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Abstract

Background: Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important
opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions
such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during
bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized.

Results: This strain displays phenotypes that have been associated with chronic respiratory infections in CF including
alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease
secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic
respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold
increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and
sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels
to B-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a
6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. geruginosa genome sequences.
Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids
and lipids is up-regulated when compared to PAOT and metabolic modeling identified further potential differences
between PAO1 and PAHM4.

Conclusions: This work provides insights into the potential differential adaptation of this bacterium to the lung of
patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the
development of disease-appropriate treatment strategies for P. aeruginosa infections.
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Background

Pseudomonas aeruginosa is an adaptable and resilient
Gram-negative bacterium found ubiquitously in the en-
vironment [1-3] that is capable of infecting a wide
range of organisms, including vertebrates, invertebrate
eukaryotes, and plants [4]. In humans, it is responsible
for causing keratitis, burn wound infections, and severe
chronic respiratory infections in patients with under-
lying diseases such as cystic fibrosis (CF) or bronchiec-
tasis [5]. The ubiquitous nature of P. aeruginosa and
range of diseases is likely due in part to high genome
plasticity [6].

Bronchiectasis is a pulmonary disease characterized by
dilated bronchi, airway inflammation, chronic sputum
production, and long-term bacterial colonization result-
ing in frequent exacerbations of bacterial infections [7].
Chronic P. aeruginosa infections in these patients are
often associated with a worsening of symptoms, de-
creased pulmonary function, and increased frequency of
exacerbations [8]. Once established, these infections are
difficult to treat with antibiotics. The chronic lung in-
flammation, airflow obstruction, and extensive tissue
remodeling found in the lungs of bronchiectasis patients
resemble those of patients with CF or chronic obstruct-
ive pulmonary disease (COPD) [9]. The adaptation of
P. aeruginosa to the CF lung has been extensively stud-
ied during the past decade [10-16]; however, little is
known about the molecular mechanisms underlying
the persistence of this bacterium in the lungs of pa-
tients with bronchiectasis.

A model describing the increased fitness in a chronic
infection has been previously established (reviewed by
Montanari et al. [17]) and this process can be enhanced
by mutations to the various DNA proofreading systems,
result in an increased mutation rate. During chronic CF
infections, P. aeruginosa “hypermutators” can be isolated
from 37 to 54 % of the patients [18, 19]. MutS, a critical
component of the mismatch repair system [20], is com-
monly lost in hypermutator strains [19], resulting in ele-
vated mutation rates [21]. P. aeruginosa hypermutator
strains isolated from chronically infected patients, in-
cluding those with bronchiectasis [22], are often more
resistant to antibiotics, possess a mucoid phenotype, as
well as loss of lipopolysaccharide (LPS) O-antigen and
motility [15].

In this work, we have determined the genome sequence
and characterized numerous phenotypes of P. aeruginosa
strain PAHM4, a hypermutator from a chronic bronchiec-
tasis infection that has been the subject of previous
research [23]. This strain has several unique DNA
islands and characteristics that may have facilitated the
persistence of the microorganism in the lung. While
this strain shares some traits with chronic CF isolates,
it also differs from CF isolates in numerous ways,
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potentially highlighting differences between the CF lung
and the bronchiectasis lung. By identifying key charac-
teristics required for specific lung infections such as the
expression of specific virulence factors, antigens or
antibiotic resistance genes, it may be possible to iden-
tify drug targets specific to each type of infection.
These findings have the potential to aid in the develop-
ment of infection-specific treatments for P. aeruginosa.

Results and discussion

Virulence phenotypes of P. aeruginosa PAHM4 differ from
those of CF and laboratory isolates

P. aeruginosa PAHM4 has been previously studied due
to its constitutive trimethylation of EF-Tu, which mimics
platelet activating factor and binds to platelet activating
factor receptor [23, 24]. During these investigations,
other interesting phenotypes of this strain, such as
mucoidy and hypermutation, were observed when com-
pared to chronic CF or laboratory isolates prompting an
in depth characterization of the strain.

Adhesion and invasion assays indicated that PAHM4
and other bronchiectasis isolates differed from acute
lung infection and chronic CF isolates. Strains isolated
from acute infections displayed a significantly higher
adhesion (Fig. 1a) and invasion (Fig. 1b) capacity com-
pared to strains isolated from patients with bronchiec-
tasis (p =0.0008 and p = 0.0068, respectively, unpaired
t-test) or cystic fibrosis (p =0.0078 and p = 0.0437, re-
spectively, unpaired ¢-test). PAHM4 adhesion and inva-
sion capacity was low, likely due to its hyper-mucoid
phenotype, but not significantly different from the
other bronchiectasis isolates. Interestingly, we observed
that overall adhesion and invasion of these bronchiectasis
isolates was significantly lower (~0.43-fold and ~0.86-fold,
respectively) than the isolates from CF infections, suggest-
ing that adaptation of P. aeruginosa isolates to the lung of
patients with bronchiectasis results in the selection of
different phenotypes.

The capacity of PAHM4 to evade phagocytosis and to
survive intracellularly in macrophages was also examined.
Naive bone marrow-derived macrophages from BALB/c
mice were infected with 2.5 x 108 CFU/well (MOI 500:1)
of P. aeruginosa. Intracellular bacteria were quantified
after 15 min incubation to measure uptake, or a 90 min
incubation to measure intracellular survival. No significant
difference in macrophage uptake was observed between
the different strains tested (Fig. 1lc, solid bars). After
90 min incubation, the number of live intracellular PAO1
and PAHM4 did not significantly change (p = 0.6703 and
p =0.9001, respectively) compared to the number of intra-
cellular bacteria after 15 min, whereas the number of live
PA14 had tripled (p = 0.0036). Intracellular PAHM4 popu-
lations were maintained during the length of the experi-
ments, indicating that PAHM4 is resistant to murine
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Fig. 1 In vitro models of infection. Adhesion (a) and invasion (b) assays of individual clinical isolates from patients with acute pulmonary infections,
bronchiectasis, or CF. Type Il pneumocytes A549 cells monolayers were infected with 5 x10° CFU and the percentage of adhered and invaded cells
was measured using a standard gentamycin exclusion assay. PAHM4 is highlighted on the graphs in red. Experiments were performed in triplicate. C.
Macrophage uptake (solid bars, time = 15 min) and killing (striped bars, time =90 min) were performed using murine bone marrow macrophages
extracted from BALB/c mice and grown in presence of L-cells conditioned medium for 5 days. Macrophages were infected with PAO1, PA14
or PAHM4 at a MOI 500:1. Experiments were performed in duplicate. D. In vitro infection of lettuce leaves. The midrib of romaine lettuce was
infected with a bacterial suspension of 10° CFU of PAOT, PA14 or PAHM4 and incubated at ambient temperature for 48 h. The diameter of
the soft rot area at the site of inoculation was measured. Experiments were performed in triplicate. For all experiments, data were analyzed
using an unpaired two-tailed t-test and the software GraphPad Prism 5.01
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macrophage killing in this experimental setting similar to
PAOI1, but in contrast to the PA14 population that
increased during the course of the experiment (Fig. 1c,
striped bars).

