve tissues of the mushroom body
(MB), antennal lobe (AL) and Antennae (ANT). The num-
ber of individuals blended into a pool was either two or
four. Out of the 14 bees, six different sample compositions
were built and analyzed for all three tissues with two-color

arrays (for the design see Fig. 1). A few individual
hybridizations were not carried out due to an insuffi-
cient amount of amplified RNA (single samples from AL).
For the normalized two-color microarray data we used a
model for differencesM of log-intensities from the red (R)
and green (G) channel

M = μ + � + b12 + b23 + Z1u1 + Z2u2 + e. (4)

HereM is the vector of log-ratios (M = log R
G = logR−

logG) for one transcript with dimension n, equal to the
number of arrays. The designmatrixX for the fixed effects
links observations to the overall mean μ (which includes
the dye effect, i.e. the difference of red and green chan-
nel), the differences � between the behaviors (hygienic
minus control) and two differences between tissues (b12
for MB minus AL, b23 for AL minus ANT). The latter
effect has been included since data from all tissues were
jointly analyzed due to the limited number of arrays. The
random effect u1 for each sample composition has a vari-
ance structure determined by Gh

1 and Zh
1. The variance

structure of the second random effect u2 for the blend-
ing of individuals is generated by Gh

2 and Zh
2. Both design

matrices for the random effects differ, however, from
experiments with one-color arrays: each row of Z1 and
Z2 contains two non-zero elements (as opposed to a sin-
gle one) in order to model the differences between effects

Fig. 1 Design of the honey bee experiment. Scheme for the design of the two-color microarray experiment with honey bees. The numbered arrows
(1–22) represent two-color arrays, the arrowheads (tails) indicate Cy5 (Cy3) dye. Light (dark) boxes symbolize RNA from hygienic (control) bees. Pool
size (1, 2, 4) and mixture (Roman numerals) are shown in each box. Tissues are abbreviated as MB (mushroom body), AL (antennal lobe), and ANT
(Antennae). Boxes in the same column share the same biological effect, indicated as pool compositions 1 to 6
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with entries of 1 for the red and −1 for the green chan-
nel. The residual errors e ∼ N(0, σ 2

e ) are again assumed
to be stochastically independent and include the techni-
cal errors created through the hybridization, imaging, and
scanning of each array.

Human data
The human data was taken from the GC6 (Grand Chal-
lenge in Global Health no. 6 - Biomarkers of protective
immunity against Tuberculosis) project. For the project
data, please seeMaertzdorf et al. [5] and Jacobsen et al. [6].
One focus of this project was to identify immune system
differences between people who were exposed to Tuber-
culosis but never became sick and those who developed
severe symptoms. Therefore, as a part of this larger study
the three classes TST+, TST− and TB were compared,
where TST stands for the tuberculosis skin test (+ and -
indicate positive and negative results, respectively) and
TB for acute tuberculosis. Overall, the data set consists
of samples from 55 humans in 16 pools of three and in
ten single samples, which were labeled on 30 two-color
arrays. In the sample composition, one also sees corre-
lations between pools in three cases, where individuals
were used more than once, i.e. in different pools (see
matrixGg

1). For each observation wemodeled fixed effects
for the mean (including dye effect) and treatment (3 lev-
els) as well as random effects of sample composition and
imperfect blending. Because there were two samples on
each array, the design matrix Zg

1 for the composition of
the samples had two entries per row, as presented in the
Additional files 1. Each pool was built only once, so Gg

2 is
a diagonal matrix with dimensions 16 × 16 and entries 2

9 .
The random effects of imperfect blending were assigned
to measurements via Zg

2, with two non-zero entries per
measurement.
This study was approved by ethical committees in both

Stellenbosch (South Africa) and Berlin (Germany) and
written informed consent has been obtained from all
study participants (details in [6]).

Simulated data
The relationship between the variance of a random effect
of a pool and deviations from the homogene aliquots of
individuals in a pool sample, given in Eq. (3), is based on
a theoretically derived approximation [2]. Furthermore,
true proportions of aliquots are not available. Therefore,
the equality of the estimated variance component σ 2

2 and
the product of variances (eσ

2
b − 1)σ 2

z was checked by fit-
ting the model to simulated data, in order to assay the
estimations when the true state of nature is known.
By setting x ∼ N(μg , Iσ 2

b ) the vector of individual gene
expressions of the individuals of a pool and w the vec-
tor of weights (proportions of individuals in the pooled

RNA of a joint sample), we calculated a value for true gene
expression on the log-scale as

log
(
w� × exp (x)

