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Abstract

Background: Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that
is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from
homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated
in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to
identify the methylerythritol phosphate (MEP) and carotenoid pathways genes.

Results: In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two
different developmental stages of seeds from B. orellana were used for the construction of indexed mRNA libraries,
sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3
software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred
proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs,
indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and
14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway
cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway.

Conclusion: The identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical
model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These
findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic
improvement of B. orellana.
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Background
The nutritional and pharmaceutical potential of plant
secondary metabolites is vast and still largely unex-
plored. Many plant species utilized for production of
secondary metabolites that are important components of
human diet, animal feed, medicines, biopesticides, and
bioherbicides, have been subject of limited research and
genetic improvement. This is the case of Bixa orellana
L., achiote in Mexico, a species belonging to the Bixaceae

family within the order Malvales [1, 2]. Bixa orellana is a
tropical perennial and ligneous plant of great agroindus-
trial interest due to its high content of bixin, an apocarote-
noid located mainly in the seeds. Bixin or annatto is an
orange-red pigment that has been used for many years as
a dye in foods, such as dairy and bakery products, vege-
table oils, and drinks [3]. The world demand for annatto is
increasing together with the interest in natural food dyes.
Carotenoids are yellow to red pigments synthesized by

microorganisms and plants. In plants, they accumulate
in the plastids (chromoplasts) of flowers and fruits.
These compounds have antioxidant functions in all
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organisms, including animals and fungi, and play an im-
portant role in protecting cells from damage of radicals
such as singlet oxygen [4]. Carotenoids are the major
source of vitamin A (retinol) in animals, and abscisic
acid (ABA) in plants [5]. All carotenoids are synthesized
by consecutive condensations of isopentenyl diphos-
phate (IPP), which in turn is synthesized through the
plastidial methylerythritol phosphate (MEP) pathway [6,
7]. Seven enzymatic steps produce IPP from pyruvate
and glyceraldehyde-3-phosphate [6, 7]. The first step in
carotenoid biosynthesis is the head-to-head condensa-
tion of two geranylgeranyl diphosphate (GGDP) mole-
cules to produce phytoene, catalyzed by phytoene
synthase (PSY). Subsequently, four enzymes convert
phytoene to lycopene via phytofluene, zeta-carotene and
neurosporene: two desaturases introduce four double
bonds (phytoene desaturase (PDS), and zeta-carotene
desaturase (ZDS)), and two isomerases acting, respect-
ively, on the 7/9-7′/9′ double bound (carotene cis-trans
isomerase, CRTISO) and C15-15′ double bonds (ζ-caro-
tene isomerase, Z-IZO) [8, 9]. The cyclization of lyco-
pene denotes a central branch point in the carotenoid
biosynthesis pathway, and the relative activity of
epsilon-cyclase (ε-LYC) versus beta-cyclase (β-LYC)
may determine the flow of carotenoids from lycopene
to either α-carotene or β-carotene [8].
Apocarotenoids as bixin are derived from the oxidative

cleavage of carotenoids, which might occur randomly
through photo-oxidation or lipoxygenase co-oxidation
[10]. At the same time, the enzymatic cleavage of carot-
enoids through specific carotenoid dioxygenases (CCDs)
has also been proposed [10, 11]. Bixin is derived from
the enzymatic cleavage of lycopene [12, 13]. A biosyn-
thetic pathway for bixin has been proposed [12, 14] and
supported using a heterologous expression system [12].
This identification, however, has not been supported by
a full characterization. Three B. orellana cDNAs encod-
ing the enzymes required for bixin synthesis derived
from the linear C40 lycopene have been identified: lyco-
pene cleavage dioxygenase (BoLCD), bixin aldehyde

dehydrogenase (BoBALDH) and norbixin methyltransfer-
ase (BonBMT) [12].
In spite of the great economic importance of achiote,

its transcriptome and the genes from MEP and caroten-
oid pathways remained uncharacterized. Before this
work, we had only access to partial sequences of some
genes [14, 15] obtained from expressed sequences tags
(ESTs) isolated from a subtracted cDNA library made
with RNA from immature seed and leaves [14]. The li-
brary identified clusters of transcripts corresponding to
five genes of the MEP pathway: (1-Deoxy-D-xylulose-5-
phosphate synthase (DXS), 1-Deoxy-D-xylulose-5-phos-
phate reductoisomerase (DXR), 2-C-Methyl-D-erythritol
4-phosphate cytidyltransferase (MCT), 4-Hydroxy-3-
methylbut-2-en-1-yl diphosphate synthase (HDS)), the
intermediate gene geranylgeranyl diphosphate synthase
(GGDS), three genes of the carotenoid pathway (PSY,
PDS, ZDS) and three genes of the bixin pathway (Caro-
tene deoxygenase, aldehyde dehydrogenase and methyl
transferase), which were overexpressed in immature
seeds compared to leaves [14]. The limited genetic and
molecular data available for B. orellana, is attributable in
part to its high amounts of polyphenols, pigments and
gummy polysaccharides, which complicate nucleic acid
purification. To overcome this difficulty, Rodríguez-Ávila
and co-workers developed a protocol to isolate total
RNA from multiple tissues of B. orellana [16] that
proved effective for single gene assay expression analysis.
Here we leverage it together with high throughput se-
quencing, to assemble a transcriptome for this plant. We
demonstrate its use to identify the MEP, carotenoid and
bixin pathway genes.

Results
De novo sequence assembly of B. orellana transcriptome
To investigate the MEP, carotenoid, and bixin pathways
genes, we sequenced the transcriptome of B. orellana
using mRNA from young leaves and two different devel-
opmental stages of seeds (immature and mature) (Fig. 1).
From the isolated mRNA we constructed indexed cDNA

Fig. 1 Bixa orellana tissues used as mRNA sources for sequencing and transcriptome assembly. a Leaf, (b) immature seed, and (c) mature seed
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libraries and sequenced them on the Illumina HiSeq 2500
platform. The reads were assembled de novo using Velvet
[17], CLC Genomics Workbench (http://www.clcbio.com)
and CAP3 [18] software. In a strategy similar to that of
Ashrafi et al., [19], separate Velvet and CLC assemblies
were carried out, followed by merging the resulting con-
tigs through CAP3. This strategy optimized the number of
different cDNAs assembled, their overall length and the
length of the encoded open reading frames (ORF). The
final CAP3 set consisted of 52,549 contigs with an N50 of
2,294 bp. The average length of the contigs was 1,924 bp,
ranging from 301 to 25,617 bp (Table 1). The contig size
distribution showed that 41,209 contigs (78.4 %) were lar-
ger than 1,000 bp, 65 contigs (0.1 %) had a greater length
than 10,000 bp and 11,275 contigs (21.5 %) were shorter
than 1,000 bp. Using orf_finder software from WebMGA
server [20], we performed an ORF search in order to de-
termine the approximate number and size of the proteins
coded in the transcriptome. A total of 25,555 ORFs ≥ 300
b were detected, the average length was 1,578.5 b and the
longest had 11,322 b (Table 1).

Evolutionary relationship of Bixa orellana
In order to elucidate the evolutionary relationship of
B. orellana, a phylogenetic analysis of 13 proteins
encoded by presumed single-copy genes in most
plants, identified by Duarte and co-workers [21], was
carried out. These single-copy genes yielded well-
resolved tree topologies [21, 22]. The phylogenetic
analysis grouped achiote in the Malvidae clade, in
close relationship with cotton (Gossypium raimondii)
and cacao (Theobroma. cacao) (Fig. 2a).