Lettuce leaves were infected with PAO1 (burn), PA14
(wound) and PAHM4 (non-CF bronchiectasis) to inves-
tigate the virulence of these P. aeruginosa strains in an
environmental setting. In this model, PAHM4 displayed
a significantly decreased capacity of infection compared
to PAO1 and PA14 (~0.8-fold, p < 0.0005, Fig. 1d).

Biofilm production is thought to be a hallmark of
chronic colonization of the CF lung [25], having been in-
directly [26, 27] and directly [28] observed in CF sputum
and lungs. Accordingly, the capacity of PAHM4 to form
biofilms in rich media (LB), with and without supple-
mentation with iron and/or glycerol, was determined
and compared to PAO1. PAO1 formed significantly more
biofilm than PAHM4 in lysogeny broth (LB) (p = 0.0154),
in the presence of glycerol (p=0.0161) and iron (p=
0.0177) (Fig. 2). It is important to note that while PAHM4
exhibited slower growth than PAO1 in LB with shaking at
37 °C (data not shown), it has been reported that growth
rate does not necessarily influence biofilm formation [29].
Biofilm formation can be variable in individual CF isolates,

even well studied strains like LESB58, which has variously
been reported as hyper- [30], hypo- [31], or an equivalent-
[32] producer of biofilms compared to PAOL.

P. aeruginosa secretes numerous enzymatic virulence
factors, including proteases, elastase, and hemolysins.
P. aeruginosa proteolysis is due to secretion of a type
IV protease, elastase, and an alkaline protease. Quanti-
tative casein degradation assays indicated that PAHM4
had significantly less general protease activity than
PA14 and PAOL1 (Fig. 3a). The elastase LasB is involved
in the disruption of tight junctions, and the cleavage of
numerous proteins including surfactants, cytokines, che-
mokines, C3, and immunoglobulin [33, 34]. Elastase activ-
ity, as measured by the degradation of elastin-congo red
elastin, was significantly decreased in PAHM4 compared
to PA14 and significantly more than PAO1 (Fig. 3b).
While protease and elastase levels vary between PAO1
and PA14, PAHM4 seems to have reduced overall prote-
ase levels while retaining elevated elastase activity com-
pared to PAOL. This contrasts typical mucoid CF isolates
that routinely lose elastase activity [35-37] in addition to
having reduced levels of general protease activity [38].

P. aeruginosa hemolysis is due to two hemolytic extracel-
lular products: phospholipase C, a heat-labile hemolysin,
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Fig. 2 Biofilm formation in PAHM4. Measurement of biofilm formation of PAO1 (white bars) and PAHM4 (grey bars) grown for 24 h in rich media
(LB) either unsupplemented or with glycerol, iron, or iron and glycerol added. *, p < 0.05. Error bars represent the standard deviation of biological
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and a rhamnolipid, a heat-stable hemolysin. Assessment of
the hemolytic capacity of PAHM4 after growth for 24 h on
blood-agar plates indicates the presence of [-hemolysis
activity in PAHM4 [39] (data not shown).

PAHM4 phenotypes in common with CF isolates

Despite these differences when compared to P. aerugi-
nosa laboratory strains and previously reported for CF
isolates, PAHM4 and CF isolates have several pheno-
types in common including mucoidy, hyper-mutation,
loss of motility, and an extensive antibiotic resistance
profile.

PAHM4 colonies appeared to be mucoid under typical
growth conditions, similar to chronic CF isolates. Quanti-
fication of alginate indicates that PAHM4 produces 10
times more alginate that PAOL in the tested conditions,
with an average of 11.01 pg / 10° cfu (p < 0.0001 unpaired
t-test).

To characterize the hypermutator phenotype in PAHM4,
the frequency of emergence of rifampicin-resistance was
used to calculate the mutation rate (Table 1). Wild-type
PAOI had a mutant frequency of 4.9 x 10~° and a mutation
rate of 1.8 x 10~° mutations/cell/generation, while a AmutS
isogenic strain, PAOMS, showed a 2,000-fold increase in
mutation rate (Table 1). The mutant frequency and muta-
tion rate of PAHM4 were equivalent to the PAO1 AmutS
strain, and complementation of PAHM4 with mutS from
PAOL1 reduced the mutant frequency and mutation rate by
nearly 2 logs (Table 1), leaving a residual 10-fold increase in
mutation rate. This indicates that the mutS mutation is the
major cause of the hypermutation phenotype observed in
PAHM4, similar to what is seen in CF isolates [40].

It is possible that the remaining increase in mutation
rate in the mutS complemented strain was due muta-
tions in mutL or mutY. To test this hypothesis, plasmids
encoding wild-type mutL and mutY were used to meas-
ure the change in mutation frequency. In contrast to
mutS, complementation with wild-type mutl or mutY

had no effect on mutant frequency and mutation rate,
suggesting a marginal impact, if any, of mutations to
these genes in PAHMA4.