)
. (5)

The technical errors, distributed as N(0, σ 2
t ), were then

added. Note that, due to (1), each observation is composed
by the fixed effects Xβ = μg , the distortion due to biolog-
ical variation u1 = x̄− μg and the difference generated by
imperfect blending u2 = log(w�×exp (x))− log

(
exp (x)

)
,

plus the log-bias log
(
exp (x)

) − x̄. For the simulation of
weights the Dirichlet distribution with parameters ai =
1
σ 2
z

− 1
γ
, i = 1, . . . , γ was used. Then, a0 =

γ∑
i=1

ai = γ ai,

and the expectation of each weight is ai
a0 = 1

γ
. There-

fore, the variance of the weights - theoretically ai(a0−ai)
a20(a0+1) -

is γ−1
γ 3 σ 2

z . Using the approximation γ−1
γ 3 σ 2

z ≈ σ 2
w for the

variance of weights w from [2], the Dirichlet parameters
ai can be chosen in order to obtain weights with a given
variance σ 2

w.
Various proportions of transcripts (0, 1/3, 1) were sim-

ulated as affected by imperfect blending. In order to
investigate the distribution of the RLRT-statistic under the
null hypothesis (σ 2

2 = 0), the pooling technical variance
σ 2
z was set to zero for all transcripts. Then, one third of

the transcripts were simulated with imperfect blending, as
well as data where all transcripts contained these effects.
As a test case, further simulations were tailored for a

comparison of models with regard to the power to detect
differential expression in the presence of imperfect pool-
ing at all loci. Variances were set to σ 2

t = 0.17, σ 2
b =

0.103 and σ 2
z = 2.7 according to the estimations from the

mouse data. This was simulated with 100 repetitions. An
experiment consisting of 60 individuals from two equally-
sized treatment groups was simulated, in a 44 one-color
microarray setting. The observations generated were both
from single individuals (20) and pools of size five (24). The
individual values used in the first two pools of each line
were also used as single individuals. For the full details of
the design, please see the description of the mouse data
set above, which has an identical structure. For each of
the 9000 transcripts, a mean expression level was ran-
domly chosen from a uniform distribution over the inter-
val [ 8, 14]. A subgroup of 3000 transcripts was randomly
chosen to be differentially expressed between both treat-
ment groups. For each of these, a mean treatment effect
was sampled from a uniform distribution over the interval
[ 0.5, 1.5] with a random sign ∈ {−1, 1}. False positive and
negative test results were then evaluated using the mean
number of transcripts, averaged over all 100 repetitions.
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Statistical analyses
Three variance components were considered: first, biolog-
ical variance (σ 2

1 ); second, blending error variance (σ 2
2 );

and third, residual variance (σ 2
e ). Similar models that lack

the second variance component have been used previ-
ously (e.g. [7]). Transcripts were excluded from analyses
if the log-expressions of both groups were smaller than
eight (corresponds to 256 at the original scale), which is

Fig. 2 Estimates of blending error variance for simulated data. Log-estimates of the blending error variance σ 2
2 (left) and p-values (right) of RLRT

(H0 : σ 2
2 = 0) for simulated data. Top: perfectly blended individuals were simulated. The p-values of the interval [0,0.5) are uniformly distributed and

nearly half of the transcripts have a p-value of 1. Middle: 3000 out of 9000 transcripts affected by imperfect blending of individuals. Bottom: all
transcripts were simulated with imperfect blending
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frequently considered to be a threshold for meaningful
gene expression. This resulted in 8554 observations for the
mouse data, 6264 for rats, 13,761 for bees and 12,348 for
the human data set. An EM-REML algorithm was used to
estimate the variance components. Then the mixedmodel
equations

⎡
⎣
X�X X�Z1 X�Z2
Z�
1 X Z�

1 Z1 + G−1
1 λ1 Z�

1 Z2
Z�
2 X Z�

2 Z1 Z�
2 Z2 + G−1

2 λ2

⎤
⎦

⎡
⎣

β̂

û1
û2

⎤
⎦=

⎡
⎣

X�Y
Z�
1 Y

Z2�
2 Y

⎤
⎦
,

where λ1 = σ 2
e

σ 2
1

and λ2 = σ 2
e

σ 2
2
, were solved for the

estimates of the fixed and random effects and the REML-
log-likelihood was calculated.
For each transcript, a residual likelihood ratio test