Blast search in public databases
We compared achiote transcriptome (52,549 contigs) to
three protein databases, NCBI Plant Protein Reference
sequence (RefSeq), Phytozome, and PLAZA 3.0, using
the BLASTX algorithm with a cutoff e-value of 1e-6.
The search against RefSeq exhibited a total of 47,894

contigs (91 %) with significant hits, while comparisons
against the Phytozome and PLAZA 3.0 databases
showed that 46,232 contigs (88 %) and 48,047 contigs
(91 %) had significant hits, respectively. BLAST hits
from the RefSeq comparison were distributed between
28 plant species. Eight plant species had ≥ 1 % transcrip-
tome contigs hits (Fig. 3a). Hits obtained by the Phyto-
zome comparison were distributed between 35 plant
species; ten of them had ≥ 1 % transcriptome contigs
blast hit (Fig. 3b). Twentyeight plant species were repre-
sented in the 48,045 BLAST hits obtained by PLAZA
3.0 comparison, and 9 out of the 28 had ≥ 1 % transcrip-
tome contigs blast hit (Fig. 3c). In all comparisons, cacao
(T. cacao) provided the best BLAST hits: 33,442 contigs
(64 %) when the transcriptome was compared with the
RefSeq database, 27,454 contigs (52 %) compared with the
Phytozome database and 27,362 contigs (52 %) with the
PLAZA 3.0 database (Fig. 3). The second best represented
plant species in the BLAST results was orange (Citrus
sinensis) with 2446 contigs from the RefSeq comparison
and cotton (G. raimondii) with 6016 and 6410 contigs dis-
played by Phytozome and PLAZA 3.0 comparisons, re-
spectively (Fig. 3). BLASTX results for transcriptome
comparisons are available in Additional file 1: Table S1.
To compare the achiote transcriptome with a previous

achiote EST library created by Jako and co-workers [14],
we performed a bidirectional BLASTN. Jako and co-
workers library has 954 sequences registered, the longest
sequence is 691 bp and the shortest is 50 bp with a
mean sequence size of 355 bp [14]. Using the EST li-
brary as a query, we found that 714 EST sequences
(74.8 %) had BLAST hits, with an average identity of
99 % and identity range between 90.91 and 100 %
(Additional file 1: Table S2). Whereas, 583 contigs (1.1 %
of transcriptome) had hits to the EST library, with a high
average identity of 98.6 %. The identity range was be-
tween 82.77 % and 100 % (Additional file 1: Table S2).

Functional annotation of gene ontology
We used the BLASTX results of the achiote transcrip-
tome against the RefSeq database to extract Gene Ontol-
ogy (GO) terms with Blast2GO software. 38,076 contigs
(80 %) with significant hits out of 47,894 were annotated
and classified in 7461 GO terms. These GO terms were
split in the three main GO categories, “Biological
process” (4314 Go terms), “Molecular function” (2485
terms) and “Cellular component” (665 GO terms). In
“biological process”, the top three GO descriptions from
level 2 were “cellular process” with 22,066 contigs,
“metabolic process” with 21,664 contigs and “single-or-
ganism process” with 20,762. In “molecular function”,
the largest description was “catalytic activity” with
17,260 contigs followed by “binding” and “transporter
activity”. In reference to the “cellular component” term,

Table 1 Assembly statistics

Total number of contigs 52,549

Transcriptome size(nt) 101,106,695

Longest contig 25617

Shortest contig 301

Average contigs length(nt) 1,924

N50(nt) 2,294

Total number of ORF 25,555

Average ORF length(nt) 1578.5

Longest ORF(nt) 11,322

Shortest ORF(nt) 300

The assemblathon_stats perl scripts version 2 and ORF_finder were used to
compute assembly statistics
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the most represented descriptions were “cell”, “organ-
elle” and “membrane” with 29,327, 23,421 and 11,200
contigs, respectively (Fig. 4a).
With regard to carotenoids biosynthesis, 601 contigs

from 38,076 with GO annotation were classified in “ter-
penoid metabolic process” (GO:0006721, Fig. 4b). 369
contigs (61.4 %) from this description belong to GO
term “carotenoid” (GO:0016117). The rest of 232 contigs
included in GO:0006721 were split in three descriptions,
“diterpenoid”, “triterpenoid”, and “sesquiterpenoid”. GO
annotation is available in Additional file 1: Table S3.

KEGG pathway annotation
In order to assign biochemical pathways to B. orellana
transcriptome, a functional pathway annotation was per-
formed against the Kyoto Encyclopedia of Genes and
Genomes (KEGG). The KEGG annotation was carried
out with the KAAS server (KEGG Automatic Annota-
tion Server) by BLAST comparisons against the KEGG
GENES database. When the file with 52,549 contigs of
transcriptome was uploaded to the server, 8698 were
assigned to 3092 enzymes. The five main KEGG bio-
chemical pathways were represented: metabolism (2349

contigs), genetic information processing (2082), organ-
ism system (851), cellular processes (764) and environ-
mental information processing (783). In metabolism
pathways, 2349 contigs were distributed in 5058 hits
(Fig. 5a). The top three groups of metabolism pathways
were “carbohydrate metabolism” with 1021 hits against
190 enzymes, followed by “amino acid metabolism” with
700 hits in 183 enzymes. The third group called “over-
view”, which included Carbon metabolism, 2-
Oxocarboxylic acid metabolism, Fatty acid metabolism,
Biosynthesis of amino acids and Degradation of aromatic
compounds), had 506 hits and 175 enzymes.
In the terpenoids and polyketides pathways, which in-

clude the carotenoid pathways, 175 contigs could be as-
sociated with 75 enzymes (Fig. 5b). The largest pathway
with 48 contigs was “Terpenoid backbone biosynthesis”,
which includes enzymes from the MEP and mevalonate
pathways. The carotenoid pathway was the second most
represented group with 38 contigs and 17 enzymes. The
twelve enzymes belonging to the carotenoid pathway
were: PSY, PDS, 15-Z-ISO, ZDS, CRTISO, β-LYC, ε-
LYC, β-carotene hydroxylase (βCH), cytochrome P450-
type monooxygenase 97A (CYP97A3), cytochrome

Fig. 2 Evolutionary relationship of B. orellana. a Phylogenetic analysis based on alignment of concatenated proteins encoded by sets of 13 single
copy genes [19] from 28 plant species and one moss species. b Phylogenetic analysis based on alignment of concatenated enzymes of the
carotenoid/MEP pathways in 29 plant species and one moss species. Numbers near the branch points represent the bootstrap value produced by
1000 replications. The trees are drawn to scale, with branch lengths proportional to the number of substitutions per site. Single-celled green alga
Chlamydomonas reinhardtii was used as an outgroup. Protein sequences and plant species used are listed in Additional file 1: Table S9
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P450-type monooxygenase 97C1 (CYP97C1), zeaxanthin
epoxidase (ZEP) and violaxanthin de-epoxidase (VDE).
The five remaining enzymes are associated to derivate
compounds of carotenes: capsanthin/capsorubin synthase
(CCS1), 9-cis-epoxycarotenoid dioxygenase (NCED),
xanthoxin dehydrogenase (ABA2), abscisic-aldehyde oxi-
dase (AAO3) and abscisic acid 8′-hydroxylase. KEGG an-
notation is available in Additional file 1: Table S4.

