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Abstract

Background: Mammalian aging is a highly complex process, a full mechanistic understanding of which is still lacking.
One way to help understand the molecular changes underlying aging is through a comprehensive analysis of the
transcriptome, the primary determinant of age-related phenotypic diversity. Previous studies have relied on microarray
analysis to examine gene expression profiles in different tissues of aging organisms. However, studies have shown
microarray-based transcriptional profiling is less accurate and not fully capable of capturing certain intricacies of
the global transcriptome.

Methods: Here, using directional whole transcriptome RNA-sequencing of aged mouse liver we have identified a
comprehensive high-resolution profile of differentially expressed liver transcripts comprised of canonical protein-
coding transcripts, transcript isoforms, and non-coding RNA transcripts, including pseudogenes, long non-coding
RNAs and small RNA species.

Results: Results show extensive age-related changes in every component of the mouse liver transcriptome and a
pronounced increase in inter-individual variation. Functional annotation of the protein-coding mRNAs and isoforms
indicated broad alterations in immune response, cell activation, metabolic processes, and RNA modification. Interestingly,
multiple lncRNAs (Meg3, Rian, Mirg) from the Dlk-Dio3 microRNA locus were found up-regulated in aging liver, classifying
this locus as a putative regulatory hotspot locus in aging liver. Moreover, integration of the altered non-coding RNAs and
protein-coding transcripts into interaction networks of age-related change revealed inflammation, cellular proliferation,
and metabolism as the dominant aging phenotypes in mouse liver.

Conclusions: Our analyses provide the first comprehensive dissection of the transcriptional landscape in aging mouse
liver.
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Background
Mammalian aging is a complex biological process that still
remains poorly understood. To increase our understanding
of the different interacting processes that underlie age-
related organ and tissue degeneration, a systematic study
of alterations in gene expression is a logical starting point.
Global changes in gene expression are a “hallmark” of
aging in multiple species [1, 2] and have been successfully
used to demonstrate specific effects of interventions that
slow aging, such as caloric restriction [3]. In the past,
microarray analyses have been used extensively to study
age-related differences across multiple tissues, but ultim-
ately these analyses proved insufficient for gaining a

complete understanding of the aging transcriptome for
various reasons. First, microarray analysis relies on fully
annotated genes and since the release of the ENCODE
project, we now know that novel un-annotated tran-
scripts are constantly being discovered [4]. Second,
microarray analyses generally suffer from excessive
noise, which could explain the very small overlap between
different published results of gene expression changes with
age in mouse liver [5]. For example, while one report men-
tioned minimal age-related changes in gene expression dur-
ing mouse liver aging [6], others observed a considerable
number — albeit highly variable from study to study — of
such changes [5, 7–9]. Finally, microarray analysis is gener-
ally not capable of detecting altered isoform levels, due to
differential splicing, or changes in non-mRNA species,
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such as non-coding (nc)RNAs. This is especially important
for non-coding RNAs since by now the role of this category
of transcripts is generally understood to involve fine-tuning
gene regulatory patterns, such as cellular metabolism [10].
Increased deregulation at this level could potentially ex-
plain many of the aging phenotypes observed, which in-
volve subtle rather than dramatic changes. Recent advances
in RNA sequencing now offer a suitable alternative to
studying variation in gene expression that addresses all of
these issues.
While changes in gene expression profiles have been

used as biomarkers for aging and sometimes even as pre-
dictors of biological aging rate [8], the ultimate aim in
studying the aging transcriptome is to elucidate the path-
ways that define age-related degenerative processes and
the responses they evoke, in a tissue-specific manner. For
this purpose it is essential to collect mRNA expression
data in the context of their non-mRNA, gene regulatory
RNAs. Indeed, as mentioned, apart from the canonical
protein-coding mRNAs, which make up about 3 % of the
genome, the critical role of a multitude of ncRNAs are
now well recognized. NcRNA is a broad umbrella term
that includes pseudogenes, or those genes that have lost
their protein-coding potential but are sometimes still cap-
able of being transcribed [11], long non-coding RNAs
(lncRNAs), typically >200 nucleotides long, which have
been shown to perform a wide range of functions from
transcriptional de-repression to silencing [12], and small
ncRNAs (<200 nucleotides in length), which are mainly
comprise the regulatory microRNAs (miRNAs), small nu-
clear RNAs (snRNAs), small nucleolar RNAs (snoRNAs),
and transfer RNAs (tRNAs). Although species in this last
category are small, they may have a large impact on cellu-
lar function, regulating such processes as gene silencing,
splicing, and translation [13]. The role of ncRNAs in aging
remains unclear, which essentially constrains attempts to
generate comprehensive functional networks of tissue-
specific alterations in the RNA landscape.
Here, we utilized an RNA-sequencing approach capable