The loss of both flagellar- and type IV pilus (TFP)- me-
diated motility is often observed in chronic CF isolates
[41, 42]. A phenotypic switch to non-motility has also
been noted in COPD isolates [43]. Compared to PAO1
and PA14, PAHM4 was defective for flagellar motility on
semisolid media (0.3 % agar for swimming and 0.5 % agar
for swarming) and twitching motility (1 % agar) (Fig. 4).
These results are similar to those seen in LESB58, which
has been reported to be defective in swimming and
swarming motility [30, 31], while totally lacking twitching
motility [31].

Patients with a chronic respiratory infection are subject
to heavy antibiotic treatment. The survival of P. aerugi-
nosa in the chronically infected lung is often associated
with an increased resistance to antimicrobial agents.
PAHM4 is clinically resistant to penicillins (carbenicillin,
piperacillin and piperacillin in combination with tazobac-
tam) and aminoglycosides (amikacin and gentamycin)
(Table 2 and Fig. 5). This strain also displays significantly
higher levels of resistance to cephalosporins, including
cefotaxime and monobactams, and fluoroquinolones,
when compared to PAOl. However, PAHM4 has in-
creased susceptibility to carbapenems (meropenem), poly-
myxins, macrolides and tetracycline compared to PAO1
(Table 2 and Fig. 5). Intermediate resistance levels to cef-
tazidime and ciprofloxacin in PAHM4 are most likely as-
sociated with the prolonged use of these antibiotics for the
treatment of this patient.

Penicillin, cephalosporin and monobactam resistance is
most likely due to the activity of the inducible -lactamase
AmpC encoded by ampC on the chromosome of P. aeru-
ginosa. High resistance levels to these 3-lactams are often
associated in P. aeruginosa clinical isolates with mutations
in the genes ampD and dacB, encoding AmpD, a repres-
sor of ampC expression, and the penicillin binding protein
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Fig. 3 Protease and elastase assays. a PAHM4, PAO1, and PA14 were
grown overnight in LB and filtered culture supernatants were added
to an azocasein solution. After incubation, trichloroacetic acid was added
to precipitate the remaining proteins and the OD,4gs was measured. Data
presented are the OD4g5/ODgnp Of the overnight culture. b Elastase
assays were performed by adding the filtered culture supernatant to an
elastin-congo red solution and measuring the OD,q after 2 h. All assays
were performed in triplicate, and the mean is plotted with error bars

representing the standard deviation. Based on Tukey's multiple
comparison test: ¥, p=0.0217**, p = 0.0085, ****, p = < 0.0001

Table 1 mutS-related mutant frequency and mutation rate in

PAHM4

Strain Mutant frequency Mutation rate (+95 % Cl)
PAOT 49x107° 18x107°(1.2-27)
PAOMS® 25%x10° 38x 107 (24-42)
PAHM4 22x10° 19x 1077 (1.5-24)
PAHM4 (pUCPMS)° 70x10°8 23x10°8(16-3.1)
PAHM4 (pUCPML) 25x107° 33x 107 (27-4.1)
PAHM4 (pLM102)¢ 15%x10° 19%x 1077 (15-23)

2mutS mutant
bcloned PAOT mutS
‘cloned PAO1 mutL
dempty vector
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4, respectively. In other strains, mutations in ampD and
dacB result in the derepression of ampC expression [44].
Mutation of dacB additionally derepresses the expres-
sion of creD through the activation of the CreBC two-
component regulator, contributing further to B-lactams
resistance [45]. To address these considerations, a series
of reverse transcription-quantitative PCR (RT-qPCR)
assays were performed to probe the nature of antibiotic
resistance in PAHM4. Our data indicate that ampC and
creD basal expression in PAHM4 are significantly higher
than in PAO1 (Table 3), and that ampC expression in
PAHM4 is not inducible. These results indicate that the
expression of ampC is fully derepressed, a phenomenon
often observed in Gram-negative bacteria isolated from
patients undergoing therapy with third-generation cepha-
losporins, such as cefotaxime and ceftazidime [46, 47].

Genome sequence determination of PAHM4

Given the interesting mix of phenotypes observed in
PAHM4, the genome sequence was determined, allowing
for the identification of the genetic basis for the observed
phenotypes, as well as potentially identifying additional
unique features of a non-CF P. aeruginosa lung isolate.
Sequence determination resulted in an apparent genome
size of 6,381,186 bp encoding 5906 putative ORFs and 62
structural RNAs. The genome sequence and protein
sequences used for all downstream analyses are included
as Additional file 1: Data File 1 and Additional file 2: Data
File 2, respectively. The PAHM4 genome has a size,
coding density, and % G + C similar to other P. aeruginosa
strains (Table 4). MLST analysis indicates that PAHM4
belongs to P. aeruginosa MLST clone ST-195 [48], which
is comprised of 11 strains included in the MLST database
(pubmlst.org/paeruginosa, last accessed 6/17/2014). Ten
of eleven strains of this MLST type were isolated from CF
patients in France or Australia, suggesting a propensity of
this clonal lineage for developing chronic infections, while
the other was a canine isolate.

Genome plasticity and a large accessory genome are
keys for adaptation of P. aeruginosa to a wide range of
environments [6]. Circular genome comparisons gener-
ated with BRIG [49] that show large scale differences
between the P. aeruginosa genomes are included as
Additional file 3: Data File 5, using PAO1 as the refer-
ence, and Additional file 4: Data File 6, using a PAHM4
pseudochromosome as the reference. To understand the
extent of genome plasticity in PAHM4, and the potential
role it played in adaptation to the bronchiectasis lung,
PanSeq [50] was used to compare the genome of PAHM4
to the 7 reference strains listed in Table 4.

These comparisons revealed that PAHM4 has at least
117 genome islands (GI), ranging in size from 399 —
49,917 bp, containing 377,121 bp of DNA not found in
other analyzed P. aeruginosa strains. Nineteen of these
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Fig. 4 Phenotypic analysis of PAHMA4. Visualization of swimming, swarming and twitching motility in media containing 0.3 % agarose, 0.5 % agar
and 1.2 % agar, respectively. Motility was assessed after 48 h at 37 °C and experiments were performed in triplicate

GIs, totaling 33,157 bp, had no significant BLASTN
hits (cutoff e = 0.01) in the non-redundant database as
of 7/1/2014.