Identification of MEP and carotenoid pathways cDNAs
from B. orellana transcriptome
To identify and isolate the cDNAs encoding proteins of
the MEP and carotenoid pathway, a Local TBLASTN
search against the achiote transcriptome was performed
using homologous proteins from Arabidopsis thaliana,
G. raimondii and T. cacao followed by a phylogenetic
analysis of each putative protein. The search allowed us
to identify the cDNAs encoding the seven canonical en-
zymes in the MEP pathway, the cDNAs encoding the 14
core enzymes of the carotenoid pathways and the
cDNAs encoding intermediate pathway proteins isopen-
tenyl diphosphate isomerase (BoIDI) and BoGGDS
(Table 2).
cDNAs encoding putative BoDXS in the MEP pathway

were consistent with four genes: BoDXS1, BoDXS3 and

two paralogous copies of BoDXS2 (BoDXS2a and
BoDXS2b). We identified cDNA consistent with single
copy genes for the remaining MEP pathway enzymes:
BoDXR, BoMCT, 4-Diphosphocytidyl-2-C-methyl-D-
erythritol kinase (BoCMK), 2-C-Methyl-D-erythritol
2,4-cyclodiphosphate synthase (BoMDS), BoHDS, and
4-Hydroxy-3-methylbut-2-enyl diphosphate reductase
(BoHDR). Also single copies were identified for the
intermediate genes BoIDI and BoGGPS. Comparison to
MEP pathways cDNAs isolated in the previous EST li-
brary [14] showed that BoDXS2a, BoDXR1, BoCMK,
BoHDS, BoHDR and BoGGDS were common (Table 2).
In the carotenoid pathway, cDNAs characterization

identified two gene copies for phytoene synthase (BoPSY1
and BoPSY2), phytoene desaturase (BoPDS1 and BoPDS2),
β lycopene cyclase (Boβ-LYC1 and Boβ-LYC2), zeaxanthin
epoxidase (BoZEP1 and BoZEP2) and violaxanthin de-
epoxidase (BoVDE1 and BoVDE2). The remaining carot-
enoid pathway genes were found in single copy, except
CRTISO for which three copies were identified: BoCR-
TISO2 and paralogous BoCRTISO1a and BoCRTISO1b
(Table 2). The comparison between carotene pathway
cDNAs isolated in the Jako and co-workers library [14]
showed that only the cDNAs encoding BoPSY1, BoPSY2,
BoPDS1 and BoZDS were in common (Table 2).

Fig. 3 BLASTX top-hits species distribution. The B. orellana transcriptome was compared to: (a) the NCBI RefSeq plant protein database, (b) the
Phytozome protein database version 10, and (c) the PLAZA protein database version 3.0. The percent of contigs producing hit for each species is
marked after the species scientific name
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In order to elucidate the evolutionary relationship of
MEP and carotenoid pathways enzymes from B. orellana
and other plant species, we carried out a phylogenetic
analysis using MEGA6 software. The analysis was based
on alignment of concatenated protein sequences from

MEP and carotenoid pathways of B. orellana and 27
plants species. B. orellana was grouped with species
from the Malvidae clade and was closely related to cot-
ton and cacao, the two Malvales species available in se-
quence databases (Fig. 2b).

Fig. 4 Gene ontology (GO) annotation. a The top ten GO descriptions in the three main categories, biological process, cellular component and
molecular function. b Contig distribution for terpenoid metabolic process (GO:0006721). Number of contigs per description are in brackets
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Identification of new genes in bixin pathways
To identify and isolate the cDNAs encoding enzymes
of the bixin pathway, a TBLASTN search against the
achiote transcriptome was performed using the achi-
ote protein sequences previously reported by Bouvier
and co-workers (BoLCD, [GenBank: AJ489277];
BoBADH, [GenBank: AJ548846]; BonBMT, [GenBank:
AJ548847]) [12]. Surprisingly, these three proteins
were not present among those encoded by our assem-
bled transcriptome. The Bouvier BoLCD protein had
only one hit with 53 % of identity. BoBADH displayed

hits with seven contigs with low identity percentages
(49–52 %). When BonBMT was compared, several
hits with identity range between 35 and 49 % were
found. On the other hand, our previously described
CCD1 [13] matched several contigs with high identity
(75–98 %). We were also able to identify high quality
matches in B. orellana for cDNAs encoding caroten-
oid cleavage dioxygenase 4 (CCD4), aldehyde dehy-
drogenases (ALDHs) and carboxyl methyltransferases
using homologous proteins of A. thaliana and T.
cacao.

Fig. 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. a Classification based on metabolism categories. b Classification based on
metabolism of terpenoids and polyketides. Number of contigs per pathway is in brackets
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Carotenoid cleavage dioxygenase proteins in bixin synthesis
The contigs similar to the CCD1 isolated by Rodríguez-
Ávila and co-workers [13], allowed the identification of
three paralogous copies of the CCD1 gene (BoCCD1-2,
BoCCD1-3 and BoCCD1-4). A pair-wise comparison

Table 2 Identified cDNA from MEP, carotenoid and bixin pathways

Description Jako
Hits

GenBank
Accession no.

BoDXS1 (1-Deoxy-D-xylulose-5-phosphate
synthase)

0 KT358983

BoDXS2a 2 KT358984

BoDXS2b 0 KT358985

BoDXS3 0 KT358986

BoDXR (1-Deoxy-D-xylulose-5-phosphate
reductoisomerase)

2 KT358987

BoMCT (2-C-Methyl-D-erythritol 4-phosphate
cytidyltransferase)

0 KT358988

BoCMK ( 4-Diphosphocytidyl-2-C-methyl-
D-erythritol kinase)

1 KT358989

BoMDS (2-C-Methyl-D-erythritol 2,4-
cyclodiphosphate synthase)

0 KT358990

BoHDS 4-Hydroxy-3-methylbut-2-en-1-yl
diphosphate synthase)

3 KT358991

BoHDR (4-Hydroxy-3-methylbut-2-enyl
diphosphate reductase)

1 KT358992

BoIDI (Isopentenyl diphosphate isomerase) 0 KT358993

BoGGDS (Geranylgeranyl diphosphate synthase) 4 KT358994

BoPSY1 (Phytoene synthase) 1 KT358995

BoPSY2 1 KT358996

BoPDS1 (Phytoene desaturase) 9 KT358997

BoPDS2a 0 KT358998

BoZ-ISO (15-cis-ζ-carotene isomerase) 0 KT358999

BoZDS (ζ-carotene desaturase) 8 KT359000

BoCRTISO1a (Carotene cis-trans isomerase) 0 KT359001

BoCRTISO1b 0 KT359002

BoCRTIOS2 0 KT359003

Boβ-LYC1 (Lycopene β-cyclase) 0 KT359004

Boβ-LYC2 0 KT359005

Boε-LYCa (Lycopene ε-cyclase) 0 KT359006

BoβCH1 (β-carotene hydroxylase) 0 KT359007

BoCYP97A3 (Cytochrome P450-type
monooxygenase 97A3)

0 KT359008

BoCYP97C1 (Cytochrome P450-type
monooxygenase 97C1)

0 KT359009

BoCYP97B3a (Cytochrome P450-type
monooxygenase 97B3)

0 KT359010

BoZEP1 (Zeaxanthin epoxidase) 0 KT359011

BoZEP2 0 KT359013

BoVDE1 (Violaxanthin de-epoxidase) 0 KT359014

BoVDE2a 0 KT359015

BoNSY (Neoxanthin synthase) 0 KT359016

BoCCD1-1 (Carotene cleavage dioxygenase 1-Copy1) 0 KT359018

BoCCD1-2 0 KT359019

BoCCD1-3 0 KT359020

BoCCD1-4a 0 KT359021

Table 2 Identified cDNA from MEP, carotenoid and bixin pathways
(Continued)

BoCCD4-1 (Carotene cleavage dioxygenase
4-Copy1)