of capturing the whole transcriptome of mouse liver, a
similar approach that has been performed in aging brain
for other mammals [14, 15]. Specifically, we analyzed young
adult (4 months) and old (28 months) mouse livers and
identified significantly altered transcripts, not only canon-
ical coding transcripts, but also novel ncRNA transcripts
and isoform variants. Several of the altered ncRNAs, many
of them from the Dlk-Dio3 locus — an imprinted domain
implicated in development and pluripotency and here iden-
tified as a ncRNA gene regulatory hotpot in mouse liver
aging — are putative regulators of the age-related loss of
mitotic potential. Age-related differentially expressed tran-
scripts, including isoforms and ncRNAs, were first com-
piled into putative functional pathways and then used for
constructing age-related interaction networks. These

networks of age-related change revealed three dominant,
emerging phenotypes: inflammation, proliferative homeo-
stasis, and lipid metabolic changes.

Results
Sequencing metrics and transcriptome genomic coverage
To directly analyze the global transcriptome of aging
mouse liver, we isolated total RNA from three young adult
(4 months) and three old (28 months) male mouse livers
and performed directional whole transcriptome sequencing
[16]. For each library we generated an average of ~30 mil-
lion paired-end reads of which 82–90 % could be mapped
to the NCBI Build 37/mm9 reference genome (Additional
file 1: Table S1). Aligned reads were characterized using a
unique annotation reference database that combined five
different known databases for all transcripts: ENSEMBL,
GENBANK/NCBI, REFSEQ, VEGA/HAVANA, and MGI.
By taking this approach we were able to take advantage of
all known database predictions and compile these for novel
transcript discovery in aging [17]. Thus, we were able to
analyze not only manually curated gene sets, as is the case
with VEGA/HAVANA annotations, but also parts of the
mouse genome that have only had computationally pre-
dicted annotation, such as those found in ENSEMBL,
for a total of 47,510 transcript annotations (as compared
to ~35,000 for current microarray chips).
To begin, we determined the percentage of the genome

actively transcribed. On average 59.5 % of the annotated
transcripts from our unique annotation database of 47,510
transcripts were found to be expressed in liver of all ani-
mals combined, both young and old, as defined by >1
count per transcript to account for low-abundance tran-
scripts. Of these transcripts ~70 % were protein-coding
genes (Fig. 1a), with transcripts from pseudogenes com-
prising ~16 % and the remaining ~7.5 % representing
ncRNAs, such as lncRNAs, snoRNAs, snRNAs, and miR-
NAs. About 3 % of these ncRNAs still remain unclassified
(Fig. 1a). These results corroborate findings by others for
the human genome [18].
In view of some long-standing hypotheses that the re-

pression of genes normally not expressed in a differentiated
tissue is relaxed at old age [19], we compared transcrip-
tome genomic coverage between young and old livers. Of
note, to fully capture the complete transcriptome from a
single data set could require well over a billion RNA-seq
reads rather than the roughly 150 million for all six
of our animals combined. Nevertheless, we calculated
the number of unique bases covered by at least one
read for each animal, either young or old, and divided
this by the total number of bases in the haploid
mouse genome, ~2.8 billion bp [18]. The results indi-
cate no significant difference between young and old
mouse liver (Fig. 1b). Hence, we did not observe any
obvious major relaxation of gene repression at old
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age, albeit some minor effect cannot be ruled out.
Indeed, when we combined the three individual liver
samples for each age group, genome coverage dou-
bled, i.e., from ~4.8 and ~5.3 % to 9.6 and 10.8 % for
the young and old group, respectively, indicating that
we are far from capturing all transcribed bases in one
animal. When combining data from all animals, both
young and old, coverage did not double but increased
only to 17.0 %, suggesting the beginning of some sat-
uration (Fig. 1b). Nonetheless, it is still striking that
up to 17 % of the mouse liver genome is capable of
being transcribed.

Aging is characterized by increased individual variation in
the liver transcriptome
Increased variation of gene expression has been consid-
ered one mechanism by which organisms undergo age-
related cellular degeneration [20, 21]. While we only have
RNA-seq data on three young and three old animals, for

each animal well over 20 million mappable reads were ob-
tained. With high transcriptome coverage per individual
animal we should, in theory, be able to accurately detect
variation between animals.
To compare animal-to-animal variation at young and

old age we generated a multiple dimensional scaling plot
(MDS) of the variance of the top 25,000 expressed tran-
scripts (Fig. 2a). MDS analysis shows that young animals
cluster together, while old individuals have a clear high
degree of variance between each biological replicate.
Furthermore, we analyzed each sample using unsuper-
vised Euclidean matrix plots to observe the variance
between the individual young and old livers (Fig. 2b). We
find that young and old still separate to each respective
class based on variance alone. Moreover, we find that
young compared to young liver has a distance value closer
to one, while old compared to old liver have a value fur-
ther from one, meaning aged liver transcriptomes are
more individually variable than their younger counterpart.