PAHM4 DNA regions that were not present in other P.
aeruginosa strains were analyzed with BLASTX to identify
potential proteins. Numerous regions of interest were
identified, including prophage, a serotype O13 LPS O-
antigen locus, several type 6 secretion system (T6SS) loci,
putative virulence factors, metabolic genes, fimbriae and
pili, and a putative steroid degradation cluster (Additional
file 5: Table S1). This latter region consists of 6 ORFs that
have high DNA and protein similarity to a steroid degrad-
ation gene cluster identified in Pseudomonas resinovorans
(GenBank accession AB74080). As inhaled steroids have
historically seen use as supportive treatment for bronchi-
ectasis [51, 52] the presence of this cluster in PAHM4 is
intriguing as it suggests that this bacteria may be able to
utilize steroids as an energy source, which might in turn
negate the effectiveness of this treatment.

PanSeq also identified commonly occurring DNA se-
quences from P. aeruginosa strains that were absent from
the PAHM4 genome. This analysis identified 42 segments

of DNA comprising 172,189 bp that were present in all
seven other analyzed strains and missing in PAHM4
(Additional file 5: Table S2). The two largest clusters
accounted for ~33 % of the total common DNA absent
from PAHM4 (Additional file 5: Table S2). The first large
deletion in the PAHM4 genome spans PAO1l ORFs
PA1335 and PA1437 and includes the LasIR quorum sens-
ing (QS) system (PA1431 and PA1432). The second large
deletion includes PAO1 ORFs PA2128-PA2192. Of these,
PA2128-PA2181 have previously been reported to be
involved in biofilm formation [53] and under the control
of the transcriptional regulator RpoN in a mucoid strain
of P. aeruginosa [54]. These genes are also involved in
carbohydrate metabolism, and their loss might be the
result of the metabolic adaptation of PAHM4 to chronic
infection, as described below.

Bacterial genomes often contain prophages or prophage-
like elements which can differ between individual isolates
of the same species and provide valuable information on
bacterial evolution. Prophages mediate horizontal transfer
of genetic material through transduction and provide
important biological properties to their hosts. Large,
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Table 2 MIC values for common clinical antibiotics against
PAHM4 and PAO1

Class Antibiotic MIC pg/ml for MIC pg/ml
PAO1 for HM4
Penicillins Piperacillin 4(9) >256 (R)
Piperacillin- 29 >256 (R)
Tazobactam
Carbenicillin 32 64
Cephalosporins  Ceftazidime 1(5) 16 (I)
Cefepime 1(5) 6 (S
Cefotaxime 8 >256
Ceftolozane 025 1
Monobactam Aztreonam 2 (5) 8 ()
Carbapenems  Imipenem 1.5 (9 15(5
Meropenem 038 (S) 0.19 (S)
Quinolones Ciprofloxacin 0.125 (S) 2()
Aminoglycoside Amikacin 4(S) 9 (R)
Gentamicin 2 (5) 32 (R)
Tobramycin 15(S) 4(5)
Polymyxin Colistin 2.(S) 0.19 (9)
Tetracycline Tetracycline 16 4
Macrolide Azithromycin 64 16

Absolute MIC values and, when available, CLS/ clinical categories (S: susceptible,
I intermediate, R: resistant) are indicated
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apparently intact but not necessarily complete prophage
sequences were identified using PHAST [55] while Pro-
phageFinder [56] was used to more aggressively analyze
P. aeruginosa genomes for potential prophage content
in the form of degraded phage genomes. Similar to ob-
servations in other P. aeruginosa strains, PAHM4 had
several common prophage as well as a complement of
unique sequences (Additional file 5: Table S3).

Genome analysis identified several phenotypes common
to PAHM4 and CF isolates

Above, we have shown that hyper-mutation of PAHM4
is primarily the result of a deficiency in mutS. Sequence
analysis of the mutS locus in P. aeruginosa PAHM4
revealed a 2,559 bp ORF which has 98 % identity to
PAO1 mutS (PA3620). Compared to PAO1, mutS from
PAHM4 has several SNPs and an 1184del9 mutation.
Alignment of the resulting PAHM4 protein to the PAO1
protein identifies two changes: S281G and AT395_G397.
Warren and colleagues identified a P. aeruginosa isolate
from a chronic infection that also possessed the S281G
mutation and additional isolates in which MutS was
truncated at residue 426 [11]. BLASTP analysis indicates
that the specific three residue deletion in PAHM4 is a
unique occurrence among MutS from P. aeruginosa
strains and other members of the genus [11, 57].

As described above, PAHM4 over-produces alginate.
This phenotype is often associated with the establish-
ment of chronic respiratory infections by P. aeruginosa.
PAHM4 mucA contains a AG430 mutation, causing a
premature stop codon and resulting in a mutant allele
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Fig. 5 Antibiotic susceptibility profile. Comparative analysis of the antibiotic susceptibility profile of strain PAHM4 with that of PAOT with values
reported as the Log, of MIC differences (positive values are increased resistance, negative values are decreased resistance of PAHM4 compared to
PAOT). Antibiotics tested are cefotaxime (CTX), ceftazidime (CAZ), cefepime (FEP), piperacillin (PIP), piperacillin-tazobactam (PTZ), aztreonam (ATM),
imipenem (IMP), meropenem (MER), ciprofloxacin (CIP), gentamicin (GEN), tobramycin (TOB), amikacin (AMK) and colistin (COL) tetracycline (TET),

Y Y y y
T T T T

1 2 3 4 5 6 7




Varga et al. BMC Genomics (2015) 16:883

Table 3 RT-gPCR expression levels of antibiotic determinants

PAO1 HM4
Basal Induced Basal Induced
Expression expression® Expression expression’
ampC 1 329+8 509+4 5124181
creD 1 32+12 32+13 25+7
mexB 1 0.006 £ 0.002
mexD 1 0.007 £ 0.001
mexF 1 21+02
mexY 1 30+ 11

Mean values of relative (compared to PAOT) mRNA levels obtained in at least
three independent duplicate experiments. *For ampC and creD induction
experiments, cultures were incubated in the presence of 50 ug/mL cefoxitin.
Cefoxitin is an inducer of AmpC (and CreD) expression but does not affect
efflux pump (mexBDFY) expression

commonly referred to as mucA22 [58, 59]. mucA22
strains are constitutively mucoid, and this is the appar-
ent cause of alginate overproduction by PAHM4 [60]. In
the lungs of patients with CF, 85 % of mucoid P. aerugi-
nosa isolates have mutations in mucA [61], with mucA22
being the most common allele [62].