(RLRT) was used to test the null hypothesis H0 : σ 2
2 = 0,

thereby assuming a half-half mixture of a χ2
1 -distribution

and a point mass at zero (see e.g. [8]). According to this
assumed distribution of the test statistic, the distribution
of p-values from all transcripts in one experiment under
the null hypothesis deviates from the uniform distribution
(see Fig. 2). The proportion of transcripts with a relevant
blending error variance was estimated as π̂1 = 1 − π̂0.
Therein, the estimated proportion of true null hypothe-
ses (π̂0) was estimated as described in Dabney and Storey
[9]. The proportion π̂1 was then compared with the pro-
portion of transcripts simulated without blending errors.
After correcting all p-values according to a false discovery
rate (FDR) of 5 %, the transcripts with a significant RLRT
were determined. Beyond that, we evaluated the propor-
tions of the estimated variance component σ 2

2 in relation
to the total variance.
The practical relevance of the variance component for

imperfect blending of samples was further investigated by
comparing the number of transcripts identified as differ-
entially expressed in different treatment levels by means
of the full model (m2, Eq. 1) and the null model (m1)
y = Xβ + Z1u1 + e without a random effect of imper-
fect blending. Degrees of freedom for the applied F-Tests
of fixed effects in mixed models were adjusted according

to Kenward and Roger [10]. In order to account for mul-
tiple testing, an FDR of 5 % was applied to the p-values of
the latter F-tests.
For themouse data set, the normalization was done with

the gcrmamethod [11]. Loess- and quantile normalization
[12] was used for the two-color array data. The rat data set
was downloaded as normalized.
The open-source statistical programming package R

[13] was used to implement an EM-REML algorithm for
the estimation of all three variance components. The for-
mulas for the expectation and maximization steps can
be obtained from e.g. Mrode and Thompson [14]. Con-
vergence of the EM algorithm was assumed when the
condition

√√√√
(
Bn−1 − Bn

)� (
Bn−1 − Bn

)
B�
n Bn

< ε, (6)

was fulfilled [15], where ε = 10−8 and Bn =[
σ̂ 2
1 σ̂ 2

2 σ̂ 2
e

]�
is the vector of estimates of the variance

components in the n-th iteration. False discovery rates
were computed with the help of the R-package qvalue [16].
In the case of p-values from RLRT test statistics, the ’boot-
strap’ option was used to estimate π0, as suggested by
Storey [17].

Results and Discussion
Simulated data sets
First, the results of the RLRT for the blending error vari-
ance component are shown for the case of the validity
of the null hypothesis (σ 2

2 = 0). Here, a uniform dis-
tribution of p-values can be observed on the interval
[ 0, 0.5) as expected (see Fig. 2, topright). The Distribu-
tions of log-estimates of σ 2

2 (Fig. 2, left panels from top
to bottom) show an increasing proportion of large val-
ues, in full accordance with the increase in the simulated
proportions of transcripts with a relevant blending error
variance (which was 0, 1/3 and 1). The corresponding
p-values (right panels of Fig. 2, top to bottom) fairly mir-
ror the same trend. The estimates for π̂1 approximated

Table 2 Number of transcripts with non-zero blending error variance

Number or Data set

proportion of Simulated Experimental

transcripts s1 s2 s3 Mouse Rat Bee Human

Total 9000 9000 9000 18646 15923 14400 43256

Crit. > 8 9000 9000 9000 8554 6264 13761 12348

Sign VC 1 1794 6704 4329 6 7093 0

π̂1 0.005 0.295 0.918 0.75 0.29 0.68 0.40

Results of the restricted likelihood ratio tests of the hypothesis H0 : σ 2
2 = 0 for transcripts exceeding the minimum expression level (crit. > 8). Numbers of transcripts with a

significant variance component for imperfect blending (sign VC) were counted according to the FDR correction level of 5 %. π̂1 is the estimated proportion of transcripts with
σ 2
2 > 0. Simulated data sets s1, s2 and s3 refer to scenarios where none, one third, and all transcripts were associated with a non-zero blending error variance component
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Table 3 Detection of differential expression by model and data set