0 KT359022

BoCCD4-2 9 KT359023

BoCCD4-3 16 KT359024

BoCCD4-4 0 KT359025

BoCCD4-5a 0 KT359026

BoALDH2B4 (aldehyde dehydrogenase 2B4) 0 KT359027

BoALDH2B7-1 0 KT359028

BoALDH2B7-2 0 KT359029

BoALDH2C4a 0 KT359030

BoALDH3F1 0 KT359031

BoALDH3F2 0 KT359032

BoALDH3H1-1 10 KT359033

BoALDH3H1-2 0 KT359035

BoALDH3I1 2 KT359036

BoALDH5F1 0 KT359038

BoALDH6B2-1 0 KT359039

BoALDH6B2-2 0 KT359040

BoALDH6B3 0 KT359041

BoALDH7B4 1 KT359042

BoALDH10A8 0 KT359043

BoALDH11A3 0 KT359044

BoALDH12A1 0 KT359045

BoALDH18B1-1 0 KT359046

BoALDH18B1-2 0 KT359047

BoALDH22A1 0 KT359048

BoSABATH1 (SABATH family
Methyltransferase1)

0 KT359049

BoSABATH2 0 KT359050

BoSABATH3 3 KT359051

BoSABATH4 6 KT359052

BoSABATH5 0 KT359053

BoSABATH6 0 KT359054

BoSABATH7 0 KT359055

BoSABATH8 0 KT359056

BoSABATH9 0 KT359057

BoSABATH10a 0 KT359058

BoSABATH11 0 KT359059

BoSABATH12 0 KT359060
aPartial sequence
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between CCD1 protein sequences showed that the
BoCCD1 described by Rodríguez-Ávila and co-workers
[13] shared 96.9 % identity with BoCCD1-2, 75 % with
BoCCD1-3 and 75 % with BoCCD1-4 (Additional file 1:
Table S5). Additionally, another CCD1 sequence was
identified by PCR when BoCCD1-2 sequences were amp-
lified and characterized for corroboration. This new
cDNAs probably corresponds to an allele of BoCCD1-2
because it shared 97 % of nucleotide identity. The gene
was called BoCCD1-1. BoCCD1-1 protein shared 98 %
identity with the CCD1 isolated by Rodríguez-Ávila and
co-workers [13] and 95 % with BoCCD1-2 (Additional
file 1: Table S5). No BoCCD1 genes were reported by
Jako and co-workers (Table 2) [14]. Comparison of
CCD4 homologous proteins against those encoded by
the assembled achiote transcriptome allowed us to iden-
tify five BoCCD4 genes (BoCCD4-1, BoCCD4-2,
BoCCD4-3, BoCCD4-4, and BoCCD4-5). The pair-wise
comparison between these proteins exhibited an iden-
tity range between 47 to 67 % (Additional file 1:
Table S5). The previous CCD4 isolated by Bouvier
and co-workers [12] displayed low identity (30-35 %)
in comparison with the proteins coded by our tran-
scriptome (Additional file 1: Table S5). Of the five
BoCCD4 cDNAs characterized in this work, BoCCD4-
2 and BoCCD4-3 matched EST sequences from Jako
and co-workers library (Table 2) [14].
Phylogenetic analysis of BoCCDs proteins yielded two

major clades; BoCCD1 and BoCCD4 clustered with the
CCD1 and CCD4 families, respectively. BoCCD1-1 and
−2 were closely related to the BoCCD1 described by
Rodríguez-Ávila and co-workers [13]. BoCCD1-1 and −2
clustered with monocotyledonous CCD1 proteins, albeit
with poor bootstrap support. BoCCD1 copy 3 and copy 4
were not closely related to the BoCCD1 protein described
by Rodríguez-Ávila and co-workers [13], but grouped to-
gether outside the major CCD1 clade (Additional file 2:
Figure S1). With regard to the BoCCD4 proteins,
BoCCD4-1, −2, −3 and −4 are grouped together
(Additional file 2: Figure S1). The small BoCCD4 family
clustered in a subclade of CCD4 proteins from woody
plants such as T. cacao,Vitis vinifera, and Populus tricho-
carpa. The incomplete sequence of BoCCD4-5, suggests a
more distant relationship to the BoCCD4 small family de-
fined by the previous proteins. BoCCD4-5 is related to the
CCD4 from Ricinus communis, P. trichocarpa, T. cacao
and G. raimondii grouped in the other CCD4 subclade
(Additional file 2: Figure S1). The BoLCD sequence de-
scribed by Bouvier and co-workers [12] was not closely re-
lated to BoCCD4 proteins found in this work, but
grouped instead in the monocotyledonous CCD4 clade,
close to three CCD4 from monocotyledonous Crocus sati-
vus (Additional file 2: Figure S1). This latter clade’s strong
support (99 % bootstrap value) suggests that their

previous attribution to B. orellana by Bouvier and co-
workers [12] is spurious.

Aldehyde dehydrogenase proteins
To identify cDNAs encoding BoALDHs, we performed
TBLASTN search using T. cacao and A. thaliana homolo-
gous ALDH proteins from the 13 distinct ALDH families
of plants. This approach succeeded in identifying 20 differ-
ent ALDHs cDNAs. According to the phylogenetic analysis
of BoALDH and its homologous proteins, the BoALDHs
isolated in this work belong to 10 ALDH families (Table 2
and Additional file 2: Figure S2). Four BoALDH proteins
were clustered in the ALDH2 family, five with ALDH3,
three with ALDH6 and two with ALDH18. The remaining
BoALDH proteins grouped with the ALDH5, ALDH7,
ALDH10, ALDH11, ALDH12 and ALDH22 families
(Table 2 and Additional file 2: Figure S2). BoBADH de-
scribed by Bouvier and co-workers [12] was more dis-
tant to BoALDHs, and closer to the protein from
monocotyledonous Crocus sativus in subfamily
ALDH2C4 (Additional file 2: Figure S2), another pos-
sible spurious instance. BoALDH3H1-1, BoALDH3I
and BoALDH7B4 genes yielded BLAST hits with 10,
2 and 1 sequences respectively in the Jako and co-
workers library [14] (Table 2).

Methyltransferases proteins
In order to identify carboxyl methyltransferase proteins
encoded by B. orellana transcriptome, we used T. cacao
and A. thaliana homologous proteins belonging to the
SABATH methyltranferase family (plant proteins with the
ability to methylate carboxyl groups [23]) to perform a
TBLASTN search. We found 12 different proteins (Table 2
and Additional file 2: Figure S3). Phylogenetic analysis of
SABATH proteins divided them in three major clades
called I, II and III (Additional file 2: Figure S3), which,
however, differed from a previous phylogenetic classifica-
tion [23]. BoSABATH1, BoSABATH2 and a small group
of four BoSABATH proteins (BoSABATH 3, 4, 5 and 6)
were grouped in Clade I. Also, the previously described
BonBMT was grouped in this clade, but was not closely
related to our BoSABATH protein. Instead, it displayed
high similarity to a C. sativus carboxyl methyltransferase.
This clade’s strong support (96 % bootstrap value) sug-
gests another spurious instance of BonBMT described by
Bouvier and co-workers [12] (Additional file 2: Figure S3).
BoSABATH2 was the only one grouped in the small clade
II, for which most members are jasmonic acid carboxyl
methyltransferases. In clade III, BoSABATH10 was grouped
in a subclade formed by ten A. thaliana SABATH proteins.
Additionally, BoSABATH7, 8, 9, 11 and 12 were clustered
in clade III and a small BoSABATH group was formed by
BoSABATH8, 11 and 12 (Additional file 2: Figure S3).
BoSABATH3 and BoSABATH4 proteins matched,
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respectively, 3 and 6 sequences in Jako and co-workers li-
brary [14] (Table 2).