In addition to alginate, P. aeruginosa strains produce
other exo-polysaccharides known as Pel and Psl [63].
PAHM4 encodes an intact Pel locus while the Psl locus
has an assembly gap within psiL.

P. aeruginosa strains produce a variety of serotype-
specific O-antigen side chains on lipopolysaccharide
(LPS) (reviewed by Knirel et al. [64]). The O-antigen are
used as the basis for a typing scheme based on antibody
agglutination [65] and each serotype has a corresponding
genotype [66]. BLAST analysis of the PAHM4 genome
using the O-antigen locus sequences from Raymond et al.
[66] identified a 13,163 bp region in PAHM4 with 99.19 %
identity to serotype O13 (Fig. 6a). The PAHM4 locus pos-
sesses two 1-bp insertions compared to serotype O13. The
first disrupts ORF7, introducing several premature stop
codons while the second is intergenic and does not appear
to influence any genes (Fig. 6a). Strains corresponding to
several serotypes (e.g. O1, O5, 06, O10) have been

Table 4 Genomic characteristics of select P. aeruginosa strains
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sequenced, however no serotype O13 strain has had its
genome sequence determined and published. Chronic
CF isolates are known to frequently lose the O-antigen
from LPS, which is proposed to aid in immune evasion
[10, 67-69]. ProQ staining of LPS preparations from
PAO1 and PAHM4 revealed faint LPS banding (Fig. 6b).
It was anticipated that this might be the common antigen
portion of LPS, and a Western blot using anti-common
antigen Mab demonstrated the presence of common anti-
gen in PAHM4 (Fig. 6¢). As expected given the mutation
in ORF7, western blotting of the LPS preps using O13
antibodies did not indicate the presence of any O13
antigen (Fig. 6d).

Lipid A produced by PAHM4 after growth at 37 °C in
LB with 1 mm MgCl, was purified for structural analysis
by MALDI-TOF MS in the negative ion mode. Results
indicated that PAHM4 displayed lipid A species charac-
teristic of P. aeruginosa (Fig. 7a). The most abundant
anion giving the base peak at m/z 1632 corresponded to
a singly deprotonated hexa-acylated lipid A (Fig. 7b).
Specifically, PAMH4 synthesizes a hexa-acylated lipid A
species containing hydroxylated fatty acids (20H C12)
attached acyl-oxo-acyl at the 2 and 2’ positions, as well
as the retention of the 30H-C10 fatty acid at the 3 pos-
ition. The minor anion at m/z 1462 (penta-acylated) rep-
resents the loss of the 3 position 30H C10 fatty acid
from the m/z 1632 peak (1632-170 =1462) (Fig. 7c),
whereas the m/z 1616 (hexa-acylated) represents a struc-
ture that is only modified by a single hydroxyl group
(1632 — 16 = 1616) (Fig. 7d). As compared to the structure
of lipid A isolated from the laboratory adapted strains,
PAK and PAOL, the lipid A produced by PAHM4 showed
increased hydroxylation (OH group) and acylation. When
compared to lipid A from a typical CF strain PAHM4
has a different hydroxylation pattern and lacks the
addition of aminoarabinose [70]. The increased sus-
ceptibility of PAHM4 to polymyxins (Table 2) may be
explained by the loss of the specific O-antigen, as sug-
gested by earlier Salmonella studies [71] or by the
alterations to lipid A [72].

Strain PAHM4 PAOT PA14 PA2192° PA7 LESB58 NCGM2.51 C3719°
Size (bp) 6,381,186 6,264,403 6,524,142 6,905,121 6,588,339 6,601,757 6,764,661 6,222,097
% G+C 66.2 66.6 66.3 66.2 66.5 66.5 66.1 66.5

# ORFs 5906 5686 5584 6191 6071 6113 6287 5578
Average ORF size 938 997 1022 949 954 958 956 943
Coding % 874 204 874 857 87.9 887 889 874
rRNA 12 13° 1320 4 12 12 12 4

tRNA 55 63 59° 46 65 68 66 40

“Values from pseudomonas.com [147]
Pincludes annotated 65 rRNA
“Values from Mathee et al. [169]
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Genetic basis for antibiotic resistance

As described earlier, PAHM4 has resistance to many
antibiotics, and trends in expression levels of resistance
genes were similar to what is seen in chronic CF isolates.
The genome sequence allows for identification of the
basis for the observed resistances.

The high level of ampC and creD over-expression are
consistent with PAHM4 sequence data showing changes
present in AmpD (A85G, G148A and E170C) and DacB
(A394P and G337D) compared to PAOL. Previous work
showed that inactivation of these genes leads to a
complete derepression of ampC expression [45]. mexB
has a AC600 mutation, with the resulting frameshift
causing a premature stop codon. These results are con-
sistent with the meropenem hyper-susceptibility of this
strain and, compared to PAOI, the relatively low in-
crease in minimum inhibitory concentrations (MICs) for
several of the p-lactams (particularly carbenicillin) des-
pite the high level of ampC expression. Altogether, low
levels of mexB expression and the mutation observed in
this gene, which are presumably responsible for a non-
functional protein, might account for the lower MICs of
tetracycline and azithromycin of this strain. The se-
quences of gyrA, gyrB, parC and parE were analyzed in
order to determine the source of fluoroquinolone resist-
ance. Analysis identified a point mutation resulting in
GyrA having a D87Y substitution that resides within the
quinolone resistance determining region of the protein.
This mutation, related to high levels of fluoroquinolone
resistance, frequently occurs in CF isolates [73]. Other
point mutations were observed in genes encoding ParC
(S331T) and ParE (D533E), the latter being often associ-
ated with the GyrA D87Y substitution in P. aeruginosa
clinical isolates [74], and possibly associated with the
high quinolone resistance levels of the strain. The gyrB
sequence in PAHM4 is identical to the PAO1 sequence.
The selection of mutations in gyrA, parC, and parA, is
likely the result of the use of ciprofloxacin for the treat-
ment of the patient.