A B

C D

Fig. 1 Global expression analysis in aging mouse liver. a Percent of globally expressed transcript subspecies expressed across both young and old
livers from our unique annotation set of 47,510 annotated transcripts. b Table represents the number of genomic bases covered by at least one unique
read in either all old livers, all young livers, or both old and young livers. Total mouse genome size reference used at time of analysis using GRCm38 build
is 2,293,712,140 bases for a haploid genome. c Differential transcript expression plotted log2FoldChange(Old/Young) versus the mean gene dispersion
value. Red points represent all 1264 significant differentially expressed transcripts with FDR <0.1. Old (n= 3), Young (n= 3). d Heatmap representation of
the top 100 differentially expressed transcripts by P-value, generated using unsupervised hierarchical clustering

White et al. BMC Genomics  (2015) 16:899 Page 3 of 15



A

Genes

Log10FPKM

C
V

2

Isoforms

Log10FPKM

C
V

2

B

C

Y = Young
O = Old

D

E

Fig. 2 (See legend on next page.)

White et al. BMC Genomics  (2015) 16:899 Page 4 of 15



When analyzing the variation between each type of
transcript, mainly genes and isoforms (Fig. 2c, d), we
find that variation is highly dependent on transcript ex-
pression level; that is, lowly expressed genes and iso-
forms tend to have higher coefficients of variation than
those highly expressed, as previously suggested [22]. How-
ever, we still find that aged livers have a higher coefficient
of variation, irrespective of expression level. Additionally,
we found that the percentage for each category of tran-
script of total normalized counts is generally more vari-
able for old livers as compared to young (Fig. 2e). These
findings indicate that the liver transcriptome from aged
mice is consistently more variable than that from young
mice and that this increased inter-individual variation is
attributable, in part, to the stochastic variation observed at
the level of specific transcript types.

Differential expression of RNA species between young
and old mouse liver
Before analyzing individual transcripts we first assessed
our data for global changes in expression levels. Since the
magnitude of age-related expression differences cannot be
predicted and could be small [23], we refrained from
setting an arbitrary cut-off for fold change, thus allowing
us to detect all possible statistically significant changes in
expression. In total we found 1264 transcripts differen-
tially expressed with age in mouse liver. Of these, 974
transcripts were significantly (FDR <0.1) upregulated while
290 transcripts were significantly (FDR <0.1) downregu-
lated in aging (Fig. 1c; Additional file 2: Table S2). Of the
total transcripts, we found a total of 1102 significant
differentially expressed protein-coding (mRNAs) genes
(FDR <0.1; Additional file 2: Table S2). This comprises 863
upregulated genes, and 239 downregulated genes. This
finding corroborates previous microarray studies showing
that, in general, more genes are upregulated than down-
regulated in aging liver [5]. As could be predicted, when
the top 100 protein-coding transcripts were subjected to
unsupervised hierarchical clustering, the old and young
mice were separated to each respective cohort (Fig. 1d).
In order to validate results obtained from our RNA-seq

dataset we performed qPCR validation by probe-based
array. We specifically chose 13 transcripts varying in count
number, fold change differences, and as controls genes pre-
viously implicated in aging or senescence. For transcripts
upregulated in aging liver we analyzed Ly6a, Mmp12,
Cxcl9, Gbp2, Il7, Rac2, Fgfr3, Ctss, and Terc (ncRNA),

while downregulated transcripts validated were Mt1, E2f7,
Hspa1b, and Neat1 (ncRNA). We directly compared these
qPCR results with the RNA-seq results by plotting the lin-
ear regression of the log2FoldChange(Old/Young) values
for each transcript (Additional file 7: Figure S1A). Results
showed a Pearson’s correlation coefficient of 0.95, confirm-
ing our RNA-seq results are accurate and reliable.
Recently, studies have aimed to discriminate between

expressed mRNA isoforms, as mRNA processing could be
altered as a function of age [15, 24, 25]. Thus, we tested if
we could detect changes in isoform expression in mouse
liver by taking our read alignments and utilizing the Cuf-
flinks/Cuffdiff package [26] with the ENSEMBL annotation
database. We found a total of 105 differentially expressed
isoforms (Additional file 3: Table S3) with age. Of these, 73
isoforms were significantly (FDR <0.1) upregulated, while
32 were significantly (FDR <0.1) downregulated in aged
liver. Interestingly, we found isoform switching enriched
on chromosome four, where 38 out of the 105 significant
isoforms were found. Furthermore, one specific locus, the
large MUP (major urinary protein) locus that spans
2.19 Mb at Chr.4qB3, appeared responsible for 33 of these
38 isoforms. These results indicate that mRNA isoform
switching is not uncommon during aging of the liver with
the MUP locus as a major hotspot.
Several studies have shown potential functional implica-