Gene expression of selected carotenoid and bixin
pathway key genes
We selected key cDNAs of the carotenoid and bixin bio-
synthesis pathways for qRT-PCR quantification of their
transcript levels in new RNA samples from leaves, im-
mature seeds and mature seeds (Fig. 6). In the MEP
pathway, we found that BoDXS2a was overexpressed in
immature seed in comparison to mature seed and leaf
(Fig. 6). In the carotenoid pathway, we select BoPSY1,
BoPSY2, BoPDS1, BoZDS Boβ-LYC1, Boβ-LYC2 and Boε-
LYC for qRT-PCR quantification. BoPDS1 and BoZDS
were up-regulated in immature seed whereas BoPSY1,
BoPSY2, Boβ-LYC1, Boβ-LYC2 and Boε-LYC were
expressed preferentially in leaf (Fig. 6). In the bixin path-
way, we selected 14 cDNAs, four BoCCD1 (BoCCD1-1
to −4), four BoCCD4 (BoCCD4-1 to −4), three BoALDH3
(BoALDH3F1, BoALDH3H1 and BoALDH3I1) and three
BoSABATH (BoSABATH1, BoSABATH3 and BoSA-
BATH4). BoCCD1-1, BoCCD4-4 and BoALDH3F1 dis-
played no changes in transcript levels between leaf and
immature seed, whereas the remaining genes showed
differential expression levels. Amongst these differential

expressed genes, ten were up-regulated in immature
seeds and one was up-regulated in leaves (BoCCD1-2)
(Fig. 6). In all cases the lowest expression levels were
displayed in mature seed (Fig. 6). The oligonucleo-
tides sequences used as primers are listed in
Additional file 1: Table S6.

Discussion
Achiote plants are the source of bixin apocarotenoid.
Therefore, identification in this species of the genes en-
coding the putative enzymes of the pathways contribut-
ing to bixin synthesis, such as MEP, carotenoid and
bixin pathways, is of basic and applied importance. De-
scription of these genes before this study was limited
and incomplete [12–15, 24, 25], probably due to cover-
age limitation of the available EST libraries from imma-
ture seeds [14, 25]. A complicating factor is that B.
orellana is recalcitrant to molecular biology studies,
probably because its tissues contain high amounts of
secondary metabolites that hinder purification of nucleic
acids [16]. With development of high throughput se-
quencing technology, which are effective with lesser
amounts and shorter fragments of RNA, whole tran-
scriptome sequencing became feasible in B. orellana.
This technology has successfully been applied to identify

Fig. 6 qRT-PCR quantification. Quantitative analysis by qRT-PCR of selected genes encoding enzymes involved in MEP, carotenoid and bixin
biosynthesis in leaves (L), immature seeds (IS), and mature seeds (MS) of Bixa orellana. The relative mRNA levels were normalized according to a
control gene (18S ribosomal) and expressed relative to the corresponding values of leaf (reference sample). Reported values represent means ± SD
(standard deviation) of three independent biological replicates
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the MEP and carotenoid pathways genes in Momordica
cochinchinensis [26], Citrus sinensis [27] and Citrullus
lanatus [28]. Application of this technology to sequen-
cing the first B. orellana transcriptome allowed us to
elucidate the complete bixin biosynthesis pathway in-
cluding MEP and carotenoid pathways.

Transcriptome assembling of Bixa orellana
A total of 52,549 contigs were obtained from the tran-
scriptome assembly, which was carried out with the com-
bined use of three assembly programs, Velvet, CLC and
CAP3, each providing complementary strengths [19]. A
total of 25,555 proteins larger than 100 aa were predicted
in the achiote transcriptome, a number similar to that of
other sequenced species such as T. cacao, C. papaya, C.
sinensis, C. clementina and V. vinifera [29–32]. BLAST
comparison of this transcriptome with the existing B. orel-
lana library database [14] and 21 homologous proteins
previously isolated [12, 13, 33–37], confirmed that our B.
orellana assembly is reliable because of high coverage and
identity (Additional file 1: Table S2 and Table S7). More-
over, the cDNA sequence covering predicted full length
ORFs of carotenoid (BoPSY1, BoPSY2, BoPDS1, BoZ-ISO,
BoZDS, BoCRTISO1, BoCRTISO2 and BoβLYC1) and bixin
(Five BoCCD1s and four BoCCD4s) pathways genes ob-
tained through the in silico assembly were confirmed by
independent cDNA sequencing.

Evolutionary relationship of Bixa orellana
According to the Angiosperm Phylogeny Group (APG)
system, B. orellana belongs to the Malvales order, Malvi-
dae clade. Malvales include several commercial crops
such as kenaf (Hibiscus cannabinus), roselle (Hibiscus
sabdariffa), cacao (Theobroma cacao), cotton (species of
Gossypium) and cola nut (Cola acuminata) [1, 2]. Phylo-
genetic reconstructions based on two sets of B. orellana
proteins (13 general proteins encoded by single copy
genes [21] and additional selected proteins of the carot-
enoid/MEP pathways) is in agreement with APG classifi-
cation. As shown in Fig. 2, B. orellana is grouped with
two members of Malvales available in sequence data-
bases (T. cacao and G. raimondii). Interestingly, this
small group is more closely related to members of the
order Malpighiales (R. communis M. esculenta and P.tri-
chocarpa) than to other orders of Malvidae such as Bras-
sicales or Huertelaes. This discrepancy has been
documented, suggesting that the order Malpighiales be-
longs to the Malvidae rather than Fabidae [38, 39]. The
evolutionary relationship of B. orellana with Malvales
and Malpighiales is also reflected in the comparison of
the whole achiote transcriptome against plant protein
databases (Fig. 3). As shown in Fig. 3 cacao is most rep-
resented among the matches in the Phytozome and
Plaza 3.0 comparisons, followed by cotton (G.

raimondii), cassava (M. esculenta), citrus (C. sinensis),
poplar (P. trichocarpa), papaya (C. papaya) and castor
bean (R. communis). Comparison to RefSeq was biased
because most proteins of G. raimondii, M.esculenta and
C. papaya were not available there through May, 2014.

Methylerythritol phosphate (MEP) pathway genes
The MEP pathway is the predominant supplier of carot-
enoid biosynthesis precursors isopentenyl and dimethy-
lallyl diphosphate (IPP and DMAPP) [40]. In this
pathway, pyruvate and glyceraldehyde 3-phosphate are
condensed and converted to IPP and DMAPP by seven
enzymes (DXS, DXR, MCT, CMK, MDS, HDS and
HDR). In this work, we identified the genes encoding
these enzymes (Table 2 and Fig. 7). Similar to species
with multi-copies of DXS gene [28, 41, 42], achiote also
has a small family of four BoDXS genes. Phylogenetic
analysis of DXS proteins grouped one protein in the
DXS type I clade (BoDXS1), two proteins in the DXS
type II clade (BoDXS2a and BoDXS2b) and the last
(BoDXS3) in the DXS type III clade (Additional file 2:
Figure S4). Enzymes from the DXS2 clade, but not DXS1
or DXS3, are involved in carotenoid and apocarotenoid
accumulation in non-photosynthetic tissues like seeds
[41, 43, 44]. In this work, we found that the BoDXS2a
gene was overexpressed in immature seeds (Fig. 6),
which suggests that BoDXS2a could be involved in the
synthesis of seed carotenoids and apocarotenoids. Over-
expression in immature seed of BoDXS2a (this work),
and BoDXR, BoHDS and BoHDR (Table 2) [14], might
lead to high concentration of carotenoids and apocarote-
noids in immature seed.