PAHM4 has a deficiency for acyl homoserine lactone
(AHL)-based quorum sensing

QS in P. aeruginosa is a well characterized phenomenon
(reviewed by Williams and Camara [9]) that controls the
expression of approximately 10 % of the genes in P. aeru-
ginosa and is known to control virulence factor expression
in P. aeruginosa as well as other microbial pathogens
[75-77]. It has previously been reported that P. aerugi-
nosa hypermutator strains frequently developed muta-
tions in the lasIR QS system [78].

As described above, sequence analysis indicated that a
large chromosomal deletion in PAHM4 includes lasl
and lasR. The rhlIR system is present and the resulting
proteins are 99 % and 100 % identical, respectively, to
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the homologs in PAOL. Culture supernatants of late
stationary phase PAHM4 and PAO1 samples were tested
for the production of both P. aeruginosa autoinducers,
C4-AHL (rhll) and 3-oxo-C12-AHL (lasl) using rhiIR
and lasR based quorum sensing-responsive reporters
[79, 80]. As expected, PAOL1 culture supernatants activated
both reporters, indicating the production of C4-AHL and
3-oxo-C12-AHL (Fig. 8). PAHM4 supernatant did not acti-
vate either reporter (Fig. 8), indicating an absence of both
autoinducers; this was a surprising result given the intact
state of the rhlIR genes. The CF isolate LESB58 belongs to
a lineage known for increased C4-AHL production leading
to over-production of QS-linked virulence factors and
hyper-virulence [81]. However, the contrasting observations
in PAHM4 are in line with findings from the longitudinal
analysis of chronic CF isolates which indicated that typically
P. aeruginosa strains would first lose Las activity while
eventually also losing Rhl activity [82]. One mechanism for
this is that the mucA22 allele, which is also present in
PAHM4, has been shown to be required for full expression
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Fig. 8 Presence of AHLs in PAHMA4 culture supernatant. Measurement of
the production of C4-acyl homoserine lactone and C12-acyl homoserine
lactone using the PAO1 rhl reporter pEC65.1 and las reporters pJN105
and pSC11, respectively in PAOT (white bars) and PAHM4 (grey bars)
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of rhlIR and lasIR [83]. Additionally, it is quite possible that
the loss of detectable C4-AHL is influenced by base
changes elsewhere on the chromosome.

PAHM4 has an expanded arsenal of protein secretion
apparatuses compared to other P. aeruginosa strains
Bacterial secretion systems play a major role in the export
of proteins involved in virulence, nutrient scavenging, and
immune evasion. The genome of PAHM4 was screened
for the presence of P. aeruginosa secretion systems in
order to understand the role of these systems in the adap-
tation of this strain to the chronic bronchiectasis lung.
PAHM4 contains four major operons encoding two
distinct type 2 secretion systems (T2SS) that are present
in the majority of P. aeruginosa strains. PAHM4 also
contains a putative operon encoding a 3" T2SS (Fig. 9).
This gene cluster shows ~90 % identity to the recently
characterized Txc T2SS that had previously only been
identified in the genome of P. aeruginosa PA7 [84, 85].
Intriguingly, the NCBI non-redundant database only
contains several high quality matches to this sequence
(sequence identity >80 %, query coverage >50 %) with
the closest match after PA7 belonging to the mosquito,
Culex pipiens quinquefasciatus [86]. This may be the

Page 11 of 27

result of an ancient horizontal gene transfer event be-
tween an endosymbiotic bacterium and the mosquito
[87].

Another protein secretion mechanism important to P.
aeruginosa virulence is the T6SS, which is a relatively
recently described mechanism of protein export that is
present in a wide array of Gram-negative bacteria. The
T6SS complex requires numerous proteins for assembly
of the apparatus and effector export [88—90]. Like other P.
aeruginosa strains, PAHM4 encodes the canonical T6SS
loci Hepl secretion island-1 (HSI-1), HSI-2, and HSI-3
[91]. In PAHM4, HSI-1, HSI-2 and HIS-3 are encoded on
three separate contigs with over 98 % DNA identity to
PA14 (Table 5).

Protein predictions indicate the presence of an additional
T6SS system in PAHM4 located in a region of DNA not
previously identified in P. aeruginosa strains that has
homology to the P. putida genome. The majority of pro-
teins in this cluster have homology to the type 1.2 T6SS
cluster from P. putida [92]. This cluster is evolutionarily
related to HSI-2 from P. aeruginosa but has never been
detected outside of P. putida [92], suggesting that PAHM4
obtained it in a horizontal gene transfer event. Interest-
ingly, this cluster contains several additional ORFs not
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and sequences homologous to this T2SS are only found in Culex pipiens quinquefasciatus
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Table 5 T6SS present in PAHM4
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T6SS P. aeruginosa PA14 P. aeruginosa PAO1 PAHM4 location PAHM4 coordinates

HSI-1 PA14_00875-01110 PA0074-0091 assembly049 95451-97461
assembly050 1-23876

HSI-2 PA14_42880-43100 PA1656-PA1671 assembly015 172345-195150
assembly001 108099-110744

HSI-3 PA14_33940-34150 PA2359-PA2374 assembly024 37353-59972

PAHM4-specific assembly028 495580-513221

seen in P. putida, and the predicted proteins showed
homology to Pseudomonas extremaustralis, a species
isolated from thawed ice in Antarctica [93, 94], and
numerous other marine bacterial species, indicating a
potential reservoir for this T6SS system.

PAHM4 encodes a robust assortment of homologs
of Hep and VgrG, secreted factors and structural com-
ponents of T6SS [95-97]. PAHM4 is missing several
conserved P. aeruginosa hcp and vgrG genes, but en-
codes additional homologs not found in PAO1 or
PA14 (Additional file 5: Table S4).

PAHM4 has a mix of novel and common cellular
appendage alleles

P. aeruginosa cells are equipped with several appendages
known to affect motility, biofilms, and adherence. Given
the various phenotypes identified in PAHM4, the genes
encoding these systems were investigated.