tions for ncRNA changes in both aging and cellular senes-
cence [14, 27–29], most cases involving miRNAs. Utilizing
our unique annotation reference database we sought to
identify all ncRNAs (i.e. pseudogenes, lncRNAs, snoRNAs,
snRNAs, and miRNAs) that were significantly differentially
expressed with age in mouse liver. In total we found 162
ncRNAs significantly differentially expressed (FDR <0.1;
Additional file 2: Table S2). Of these, those specifically up-
regulated with age were 56 pseudogenes, 23 lncRNAs, one
miRNA, nine snRNAs, one snoRNA, one telomerase RNA
component (TERC) and 20 unclassified ncRNAs.
Those downregulated were 31 pseudogenes, seven
lncRNAs, one miRNA, three snRNAs, and nine unclas-
sified ncRNAs. In keeping with our previous results for
global expression changes, more ncRNAs are signifi-
cantly upregulated, in general, than downregulated with
age. Of note, we only find two significant differentially
expressed miRNAs (18–22mers) due to the inherent size
constraint encountered when sequencing libraries for
100 bp read length on the Illumina platform. To validate
these novel ncRNA findings we performed qPCR of a select

(See figure on previous page.)
Fig. 2 Aging profiles characterized by stochastic variation. a Variance of the top 25,000 transcripts plotted using multi-dimensional scaling analysis;
Y young, O old, n biological replicate. b Heatmap showing Euclidean distance matrix between young and old replicate samples calculated from
the variance in count values where values closer to 1 are less variable. c, d The calculated mean squared coefficient of variation (CV2) for genes
(b) and isoforms (d) plotted as a function of normalized count expression for young and old liver samples. e The percentage of normalized individual
count data for each transcript type. Black bars represent the mean ± standard deviation
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13 ncRNA transcripts ranging in type, fold change, and
count number. For those up-regulated with age we chose
to analyze Mup-ps4, Rian, Mup-ps19, 2410018L13Rik,
A230056P14Rik, and Dleu2 while down-regulated ncRNAs
validated were Gm20577, Gm16551, Gm2788, Gm5911,
Gm5844, Mir17hg, and Gm19316 in both young (n = 3)
and old (n = 3) mouse livers. Again, we compared our
RNA-seq results to our qPCR results to find that ncRNA
expression correlated with a Pearson’s correlation coeffi-
cient greater than 0.94 (Additional file 7: Figure S1B), con-
firming that the novel ncRNAs found in our aging liver are
truly differentially expressed.

Functional annotation
In an attempt to translate the transcriptional landscape in
aged mouse liver into functional consequences we first fo-
cused on the mRNA component of observed alterations
and using both DAVID, the Database for Annotation,
Visualization, and Integrated Discovery [30] and GOrilla
[31], to perform separate functional annotation analysis on
significantly upregulated and downregulated transcripts.
In total, 340 gene ontology (GO) annotations were sig-
nificantly (FDR <0.01) upregulated (Additional file 4:
Table S4) while only 51 were downregulated (Additional
file 5: Table S5). We then used REVIGO, which uses uti-
lizes semantic similarity to parse GO annotations in order
to remove redundant terms and to visualize clusters of
enriched terms [32]. GO annotations that were signifi-
cantly upregulated in aging liver were highly enriched for
immune system processes, immune response, response to
stress, cell activation, regulation of cytokine production,
and cell death (Fig. 3a). GO annotations that were signifi-
cantly downregulated with aging, were enriched for lipid
metabolism, oxidation-reduction process, monocarboxylic
acid metabolism, fatty acid metabolism, steroid biosyn-
thesis, and RNA modification (Fig. 3b). Together these
findings show that aging liver is highly enriched for an in-
crease in immune response and inflammation as well as a
decrease in metabolic annotations, as previously reported
[5, 23], while also revealing new clusters such as regula-
tion of cytokine production and RNA modification.
We also performed gene ontology analysis on signifi-

cant differentially expressed isoforms (Table 1), again
either up or downregulated. Here we found that the
corresponding genes for isoforms that were upregu-
lated resulted in eight processes highly enriched for
immune system function, most notably immune re-
sponse (GO:0006955), while genes for downregulated
isoform analysis gave one significant biological process,
oxidation-reduction (GO:0055114). Hence, the isoform
pathway analysis corroborated our findings with the
gene ontology analysis.
We also found many differentially expressed ncRNAs

that may play roles in the molecular mechanisms of aging.