Carotenoid pathway genes of Bixa orellana
The carotenoid biosynthetic pathway includes 14 en-
zymes that convert two GGDP molecules into a var-
iety of carotenoids. Here, we infer from cDNA
characterization the existence of 21 genes encoding
these enzymes (Table 2 and Fig. 7). With the excep-
tion of BoPSY, the qRT-PCR quantification profiles
suggest enhanced lycopene production in immature
seeds, analogous to what was observed during red
ripening in tomato fruits. The accumulation of lyco-
pene in tomato is apparently due to downregulation
of β-LYC and ε-LYC, and upregulation of PSY, PDS
and ZDS [45–49]. Positive feedback regulation may
occur during tomato ripening: expression of PDS and
ZDS increases in response to low quantities of end-
products of the carotenoid pathway, such as β-
carotene, xanthophylls or ABA [49, 50]. A similar
scenario could take place in immature seed of B. orel-
lana: genes that encode cyclase enzymes were down-
regulated in immature seed (Fig. 6), potentially
blocking the carotenoid pathway below lycopene and
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leading to a decrease in cyclic carotenoids concentra-
tion. BoZDS and BoPDS1 overexpression in immature
seed (Fig. 6) could thus be a response to low concen-
trations of end-products in the carotenoid pathway
(Fig. 7). Consistent with such a block at the immature
seed stage, low β-carotene and ABA levels [13] corre-
lated with the presence of PDS and absence of

lycopene cyclase transcripts (β-LYC and ε-LYC) in this
tissue [15]. If this block is occurring, the lycopene
could accumulate in immature seeds increasing the
availability of this compound for the bixin pathway.
In conclusion, these results are consistent with the
hypothesis that lycopene is the main precursor of
bixin [12–14].

Fig. 7 Model of gene regulation in bixin biosynthesis. Genes with qRT-quantification are represented with filled rectangles. Filled red rectangles
indicate genes displaying increased expression in immature seed. Filled green rectangles indicate downregulated genes. Red unfilled rectangles
indicate genes represented in the Jako’s immature seed library. Asterisks denote partial sequences. The green line indicates blocked downstream
process. The green square represents the plastid. The yellow square represents the cytosol. Bright yellow marks the MEP pathway genes. The
orange square contains the carotenoid pathway genes and the blue square the bixin pathway. The dashed arrow indicates lycopene feedback
regulation. The figure was generated with PathVision 3.1.3 [80]
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Identification of new candidates Bixin biosynthesis
pathway genes
Bixin is an orange-red apocarotenoid that accumulates
in high quantities in seeds, accounting for 80 % of the
total carotenoids. Concentrations of bixin increase con-
tinuously during development of immature seeds until
they reach maximum size [13]. How is lycopene con-
verted into bixin? The literature indicates the action of
three types of enzymes: 1. Carotene cleavage deoxygen-
ase; 2. Aldehyde dehydrogenase; and 3. Methyltransfer-
ase. Putative B. orellana sequences encoding these
enzymes have been described [12]. Surprisingly, we were
unable to find transcripts corresponding to the se-
quences proposed for the above enzymes. Instead, we
identified mRNAs encoding different BoCCDs, BoALDH
and BoMTs enzymes and believe that these are involved
in bixin synthesis. The discrepancy between these and
previous findings is explained by the phylogenetic place-
ments of these proteins. The enzymes proposed by Bou-
vier and co-workers [12] are placed in clades
corresponding to monocotyledonous species such as
Crocus sativus. Furthermore, BoLCD and BonBMT
placement in these clades is well supported with bootstrap
values of 99 and 96 %, respectively (Additional file 2:
Figure S1-S3). It is therefore likely that these cDNAs are
not from Bixa orellana, but may have been misplaced in
the original study. The sequences proposed here for
these enzymes, on the other hand, are in the same
phylogenetic branch as cotton, cacao and other di-
cotyledonous plants and were confirmed as Bixa se-
quences by PCR amplification using independent Bixa
orellana RNA samples.

Carotenoid cleavage dioxygenase candidate proteins in
bixin synthesis
The initial step of bixin synthesis is the 5-6/5′-6′ oxidative
cleavage of lycopene catalyzed by carotenoid cleavage oxy-
genase to produce bixin aldehyde [12, 14]. In plants, nine
types of carotenoid cleavage dioxygenase have been identi-
fied, but only the CCD type 1 and type 4 have been associ-
ated with pigment pathways [12, 51–54]. We identified
nine putative CCD proteins, four of them CCD type 1 and
five type 4 (Table 2 and Additional file 2: Figure S1). As
can be seen in Additional file 2: Figure S1, BoCCD1-1 and
BoCCD1-2 were closely related to previously isolated
CCD1 [13] and they are grouped with monocotyledonous
BoCCD1 proteins; this cluster, which was also present
in other phylogenetic analysis of CCD family [55], is
not well supported with a bootstrap values of 11 in this
study and 67 [55], and could be spurious. The gene ex-
pression level of previously isolated BoCCD1, correlated
with bixin accumulation in B. orellana [13]. This sug-
gests that BoCCD1-1 and BoCCD1-2 could be involved
in the cleavage of carotenes to produce seed

apocarotenoids, such as ABA and bixin. However, our
qRT-PCR analysis indicated that BoCCD1-1 is equally
expressed in leaf and immature seed. BoCCD1-2 was
preferentially expressed in leaf. Unlike these genes,
BoCCD1-3 and BoCCD1-4, were overexpressed ~1.5
times and ~10 times in immature seed compared to
leaf, respectively (Fig. 6). This suggests that BoCCD1-3
and BoCCD1-4 are involved in the cleavage of caro-
tenes in immature seed. CCD1 enzymes have the abil-
ity, in vitro, to cleave the 5-6/5′-6′ bond in acyclic
carotenoids like lycopene (reviewed in [10]). However,
experimental subcellular localizations of CCD1 proteins
indicated that they are localized in the cytosol without
direct access to lycopene [54, 56]. In silico prediction of
protein properties suggests that BoCCD1-3 is not local-
ized in the chloroplast and presumably does not have
direct access to lycopene (Additional file 1: Table S8),
therefore it could not be involved in the bixin pathway
unless it cleaves lycopene in the cytosol.
CCD4 has the ability to cleave lycopene at the 5, 6/5′,6′