Type IV pili (TFP) are bacterial filaments typically
composed of repeating monomers (reviewed by Pelicic
[98]), which are known to have multiple functions in
Gram-negative and Gram-positive bacteria including
motility [99, 100] and biofilm formation [101, 102]. In
P. aeruginosa TFP have known roles in twitching motil-
ity [103], biofilm formation [104], disease pathogenesis
[105], and phage uptake [106].

P. aeruginosa produces two types of TFP: type IVa
(TFPa) and type IVb (TFPb) [107-109]. Additionally, it
has been shown that there are at least five distinct pilin
alleles for TFPa pilin, identified by the genes inserted be-
tween tRNA-Thr and pilA [110], known collectively as
group I-V. PAHM4, like PAO1 [111], encodes the group
I TFPa allele which lacks accessory genes downstream
of pilA [110] (Table 6). Group II TFPa is the most

Table 6 Analysis of TFP clusters in PAHM4

common allele identified in non-CF clinical isolates
while group I makes up the majority of CF isolates [110].
P. aeruginosa strains also produce numerous minor pilins,
encoded in an island downstream of the TFPa cluster
[111, 112]. The minor pilins in PAHM4, encoded by fiml,
and pil VWXE, are nearly 100 % identical to the pilins
encoded by a diverse set of strains including PAO1, PA7,
C3719, and NGCM2.S1 (Table 6).

The PAHM4 genome contains the prototypical TFPb
cluster seen in PA14 that encodes a bundle-forming pilus
[109]. When compared to PA14, the coding sequence for
this cluster was 99 % identical and all genes were intact.
PAHM4 also contains a second TFPb cluster associated
with the PAPI-1 element found in a subset of P. aeruginosa
strains, including PA14 [108]. PAHM4 assembly043 con-
tains a region with 98 % identity to a region spanning pilL2
to pilM2 in PA14, with all ORFs intact. This TFPb pilus is
known to be required for the transmission of PAPI-1 [108],
indicating that PAHM4 may retain the ability to transmit
its PAPI-1-like element.

In addition to TFP, another surface filament present on
P. aeruginosa cells is the chaperone-usher-pathway (CUP)
fimbriae. P. aeruginosa strains are known to encode
multiple, conserved, CUP systems [113]. PAHM4 and
PA7 are missing the CupA cluster and have distinct
unique alleles for CupB and CupC (Table 7). The CupA
cluster is located within one of the large chromosomal
deletions in PAHM4, while in PA7 the deletion is small and
primarily consists of the CupA cluster (data not shown).
The PAPI-1-associated CupD is absent in PAHM4 while
CupE is conserved. CupA, CupB and CupC have been
shown to be required for biofilm formation [113, 114] while
CupE was shown to be required more specifically for the
early phases of biofilm formation [115]. It is intriguing that

PAHM4 PAO1 PA14 PA7 LESB58 C3719 NGCM2.51
IVa group 2 2 3 4 1 3° 2°
minor pilin cluster type“ "PAOT" "PAOT" "PA14" "PAOT" "PAO1T" "PA14" "PAOT"
Vb PAPI-1 + - + - - - -
Vb FLP + + + + + + +

2C3719 glycosylation gene has a frameshift
PNGCM2.51 pilA sequence is present but not annotated

“Minor pilin cluster type refers to the sequence being similar to the fimU and pilVWXE alleles present in either PAO1 or PA14



Varga et al. BMC Genomics (2015) 16:883

Table 7 CUP cluster composition of P. aeruginosa strains
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CUP cluster PAHM4 PA7 PA14 NCGM2.51 PA2192 PAO1 LESB58 C3719 M18

A absent absent present present present present present present present
B® PAHM4 PA7 PAO1 PAO1 PAO1 PAO1 PAO1 PAO1 PAO1
c PAHM4 PA7 PAO1 PAO1 PAO1 PAO1 PAO1 PAO1 PAO1
D° absent PAPI-1 PAPI-1 absent absent absent absent absent absent
E present present present present present present present present present
Other cluster®* absent absent absent Absent PA2192 PAO1 PAO1 PAO1 PAO1

“strain name indicates presence of a strain-specific allele
PCUP cluster D is associated with PAPI-1 island
“The unnamed cluster is described by Filloux [170]

PAHMA4 and PA7 introduce new alleles of CupB and CupC
while every other analyzed P. aeruginosa strain had an
identical or nearly identical set of alleles.

P. aeruginosa expresses a single polar flagellum which
exhibits a conserved structure established for many Gram-
negative microorganisms. This flagellum is involved in mo-
tility and pathogenesis, promoting the attachment of the
bacterium to the surface of epithelial cells. Genetic analysis
of PAHM4 indicates that most flagellar biosynthesis genes
in this bacterium are highly conserved compared to PAO1
including the genes flgBCDEFGHIJKL, fleQSR, fliEF-
GHIJKLMNOPQR, flhB, fliAFN, fliA and motCD.

Most P. aeruginosa isolates express one of two types
of flagella (A or B) based on the deduced amino acid
sequences of the major structural gene fliC, encoding
the flagellin filament [116]. P. aeruginosa flagella also
have two potential types of glycosylation which occur in
a strain-dependent fashion [117]. PAO1, LESB58, C3719
and PA14 all have type B flagellin and type b glycosylation
alleles while the type A flagellin and type a glycosylation
alleles present in PAHM4 have also been described in
strains PAK, PA2192, NCGM2.S1 [117, 118], and are
common in P. aeruginosa clinical isolates from patients
with CF [119].

Characterization of secondary metabolite capacity in
PAHM4

Putative secondary metabolite clusters were identified with
antiSMash [120]. PAHM4 was predicted to encode the
clusters common to most P. aeruginosa strains. However, a
PAHM4 gene cluster that is predicted to produce 3-
oxobutanal is shared with M18 and PA-138224 but absent
in other sequenced P. aeruginosa strains.