The first is that of Neat1, a lncRNA downregulated in our
dataset, which has been associated with nuclear para-
speckle formation [33], as well as nuclear retention of
mRNAs [34]. Loss of Neat1 may well be one explanation
for the increase in transcriptional noise that we have previ-
ously characterized and possibly that of decreased nuclear
organizational structure. We also observed a ~2.5 fold in-
crease in Pvt1, a ncRNA inducible by p53 [35]. Pvt1 is part
of a syntenic locus which is a known hotspot for multiple
cancers as well as a host for seven annotated miRNAs [36]
that have been shown to decrease expression of Myc. Strik-
ingly, Myc is down-regulated ~1.93 fold in our dataset (P =
0.0036, FDR = 0.127), albeit it barely missed our cut-off of
FDR <0.1.
Finally, we analyzed our ncRNA dataset for possible

spatial relationships within the genome. Indeed, we ob-
served three ncRNAs, all upregulated in aged liver, on
mouse Chr.12qF1 (Additional file 8: Figure S2), which are
adjacent to each other. These ncRNAs, Meg3, Rian
(Meg8), and Mirg are a unique set of lncRNAs that have
been identified as part of the imprinted locus Dlk1-Dio3
and are expressed from the maternal allele [37]. Together
these lncRNAs cooperate to actively regulate cell prolifer-
ation through gene expression either by directly binding
and recruiting the polycomb repressive complex two
(Prc2) [38], as is the case with Meg3 and Rian, or by pre-
dicted microRNA-mediated regulation of cell cycle factors
such as Myc and p53 [37], as is the case with Mirg. We
also found two significantly upregulated novel lncRNAs,
Gm12602 and Gm12648, which flank the Cdkn2a
(p16ink4a and p19Arf) locus on mouse Chr.4q. Although
much less is known about these particular transcripts,
Gm12602 is located directly downstream (~150 kb) and
Gm12648 upstream (~4.5 Mb) of Cdkn2a. This makes it
tempting to speculate that these lncRNAs may exert some
regulatory control of this locus, possibly contributing to
senescent phenotypes. Together, these findings point to-
wards a host of age-related ncRNAs as regulators of aging
pathways and networks.

Interaction network analysis
The increased accuracy and breadth of our RNA-seq
data sets allowed us to generate networks of gene func-
tional change in aging liver, above and beyond what was
observed using DAVID or GOrilla. Using Ingenuity
Pathway Analysis (IPA) we generated, from the differen-
tially expressed protein-coding genes and ncRNAs, inter-
action networks of functional change. This resulted in
multiple overlapping pro-aging networks from which we
could distinguish three major molecular phenotypes: in-
flammation, proliferative homeostasis and lipid metabol-
ism (Figs. 4, 5 and 6).
Of the multiple networks of liver aging, the most prom-

inent interaction network to emerge was inflammation
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Fig. 3 GO term enrichment for genes differentially expressed in aging mouse liver. Enrichment analysis visualized as an MDS plot for GO terms
for biological processes that are (a) upregulated and (b) downregulated in aged mouse liver. Plots are generated based on a matrix of semantic
similarities in space (x, y). Clusters of circles closer together represent terms that are more closely related. Circle color and size indicates log10P-value
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and cancer (Fig. 4). This was not surprising since this
could already be derived from the gene ontology analysis
and has also been previously reported [5, 16]. This is in
keeping with observations that inflammatory cytokines se-
creted from senescent cells are capable of promoting the
hyperplastic growth of surrounding cells [39, 40]. We, and
others, previously observed an increase of senescent cells

in aging liver [16, 41, 42], which could promote the age-
related increase of cancer through these same secreted cy-
tokines. Conversely, it has also been shown that infiltrat-
ing immune cells can clear pre-oncogenic senescent
hepatocytes [43], thereby the same secretory phenotype
emitted by cells to promote cancer can also act a barrier
to tumorigenesis in the liver.

Table 1 GO analysis from DAVID for genes from differentially expressed aging isoforms

GO term Gene count P-value FDR-value

Upregulated

Immune response 7 1.7 × 10−4 4.7 × 10−2

Antigen processing and presentation of exogenous peptide antigen via MHC class II 3 3.8 × 10−4 5.3 × 10−2

Antigen processing and presentation of peptide antigen via MHC class II 3 3.8 × 10−4 5.3 × 10−2

Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II 3 5.5 × 10−4 5.1 × 10−2

Oxidation reduction 7 1.1 × 10−3 6.3 × 10−2

Antigen processing and presentation of exogenous antigen 3 1.2 × 10−3 5.5 × 10−2

Antigen processing and presentation peptide antigen 3 1.9 × 10−3 3.3 × 10−2

Downregulated

Oxidation reduction 7 3.1 × 10−4 5.5 × 10−2

Fig. 4 Age-related interaction network for cancer and inflammatory response. Each gene is colored according to directionality of expression;
red=upregulated, green=downregulated. Numbers below each gene represent the fold change (top) and FDR value (bottom) of that particular
gene. Orange line=predicted activation, blue line=predicted inhibition, yellow line=prediction inconsistent, grey line=no predicted effect
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Another prominent age-related network that emerged
from the IPA analysis was that of proliferation of cells
and cell death. This points to an age-related loss of pro-
liferative homeostasis, which is in keeping with reports
suggesting that aging compromises the rate of liver re-
generation rather than its regenerative capacity [44].
These two connected but opposing networks (Fig. 5) link
together genes shown to be highly important in aging
such as Cdkn1a, Il6R, Mmp12, Top2a, Pdgfc, Lama3,
and E2f1 [45–47]. Considering the liver is a still a mitoti-
cally active tissue, this interplay emphasizes the complex
interactions needed to maintain its normal regenerative
function. An aging phenotype to arise from the break-
down of cellular proliferation is the increase in cellular