double bond position and the enzymatic activity is specif-
ically associated with plastoglobules within plastids where
it has access to its carotenoid substrates [12, 53, 57–59].
We assembled four cDNAs that were each predicted to
encode a complete BoCCD4 ORF (Copy 1–4). The small
family formed by these four proteins (Additional file 2:
Figure S1) probably originated by duplication, as it ap-
pears to be present in other woody plants like T. ca-
cao and P. trichocarpa. qRT-PCR quantification
indicated that BoCCD4-1, BoCCD4-2 and BoCCD4-3
were upregulated in immature seed, suggesting their
involvement in the first step of the bixin pathway
(Fig. 6). The cDNAs encoding the BoCCD4-2 and
BoCCD4-3 proteins were also represented in the pre-
vious immature seed library (Table 2) [14]. According
to subcellular localization prediction, BoCCD4-1 and
BoCCD4-3 are localized in chloroplasts, whereas
BoCCD4-2 is localized in the cytosol (Additional file 1:
Table S8). Taken together, this evidence suggests that
BoCCD4-1 and BoCCD4-3 cleave lycopene in plastids,
where bixin is synthesized. We cannot dismiss the possi-
bility that BoCCD1-3 and BoCCD4-2 could participate in
the first step of bixin synthesis. Alternatively, the bixin
pathway could be localized both in plastids and in
the cytosol. In this case, BoCCD4-1 and BoCCD4-3
could cleave one 5–6 lycopene double bound in plas-
tids followed by export of the resulting C32 intermedi-
ate to the cytosol. Next, BoCCD1-3 and BoCCD4-2
would cleave the other 5′-6′ double bond to produce
bixin aldehyde, and cytosolic BoALDHs and BoSA-
BATH would complete the bixin pathway (Fig. 7).
The sequential cleavage, first in plastid and then in
cytosol, has been demonstrated in the mycorradicin
pathway [60, 61].
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Aldehyde dehydrogenase candidate proteins in bixin
synthesis
The second step in the bixin pathway is the oxidation
of aldehyde groups in bixin aldehyde, into carboxylic
acids by aldehyde dehydrogenase [12, 14]. Thirteen
distinct families of plant aldehyde dehydrogenases en-
zymes have been identified, although only ten families
(ALDH2, 3, 5, 6, 7, 10, 11, 12, 18 and 22) are present
in most plant species [62]. Previously identified B.
orellana ALDHs that could be involved in the bixin
pathway include five clusters of ESTs differentially
expressed in immature seed [14], and one BoBADH [Gen-
Bank: AJ548846] [12], which appears to be a member of
the ALDH2 family, specifically type 2C4. BoBADH is re-
lated to ALDH2C4 of monocotyledonous plants, espe-
cially that of C. sativus (Additional file 2: Figure S2). Here,
we identified 20 BoALDHs cDNAs from the ten families
constituting the common core group (Table 2 and
Additional file 2: Figure S2). A partial BoALDH2C4 se-
quence was also identified in the transcriptome. The fact
that ALDH2C4 isolated by Bouvier and co-workers [12] is
capable of converting aldehyde groups from bixin alde-
hyde into carboxylic acids and that it is predicted to
localize in the chloroplast (Additional file 1: Table S8),
suggests that BoALDH2C4 could catalyze the second step
of the bixin pathway in plastids. Alternatively,
BoALDH2C4 could be acting in the cytosol because in
silico prediction and experimental data indicate that
orthologous A. thaliana, G. max, Z. mays, E. parvula and
E. salsugineum ALDH2C4 proteins have cytosolic
localization [63–66].
Based on subcellular localization prediction, qRT-PCR

quantification and presence in the Jako’s library [14], the
other three BoALDH (BoALDH3H1-1, 3I1, and 7B4)
could also be involved in the bixin pathway. The subcellu-
lar localization predicted by Plant-mPLoc and PLpred for
BoALDH3H1-1, BoALDH3I1 and BoALDH7B4 indicate
that they are localized in chloroplast, where they could
have access to bixin aldehyde (Additional file 1: Table S8).
Additionally, orthologous proteins predicted to be local-
ized in the chloroplast are found in A. thaliana,
(ALDH3I1), Zea mays (ALDH3H1), E. parvula and E. sal-
sugineum (ALDH3H1 and ALDH3I1), and G. max
(ALDH7B4) [64, 65, 67, 68]. BoALDH3H1-1, BoALDH3I1
and BoALDH7B4 are found in the immature seed Jako’s li-
brary [14]. Moreover, our qRT-PCR analyses indicate that
BoALDH3I1 and BoALDH3H1-1 are also upregulated in
immature seed (Fig. 6). The subcellular localization of
these three proteins in immature seed and the broad range
of substrates catalyzed, suggest that these proteins could
catalyze the second step in bixin pathway to produce nor-
Bixin in plastid or cytosol. The best candidates for this
role, however, are BoALDH3I1 and BoADLH3H1 because
these enzymes can act on various substrates in plastids

(BoADLH3H1 and BoALDH3I1) or cytosol
(BoADLH3H1) (Additional file 1: Table S8) [67]. More-
over, orthologous ALDH3H1 and ALDH3I1 proteins from
Synechocystis sp. (SynAdh1), Neurospora crassa (YLO-1)
and Fusarium fujikuroi (carD) have the ability to oxidize
aldehyde groups from apocarotenoides into carboxylic
acids [69–71].

Methyltransferases candidate proteins in bixin synthesis
The last step of bixin biosynthesis involves a methyl-
transferase that methylates a norBixin carboxyl group;
members of the SABATH methyltransferase family
methylate carboxyl groups [23]. This family also includes
enzymes that methylate nitrogen atoms. Previous
SABATH methyltransferases identified in B. orellana in-
clude two clusters of ESTs from the Jako’s library [14],
and BonBMT, which methylates the carboxyl groups of
norBixin (GenBank: AJ548847) [12]. Here, we identified
12 SABATH methyltransferases. None of them is closely
related to BonBMT (Additional file 2: Figure S3), which
is grouped with the C. sativus methyltransferase.
BoSAMTH1, 3, 4, 5 and 6 are placed in the same clade,
raising the possibility that these proteins share the func-
tion of methylating norBixin. In this group of proteins,
BoSABATH1 could be involved in bixin synthesis be-
cause qRT-PCR indicated that it is overexpressed in im-
mature seed (Fig. 6). Probably, BoSABATH1 methylates
norBixin in the cytosol because it is not predicted to
have a plastidial localization (Additional file 1: Table S8).
qRT-PCR analysis of BoSABATH3 and BoSABATH4
transcripts shows that they are upregulated in immature
seed (Fig. 6), thus suggesting that these proteins could
be involved in bixin biosynthesis; furthermore, these
proteins are represented in the Jako’s immature seed li-
brary [14]. Subcellular localization prediction indicates
that BoSABATH3 and BoSABATH4 are plastidial pro-
teins with direct access to norBixin in chloroplast or
chromoplast. Additionally, we identified 26 methyltrans-
ferases involved in secondary metabolism (data not
shown), but these were not taken into consideration as
candidates for norBixin methylation because most
methylate oxygen atoms in benzenic rings.

Bixin biosynthesis model
Bixin production involves the coordinate expression of the
MEP, carotenoid and bixin pathways genes in immature
seed. Figure 7 illustrates three molecular steps necessary
to synthetized bixin: 1. BoDXS2a and others MEP genes
involved in generation of carotenoids precursor such as
BoDXR and BoHDR are induced to produce carotenoids
in non photosynthetic tissue. 2. Lycopene cyclase genes
(Boβ-LYC1, Boβ-LYC1 and Boε-LYC) are turned off, thus
blocking metabolic flow toward cyclic carotenoids down-
stream of lycopene. The low concentrations of β-carotene
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and xanthophyll, induce the expression of BoPDS1 and
BoZDS and promote lycopene production in plastoglo-
bules of immature seed cells. In this scenario, also PSY
should be upregulated, as suggested by its representation
in the Jako’s library [14]. Surprisingly, the two genes found
in this transcriptome were downregulated in our dataset.
3. The BoCCDs (BoCCD1-3, BoCCD1-4, BoCCD4-1,
BoCCD4-2 and BoCCD4-3), BoALDH3 (BoALDH3H1 and
BoALDH3I1) and BoSABATH (BoSABATH1, BoSABATH3
and BoSABATH4) genes are then turned on leading
to lycopene conversion to bixin in plastoglobules or
cytosol (Fig. 7).