Number of Data set

transcripts Simulated Experimental

identified s1 s2 s3 Mouse Rat Human

m1 & m2 3112 3119 3128 3344 1636 787

m1 48 113 279 504 141 350

m2 4 13 29 516 12 154

Number of transcripts identified as differentially expressed at an FDR of 5 % by data set and model. Simulated data sets s1, s2, and s3 refer to scenarios where none, one third,
and all transcripts were associated with a non-zero blending error variance component. The number of transcripts identified with both models is indicated by m1 & m2,
transcripts identified solely with the null model (m1) or the full model (m2) are shown in the second-to-last and the last line

the simulated proportions of affected transcripts well.
However, when it came to the identification of individual
transcripts, their number clearly lagged behind the pro-
portions present in the data. Corresponding results are
shown in Table 2.
Differences in both models’ abilities to find differential

expression in the simulated data sets were also observed
(Table 3). The null model yielded an average of 3407
expressed transcripts declared as differentially expressed,
compared to 3157 from the full model. The average
shared number is 3128, but the 3000 simulated as dif-
ferentially expressed in a total of 9000 transcripts was
clearly outbid by both models. Figure 3 shows the average
numbers of four sets of transcripts and their intersec-
tions: the set of transcripts with a simulated differential
expression, one set of transcripts identified as differen-
tially expressed for each of both models, and the set of
transcripts, which were identified as connected with an
attributable (larger than zero in terms of FDR) blending
error variance. Upon counting the numbers in the inter-
section regions which corresponded to true discoveries, a
similarly high power for both models was observed. Only
7 (m1) and 10 (m2) of the transcripts simulated as differ-
entially expressed have not been found. But, adding the
numbers which correspond to false discoveries yielded a
value of (1 + 25 + 64 + 77)/6000 = 0.028 for m2 and
(65 +208 + 64 + 77)/6000 = 0.069 for m1. This is clearly
larger than 5 %, the chosen level of permitted false dis-
coveries. The number of transcripts incorrectly labelled
as differentially expressed in the group of transcripts with
a significant blending error variance was inflated by a
factor of about three for m1 (285) in comparison with
m2 (102).
Furthermore, in a series of simulations, the pooling

technical variance σ 2
z was varied within the range of

(0, 2.7]. A plot of the obtained estimates of σ 2
2 against

the simulated values σ 2
z (eσ

2
b − 1) (see Additional file 2)

shows nearly perfect consistency. The exception is some
upward bias for very small simulated values, which can
be attributed to the well-known properties of the REML-
method [18].

Therefore, it can be concluded at the very least that
tests for differential expression with the m1 model tend
to be too optimistic, depending on the given experimental
conditions. To summarize, should the model contain the
additional random effect of imperfect blending, the statis-
tical analysis yields results which agree very well with the
simulated characteristics.

Experimental data
Histograms of log-transformed estimations of the vari-
ance components due to imperfect blending are shown
in Fig. 4. Estimates range from nearly zero (10−6) to less
than one hundred (102). A clear bimodal distribution can

Fig. 3 Sets of DEGs and transcripts with significant RLRT for
repeatedly simulated data. Sets of differentially expressed transcripts
(DEGs) for both models and coincidences of transcripts with a
significant variance component for imperfect blending. These were
averaged over 100 repetitions of the simulated experiment based on
the mouse design and variance components σ 2

t = 0.017, σ 2
b = 0.094

and σ 2
z = 2.7 (all transcripts with effects for imperfect blending). The

average counts of the sets of differentially expressed transcripts are
labeled with ’DEG m1’ for the null model, ’DEG m2’ for the full model,
’VC significant’ for transcripts with a significant blending error variance,
and ’DEG sim’ for the transcripts simulated as differentially expressed
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Fig. 4 Estimates of blending error variance in empirical data. Histogram of log-estimates of the variance component σ 2
2 for the experimental data

sets mouse, rat, bee, and human

be observed in all cases, where the left part of each dis-
tribution (values less than approximately 10−3) represents
very small values close to zero while the other part repre-
sents more substantial values. In the mouse and the bee
data, the proportion of transcripts with substantially large
values clearly exceeds the proportion of small values. For
the human data, the proportion of small estimates also

prevails somewhat, while a balance between minor and
substantial values can be observed for the rat data. This
is also reflected in the average (over all transcripts) of
all three variance components obtained with the reduced
(m1) and the full (m2)models, as shown in Table 4. In light
of the averages, the inclusion of a blending error variance
had the consequence of a more or less reduced residual

Table 4 Mean estimated variance components

Mean estimated Experimental data set/model used

variance Mouse Rat Bee Human

component m1 m2 m1 m2 m1 m2 m1 m2

σ 2
e 0.037 0.017 0.010 0.009 0.104 0.035 0.062 0.060

σ 2
1 0.109 0.109 0.024 0.024 0.031 0.033 0.105 0.055

σ 2
2 - 0.295 - 0.011 - 0.215 - 0.155

Estimated variance components for residuals (σ 2
e ), biological effects (σ

2
1 ), and imperfect blending (σ 2

2 ) - averaged over all analyzed transcripts for the null model (m1) and the
full model (m2)
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variance, most pronounced in the mouse and honey bee
data. In the human data, the average residual variance
remained almost constant, yet the average biological vari-
ance decreased - a phenomenon not observed in the other
data sets. Distributions of the size of σ 2