senescence. However, IPA does not contain a formal
pathway for cellular senescence per se, which is essen-
tially a stress response and varies based on the senescent
trigger, i.e. genotoxic stress induced, oncogene induced,
or replication induced senescence. Of note, many of the
genes involved in the cancer network were also impli-
cated in the proliferation of cells network, as could be
expected since cancer is the uncontrolled proliferations
of cells.
The third major interacting network of age-related

change, which is the interaction between the synthesis of
lipids and the oxidation of lipids (Fig. 6), is enriched for
genes that are downregulated in aging. Clearly, the most
abundant enzyme family involved in this network is the

Fig. 5 Age-related interaction network for proliferation of cells and cell death. Each gene is colored according to directionality of expression;
red=upregulated, green=downregulated. Numbers below eachgene represent the fold change (top) and FDR value (bottom) of that particular
gene. Orange line=predicted activation, blue line=predicted inhibition, yellow line=prediction inconsistent, grey line=no predicted effect
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cytochrome P450 family (Cyp8b1, Cyp1b1, Cyp4a14,
Cyp26a1). While there certainly is evidence for reduced
hepatic drug clearance in humans and rodents, the possi-
bility that this is caused by reduced P450 activity is contro-
versial [44]. One phenotypic outcome arising from the
failure of these pathways to cooperate could be the in-
crease in one of the most prevalent pathological outcomes
in liver, lipofuscin accumulation [48]. This phenotype
could reflect the inability to eliminate cellular waste prod-
ucts. A decline in liver metabolic activity with the subse-
quent increase in lipofuscin with age could be due in part
to the decrease in chaperone mediated autophagy [49].
Since protein-protein interactions are very well studied

as compared to those of ncRNAs, by analyzing both
protein-coding and ncRNAs together, the most robust net-
works resulting from this analysis would only contain

protein-protein interactions, essentially losing the weaker,
less-studied ncRNA interactions. Thus, we chose to separ-
ately analyze only ncRNAs with age-altered expression to
create age-related ncRNA interaction networks. Subse-
quently, we looked at the proteins and genes listed in our
ncRNA interaction network and filtered the list for those
only differentially expressed within our dataset.
Only four interacting networks were obtained in

this way, three of which only had one ncRNA inter-
acting with only one other protein or gene, similar to
previous ncRNA network analysis [29]. Only one net-
work had multiple known interactions within the IPA
database; thus, we focused on this network that in-
cluded five ncRNAs with known interactions to other
proteins and/or genes. By combining the ncRNAs and
the known interacting protein-coding genes altered

Fig. 6 Age-related interaction network for synthesis of lipid and oxidation of lipid. Each gene is colored according to directionality of expression;
red=upregulated, green=downregulated. Numbers below each gene represent the fold change (top) and FDR value (bottom) of that particular
gene. Orange line=predicted activation, blue line=predicted inhibition, yellow line=prediction inconsistent, grey line=no predicted effect

White et al. BMC Genomics  (2015) 16:899 Page 10 of 15



with age and again analyzing with IPA we were able
to create an age-related ncRNA-protein coding interaction
network. This one robust network association (Fig. 7) is in-
volved in the IFNG-mediated pro-inflammatory response.
Interestingly, this network links our novel ncRNAs to cer-
tain genes such as p53, Il7, Ctss, and NFκB, all of which
have been previously associated with mammalian aging or

senescence [23, 50, 51], and their age-related alterations
may contribute to the most prevalent aging phenotype,
inflammation.

Discussion
Functional and pathological changes in liver with age have
been studied extensively, but the extent of physiological

Fig. 7 NcRNAs associate in INFG-mediated pro-inflammatory network. NcRNA network analysis reveals functional role for non-canonical
transcript involvement in INFG-mediated pro-inflammatory response. Colored nodes represent directionality of transcript expression within
dataset; red?=?upregulated, green?=?downregulated, white?=?no significant change. Numbers below each gene represent the log2Fold-
Change (top) and FDR value (bottom) of that particular gene
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decline of this organ over time remains controversial [52,
53]. Hence, it is critically important to comprehensively as-
sess changes at the molecular level, which could at least in
part resolve this issue. Next-generation sequencing tech-
nology has opened up the possibility to study the molecu-
lar basis of aging in unprecedented detail. In studying gene
expression, generally thought to be the most immediate re-
flection of critical, age-related alterations in any tissue-
specific phenotype, the advent of RNA sequencing now al-
lows a full depiction of the aging transcriptome. As we
show here for mouse liver, the increase in experimental de-
tail as compared to previously applied microarrays is dra-
matic. While previous, microarray-based studies revealed
highly variable numbers of differentially altered genes dur-
ing aging [8, 9], and sometimes none at all [6], our RNA-
seq data sets showed a total of 1102 protein-coding tran-
scripts as differentially expressed between livers of young
and old mice, plus an additional 105 differentially
expressed isoforms and 162 differentially expressed
ncRNAs. The latter is undoubtedly an underestimate due
to the limited number of such RNAs annotated thus far.
Albeit limited to two extreme age levels and one mouse
strain, the current scope of our study highlights the com-
plexity of transcriptome changes in aging mammals. In-
deed, such complexity is likely higher still when possible
strain differences and variation across multiple age levels
will be taken into account. However, such unprecedented
detail in visualizing the aging transcriptome allows us not
only to uncover the major gene networks of phenotypic
change with age, but also to test some very basic hypoth-
eses about loss of transcriptional fidelity as a possible ul-
timate cause of aging.
One obvious characteristic of the aging transcriptome in