Conclusion
Deep sequencing of the Bixa orellana transcriptome en-
abled the the isolation and characterization of the
complete MEP and carotenoid pathway genes. Our in-
ability to find in this transcriptome cDNAs previously
identified by Bouvier and co-workers [12], lead us to
propose new and alternative enzymes, whose identifica-
tion was based on the upregulation of the corresponding
genes. These findings will help elucidate the regulatory
mechanisms controlling the production and accumula-
tion of carotenoid and bixin in B. orellana. For this,
characterization of the enzymatic activities proposed
here will be necessary. Finally, this information will help
identify the candidate genes and mechanisms for vari-
ation of apocarotenoids accumulation in achiote var-
ieties, thus facilitating the genetic improvement of
achiote for high bixin content.

Methods
Plant material and total RNA isolation
Samples of young leaves, immature and mature seeds
were harvested from B. orellana plants cultivated at a
commercial plantation in Chicxulub, Yucatán, Mexico.
All tissues were obtained from a B. orellana accession
“Peruana Roja”, a variety with pink flowers and high pig-
ment contents characterized by Rivera-Madrid and co-
workers [72] (Fig. 1). The fresh tissues were immediately
frozen in liquid nitrogen and stored at −80 °C until ana-
lysis. Total RNA was isolated from leaves, immature and
mature seeds from B. orellana, accession PR, according
to the protocol of Rodríguez-Ávila and co-workers [16].

Illumina sequencing and de novo assembly
Total RNA from the different tissue was used for the con-
struction of indexed mRNA libraries using KAPA Stranded
mRNA-Seq Kit Illumina platform (KAPA Biosystems:
KR0960). Libraries were paired end sequenced with 150 cy-
cles in two lanes of the Illumina HiSeq 2500 platform
(~300 million reads total) using two insert sizes: 250 bp for
read overlap, and 450 bp for paired reads. The long reads
are necessary for the assembly of homologous sequences.

Reads were then demultiplexed and preprocessed for qual-
ity using scripts developed by the Comai laboratory and
available online (http://comailab.genomecenter.ucdavis.edu/
index.php/Barcoded_data_preparation_tools). Reads were
trimmed for quality when the average Phred sequence qual-
ity over a 5 bp window dropped below 20, trimmed for
adapter sequence contamination, and discarded if the final
length was shorter than 35 b. For the assembly process
reads were processed through the Velvet assembler [17],
using kmer sizes ranging from 21 to 53 and a range of ex-
pected coverages. The same read set was then also put
through CLC Genomics Workbench de novo assembler
(http://www.clcbio.com). The Velvet assemblies had dupli-
cates removed and then was combined with the CLC contig
set. This combined contig set was reduced to contigs in the
size range of 300 bp – 10 kbp, and was then put into CAP3
[18] to create transcript contigs. Assemblathon2 Perl script
[73] were used to compute assembly statistics. As demon-
strated by Ashrafi [19] Velvet and CLC assembly algorithms
were found to have complementary qualities for the initial
assembly. CAP3 was used as a superassembler to extend
Velvet and CLC contigs.

Blast search in public databases
A local BLAST analysis was performed to compare
the achiote transcriptome (52,549 contigs) with three
protein databases, NCBI Plant Protein Reference se-
quence (RefSeq) update in May, 2014, Phytozome
v10.0.2 and PLAZA 3.0. The BLASTX algorithm in-
cluded in bioinformatics package BLAST+ v2.2.29
[74] was used with an e-value cutoff of 1e-6. In order
to compare the transcriptome against a previous B.
orellana EST library [14], a bidirectional BLASTN
analysis with e-value cutoff of 1e-100 was performed.
The Jako and co-workers EST library is available in
NCBI [GenBank: LIBEST_025681 BIXA] [14].

Functional annotation
For functional annotation, 52,549 contigs were searched
against RefSeq using BLASTX algorithm included in
bioinformatics package BLAST+ v2.2.29. The e-value
cutoff of 1e-6 was used for the search and 50 alignments
were kept. Gene Ontology terms (GO) from GO data-
base (06/may/14) were extracted from BLASTX results
using the BLAST2GO program [75]. To get the func-
tional pathway annotation from KEGG pathways in the
curated KEGG GENES database, the KAAS tool (KEGG
Automatic Annotation Server) was implemented [76].

Identification of MEP, carotenoid and bixin pathways
genes from B. orellana transcriptome
Local TBLASTN with e-value cut off of 1e-6 was per-
formed to search the MEP, carotenoid and bixin path-
ways genes. Homologous protein from Arabidopsis
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thaliana, Theobroma cacao and Gossypium raimondii
were used to make the search against B. orellana tran-
scriptome database. If the resultant contigs did not have
the complete open reading frame (ORF), then contigs
with partial ORFs were isolated and assembled with
Lasergen SeqMan software (DNASTAR Inc., Madison,
WI, USA).

Phylogenetic analysis
Phylogenetic reconstruction from proteins codified by a
set of 13 single copy genes identified by Duarte and co-
workers [21] was based on alignment of concatenated
protein sequences from 28 plant species and one moss
species. Phylogenetic tree was inferred by the maximum-
likelihood method based on Le_Gascuel_2008 (LG)
substitution model [77] and Gamma distributed (G).
Phylogenetic analysis from MEP/carotenoid enzymes
pathways was based on alignment of concatenated se-
quences from 29 plant species and one moss species.
Phylogenetic tree was inferred by maximum-likelihood
method based on Jones-Taylor-Thornton (JTT) substitu-
tion model [78] and Gamma distributed with Invariant
sites (G + I). In both cases the analysis were carried out
using algorithms included in MEGA6 [79] and the substi-
tution models were predicted by the Best-Fit substitution
model (ML) function included in MEGA6. Phylogeny tests
were conducted by the bootstrap method (1000 repli-
cates). All positions containing gaps and missing data were
eliminated. The alignments of concatenated sequences
were performed with the ClustalW algorithm with default
parameters on MEGA6. Phylogenetic trees were rooted
with Chlamydomonas reinhardtii, a single-cell green alga.
Proteins sequences and plant species used are listed in
Additional file 1: Table S9.

Gene expression
The cDNA was synthesized using the SuperScript III
First-Strand Synthesis System for the RT-PCR kit (Invi-
trogen, San Diego, CA) according to the manufacturer’s
instructions. After reverse transcription, the cDNAs
were amplified by qPCR with 40 cycles and with specific
primers (Additional file 1: Table S6). A parallel reaction
with 40 cycles and specific primers for the 18S rRNA
gene (5′-CGGCTACCACATCCAAGGAA-3′ and 5′-
GCTGGAATTACCGCGGCT-3′, AF206868) was run as
an expression control for each PCR reaction. Three rep-
licates of each PCR reaction were carried out to confirm
the results. Gene expression relative to the 18S rRNA
gene was assessed using the StepOne Real-Time PCR
System (Applied Biosystems catalog number 4376374).

Availability of supporting data
Supporting data are available in NCBI database.

The Bixa orellana transcriptome has been deposited at
Transcriptome Shotgun Assembly project at DDBJ/
EMBL/GenBank under the accession GDKG00000000.
The version described in this paper is the first version,
GDKG01000000.
BioProject: PRJNA290519 (http://www.ncbi.nlm.nih.-

gov/bioproject/290519)
BioSample: SAMN03892718 (http://www.ncbi.nlm.-

nih.gov/biosample/?term=SAMN03892718)
Sequence Read Archive (SRA): SRR2131178 (http://

trace.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi?run=SRR2131178)
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library created by Jako and co-workers [GenBank: LIBEST_025681 BIXA].
Table S3. Gene Ontology (GO) annotation. Table S4. Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotation. Table S5. Pairwise comparison
between amino acid sequences of carotenoid cleavage dioxygenase
proteins. Table S6. RT-qPCR primers. Table S7. BLASTx comparison
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proteins .Table S8. Subcellular localization predictions for the BoCCD,
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