2 relative to the total
variance of a standard observation - with respective pool
sizes of 5, 3, 4, and 3 for mouse, rat, bee and human data
are given in Fig. 5 (right, top to bottom). All distributions
exhibit a clear spike near zero, followed by estimates that
nearly exceed the full range of variance ratios. The rat data

are an exception; hardly any values larger than 0.6 were
observed.
These impressions are mirrored by the distributions of

p-values from RLRT-tests for the hypothesis of a non-
existing (σ 2

2 = 0) blending error variance (left panels in
Fig. 5, top to bottom). The number of individual tran-
scripts, which could be associated with a non-zero blend-
ing error variance at a false discovery rate of 5 %, varied
strongly between data sets. There were 4329 of such tran-
scripts in the mouse data and 7093 in the honey bee data,

Fig. 5 p-values of RLRT and variance ratios. For each experimental data set, a histogram of p-values of the likelihood ratio test statistic for the test of
H0 : σ 2

2 = 0 are shown (left), as well as histograms of the variance components for imperfect blending, expressed as the proportion of the total
variance (right) of a standard observation. y-axis: count of transcripts
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while only six were identified in the rat data and none at all
in the human data (Table 2). These high numbers are con-
sistent with considerable estimates for the fraction (π̂1)
of non-zero variances in mouse (π̂1 = 0.75) and honey
bee (π̂1 = 0.68) data (Table 2). Note that the respective
estimated proportions were π̂1 = 0.29 and π̂1 = 0.40 in
the rat and human data (Table 2), also indicating the exis-
tence of non-zero blending error variances in these two
data sets, though almost no particular non-zero variance
could have successfully been identified at the chosen false
discovery rate of 5 %.
Counts of differentially expressed transcripts detected

with both models are shown in Table 3. About half
of all transcripts analyzed were declared differentially
expressed in the mouse data. About five hundred were
exclusively detected with one of bothmodels: 504 with the
null model and 516 with the full model. The list of the top
100 transcripts - ranked by their p-values - showed a large
dissimilarity as indicated by a value of 0.11 for Kendall’s
correlation test. In the rat data, 1636 differentially
expressed transcripts were jointly identified by both mod-
els, while 141 were solely found with the help of m1 and
12 with m2. No numbers appear in Table 3 for the hon-
eybee data, as no differentially expressed transcripts were
found. Finally, there were 1137 differentially expressed
transcripts from the null model in the human data, from
which only 787 were ’confirmed’ by the full model.

Conclusions
In light of the large numbers of blending error variances
diagnosed as greater than zero in the mouse and honey
bee data, the practical relevance of this second kind of
technical error has been clearly demonstrated. In both
other data sets, estimates of π̂1, the proportion of posi-
tive blending error variances, may be taken as an indicator
of their existence, though hardly any particular values
could be identified, presumably due to a lack of power.
As demonstrated mainly by simulation, there are also
consequences for the detection of differentially expressed
transcripts, in which the nominal FDR-level was shown to
be too optimistic when the blending error variance was
not taken into account. Therefore, we strongly recom-
mend the application of adequate models (as described in
[3]) including random blending effects and their variances
when observations from pools of different sizes are to be
jointly analysed.

Availability of supporting data
The mouse and honey bee data sets have been deposited
at the Gene Expression Omnibus (GEO) website (www.
ncbi.nlm.nih.gov/geo), under the joint accession no.
GSE72944. The human data is part of the data set
GSE6112 and the rat data has the GEO accession no.
GSE2331.
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Additional file 1: Matrices for EM-REML andMixedmodel equations.
This file shows various matrices for the experimental data sets in detail.
These matrices are explained in the Materials and Methods section.
(PDF 48 kb)

Additional file 2: Comparison of simulated and estimated blending
error variance. Plot of the average estimated variance components σ̂ 2

2

versus simulated values σ 2
z (eσ

2
b − 1). In various simulation runs, the

pooling technical variance σ 2
z was altered in the range of (0, 2.7] to

evaluate whether the approximation in Eq. (3) is applicable for our
purposes. Numbers of individuals in a pool were randomly chosen. For
each number, as many individuals were artificially blended into a pool and
an equally sized pool of controls was opposed. Estimates and simulated
values agree very well; some bias for small values can be attributed to the
EM-REML algorithm used for variance component estimation. (PDF 9 kb)
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