liver is the increased individual variation. Evidence for the
importance of stochastic components in gene expression
changes with age has been provided previously using dif-
ferent approaches [20, 54], but ours is the first direct evi-
dence that transcriptomes of individual animals can
significantly diverge as a consequence of the aging process,
and not just between individual genes. Indeed, as we show,
aging is accompanied by an increase in stochastic vari-
ation, or transcriptional noise, which is apparent in all
RNA classes. Our finding that older animals, in general,
have higher coefficients of variation, irrespective of
transcript length, confirms that age-related variation is
genome-wide. However, we do observe that lowly expressed
transcripts, irrespective of age, have much higher coeffi-
cients of variation as compared to highly abundant tran-
scripts. This could be due to the inherent labile nature of
smaller RNA species, as longer highly expressed transcripts
tend to be more stable and less susceptible to metabolism,
either due to higher order structure or because more
proteins are able to bind and protect the transcript from
endogenous RNases [55, 56]. In this respect, it is striking

that we find RNA modification as an enriched pathway
that is downregulated within our dataset, a possible reason
that aged transcriptomes tend to have higher variation.
Moreover, the downregulation of Neat1 may contribute to
variation between mRNAs containing inverted Alu repeats
in the 3′ UTR [34]. Thus, the possibility cannot be ruled
out that specific pathways ultimately control stochastic
variation in the aging transcriptome, possibly as part of a
systemic response.
One longstanding hypothesis in gene expression is that

as an organism ages, the genome loses its ability to
effectively regulate genes, leading to an overall relaxation
or de-repression of gene expression [19]. Our data do not
confirm the widespread occurrence of such a loss of gene
transcriptional control, as we did not observe a drastic in-
crease in genomic coverage of the transcriptome from
young to old animals. However, to definitively rule out this
hypothesis, extremely deep sequencing, i.e., greater than 1
billion reads, may be necessary [18]. Alternatively, reports
on the de-repression of gene expression have been limited
to a select few tissues and therefore the observation could
be a function of tissue or cell type specificity.
A major challenge in attempts to fully characterize the

transcriptional landscape at old age is linking altered
mRNA expression levels to altered ncRNAs, recently
highlighted as a key regulatory component of the tran-
scriptome and in aging [14, 57]. Our results show that
roughly 13 % of the transcripts we found altered with age
are those of ncRNAs. Although many of these ncRNAs
have been previously reported and studied, such as the
lncRNAs Meg3, Rian, and Neat1, none of these to our
knowledge have been implicated in aging. Additionally, it
is noted that the Dlk-Dio3 locus in mouse corresponds to
the largest hotspot of miRNAs within its genome. Interest-
ingly, a previous report has shown that eight miRNAs ori-
ginating within this cluster are downregulated in aged
skeletal muscle [29]. Coupled with our findings that
lncRNAs (Meg3, Rian, Mirg) from this locus are upregu-
lated in aging liver, we can conclusively define this locus as
cell-type specific regulatory hotspot in aging. Whether this
locus plays a major regulatory role in the aging process re-
mains to be elucidated, but could be studied by testing if
multiple proteins and/or pathways which are targeted are
actually affected in aging tissues. In addition to known
ncRNAs, we also revealed novel lncRNA transcripts differ-
entially expressed with age, such as those flanking the
Cdkn2a locus. Given the importance of the Cdkn2a locus
in both senescence and cancer, these flanking lncRNAs
may offer putative targets to regulate the cell cycle. More
evidence for the implications of such ncRNAs in aging will
become more apparent as the field expands to functionally
characterize each novel ncRNA. Taken together, our results
provide the first evidence that ncRNAs can also shape the
landscape of aging mouse liver.

White et al. BMC Genomics  (2015) 16:899 Page 12 of 15



Finally, the comprehensive view of the aging liver tran-
scriptome provided in our present study allowed us to
determine the main functional networks associated with
liver aging. In this respect our results uncovered three
main sets of interacting networks: inflammation and
cancer, proliferative homeostasis, and lipid metabolism.
The most prominent one, inflammatory response, was also
supported by multiple ncRNAs novel to liver aging in the
INFG-mediated pro –inflammatory response. Increased in-
flammation has since long been associated with aging [58]
and we and others have previously provided evidence that
this is a major pro-aging phenotype in the mouse [59]. A
second major set of altered gene functional networks in
aging mouse liver involves the interconnected cellular pro-
liferation and death networks. Systematic dysregulation of
the balance between degenerative cell loss and regener-
ation is in keeping with reports suggesting that liver regen-
eration is compromised in old animals and in elderly
humans. Lastly, a third major network of change appeared
to be centered on lipid synthesis and lipid oxidation, point-
ing towards increased intracellular aggregates of damage,
most notably lipofuscin. However, our data also suggest al-
tered levels of cytochrome P450 family, such dysregulation
could be a cause for the decline in drug metabolism in
aging livers [53].

Conclusions
Taken together, our present work, and previous work by
others [14, 15], shows how RNA sequencing at high
depth can address basic questions as to the molecular
basis of mammalian aging. We showed that aging is
unlikely to be accompanied by a significant loss of
tissue-specific gene expression profiles; we did not find
evidence for gene de-repression or a stochastic increase
of the fraction of the genome that is transcribed. Yet,
our data uncovered extensive changes in gene expres-
sion patterns, which are subject to stochastic variation
as indicated by a significant increase in individual vari-
ation. We also demonstrated that the increased accur-
acy of RNA-seq enable us to better capture major aging
phenotypes at the transcriptional level, thereby unmask-
ing important molecular mechanisms underlying aging
and its related disease sequelae.

Methods
Animals and tissue collection
All procedures involving animals were approved by the In-
stitutional Animal Care and Use Committee (IACUC) of
Albert Einstein College of Medicine. Three male Balb/C
mice of 4 and 28 months of age were procured from the
National Institutes on Aging. Mice were sacrificed and
harvested liver samples were immediately flash-frozen. All
mice used in this study were determined to be tumor-free

and also lacked other obvious signs of macropathology at
the time of sacrifice.

RNA-seq
Directional RNA sequencing libraries and raw sequen-
cing data were previously generated by us [16].

Analysis and statistics
Pass filter sequences were aligned using GSNAP v2013-
01-23 according to default settings with novel splicing,
using the NCBI Build 37/mm9 reference genome [60].
Alignments were then referenced against a custom an-
notation database that combines ENSEMBL (release 71),
GENBANK/NCBI (release 196); REFSEQ (release 60),
VEGA/HAVANA (release 51); and MGI (GRCm38). The
custom annotation database is available upon request.
Uniquely aligned reads were then quantified using
Python based HTSeq for paired-end reads (for fragment
based quantification) using the intersection-strict model
and subsequently analyzed using the DESeq package in
R [61]. For isoform analysis, aligned reads were quanti-
fied using the Cufflinks/CuffDiff package for paired-end
settings with the Ensembl database and subsequently an-
alyzed using CummeRbund in R [26]. For all analyses, a
P-value <0.05 was considered significant and all P-values
were adjusted for multiple testing using Benjamini-
Hochberg correction where a cutoff FDR value <0.1 was
considered significant.

Gene ontology and network analysis
GO analysis was performed using either DAVID analytical
software for GOTERM_BP_FAT by using an EASE score
<0.05 and gene set count minimum of two required for a
functional pathway to be considered significant [30] or
GOrilla where four genes were required to be considered in
each annotation and a q-value cutoff <0.01 [31]. Gene
ontology enrichment was visualized using REVIGO with a
similarity cutoff set at 0.7 [32]. For network analysis, differ-
ential gene expression lists were analyzed using Ingenuity
Pathway Analysis (Ingenuity® Systems, www.ingenuity.com).
IPA also was used to generate figures for network inter-
action of gene sets for ncRNAs. Data visualization was per-
formed in the UCSC genome browser [62].

qPCR
Total RNA from young and old mouse liver was con-
verted into cDNA using SuperScript III First-strand
Synthesis Kit (Invitrogen) using 50 ng of random hex-
amers. qPCR was performed using 40 ng of cDNA using
ABI StepOne Plus system for either TaqMan® (ABI) or
SYBR® green (ABI) assays. For a full list of Taqman pri-
mer assays and custom non-coding primer assays used
see Additional file 6: Table S6. All calculations were per-
formed using the ΔΔCT method with TaqMan assays
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normalized to eukaryotic 18 s rRNA and SYBR assays
normalized to GAPDH with all biological replicate
values representing the mean of technical triplicates.
Linear regression was used to calculate the Pearson’s
correlation coefficient of the log2foldchange values be-
tween RNA-seq and qPCR.

Data availability
Raw RNA-seq data from this manuscript were deposited
to the Sequence Read Archive under accession code
SRP053350. The custom annotation database made in this
study for mouse is freely available on GitHub (https://
github.com/rrwhite15/mouse-annotation-gtf-file).
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