Acquisition of iron and zinc in vivo contributes greatly to
P. aeruginosa metabolism and is crucial for the pathogen-
esis of this bacterium [121]. P. aeruginosa strains produce
two siderophores, pyochelin and pyoverdine (reviewed by
Cornelis [122]), and PAHM4 encodes gene clusters respon-
sible for production of both compounds. The chromosomal
region responsible for pyochelin has 98 % sequence identity
to PAOL1 [123]. The PAHM4 genome contains a type 3

pyoverdine cluster that is 99 % identical to the cluster
identified in Serotype O13 strain P. aeruginosa ATCC O13
[124]. Despite the presence of an intact gene cluster, pyo-
verdine assays indicated that PAHM4 produces minimal
pyoverdine (data not shown). The gene encoding sigma
factor for pyoverdine expression, pvdS, has a nonsense
mutation in PAHM4 and is likely the reason for the lack of
pyoverdine production. While pyoverdine has been shown
to be necessary for acute infections [125], gene expression
data and sputum analysis from chronic CF infections have
indicated that some strains lose the capacity to produce it
[126, 127]. Assays for pyocyanin in overnight cultures of
PAHM4 indicated a loss of pyocyanin production com-
pared to PAO1 (data not shown).

Microarray analysis provides a global view of adaptation
of PAHM4 to chronic lung infection

Given the wide array of phenotypic changes seen in
PAHM4, we compared the transcriptome of this strain
to PAO1 when grown in standard laboratory conditions.
A total of 164 genes were found to be significantly up-
regulated and 168 down-regulated in PAHM4 compared
to PAOI1, with an overview of affected pathways in
Fig. 10a, a detailed list of gene expression changes in
Additional file 5: Table S5, and a heat map depicting the
significantly regulated genes (Additional file 6: Data File 7).
Recognizing that genomic differences between PAHM4
and PAO1 could confound our results, we assessed the
coding sequence identity of all genes identified as
highly differentially regulated between these strains. Of
the down-regulated genes detected from the array data,
16.1 % were absent from the PAHM4 genome while, as
anticipated, 100 % of up-regulated genes were encoded
by PAHM4. Together, these results suggest that the
genetic differences between PAHM4 and PAO1 had
minimal impact on the array results.

Strikingly, many of the down-regulated genes in PAHM4
are involved in virulence phenotypes, such as secreted
factors, motility and attachment. This phenomenon is often
observed in strains isolated from chronic lung infections in



Varga et al. BMC Genomics (2015) 16:883 Page 14 of 27

DNA/MNucleotides/Ch

Putative enzymes Cell wall/LPS/Capsule
Secreted factor toxins/enzymes/alginate
Related to phageftransposén/plasmid

Aminoacids biosynthesis and metabolism

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

4

Adaptation/Protection/Chemotaxis
Mobility/Attachment

Cell wall/lLPS/Capsule

Biosynthesis of cofactors

P

Membrane proteins/Transport of small molecules/Protein..

Fatty acid and phospholipids metabolism

Transcriptional regulators/Two component regulatory system

fHeat shock protein processing

Membrane proteins
Energy metabolism

Carbon compounds metabolism
Central intermediary metabolism
Putative enzymes

E ular space

PA4908-PA4913
................... PA107T0

Valine
Leucine
Iscleucine
gapA -
awf
v
Malonate semi-aldehyde Phosphoenclpyruvate
/o Citrate |
B \ E'XEI:\\N
i
— <+ Fi TCA  Oxaloacetate Qoo
= cycle I :
5pA glpK
K J y
a-ketoglutarate Diacylglycerol
mms8 lipA
PAD132 PAD132 PA2968

Pyruvate

Fig. 10 (See legend on next page.)

1 ansg
]

Glutamine

Glycine betaine
Proline




Varga et al. BMC Genomics (2015) 16:883

Page 15 of 27

(See figure on previous page.)

pathways [163].

Fig. 10 Functional analysis of differential gene expression. a Functional classification of the genes showing a differential expression in microarray analysis
and based on PseudoCAP function class assignments [168]. The proportion of genes over-expressed in PAHM4 compared to PAOT1 is indicated in green
and the proportion of the genes down-regulated compared to PAO1 appears in red. Hypothetical, unclassified and unknown protein and non-coding
RNA sequences were excluded from the analysis. b Adapted intermediary metabolism of PAHM4 to the bronchiectasis lung. Transcripts that were found
to be significantly increased (green) or decreased (red) in PAHM4 compared to PAOT1 are indicated in the pathway for central metabolism based on KEGG

patients with CF [128]. With regards to PAHM4, down-
regulation of virulence-related genes is likely either the re-
sult of negative selective pressure in the lung environment
of patients with bronchiectasis and/or a consequence of the
previously described gene loss in PAHM4.

In contrast, a significant number of the P. aeruginosa
genes involved in metabolism (i.e. energy, fatty acid and
amino acid metabolism) and transport (membrane pro-
teins, transport of small molecules) were up-regulated
in PAHM4 compared to PAO1, possibly the result of
selective pressure in the bronchiectasis lung.

The differences observed in the transcriptome of PAHM4
and PAO1 indicate that metabolism in this isolate is
characterized by an increased turnover of amino acids
(Fig. 10b). PAHM4 had increased levels of transcripts
encoding branched amino-acid transporters (homolo-
gous to PA4909-PA4913 and PA1070) and degradation
enzymes (bdkA2 and bdkB) compared to PAO].

Transcript levels of the glycine betaine uptake system
(homologous to PA3236 and PA5376-PA5378) and deg-
radation pathway through the over expression of gbdR,
responsible for controlling the expression of gbcAB,
dgcAB, and soxABDG [129] were increased in PAHM4
compared to PAO1. Genes responsible for lipoprotein
uptake (PA2988 homolog) and degradation (lipA) are
also increased, along with pyruvate biosynthesis from
serine and degradation of glycine and lactate. These data
suggest that the metabolism of PAHM4 is adapted to pref-
erentially use amino-acids and lipids, abundantly found in
the lung secretions of patients with chronic lung infections
[130], as sources of carbon, nitrogen and energy.

Transcriptome data indicate that the iron acquisition
genes PA4834, PA4880, lipA, lipH, and PA1922, and zinc
acquisition genes np20 and znuBC [131] are up-regulated
in PAHM4 compared to PAO1. Previous studies examining
gene expression from P. aeruginosa clinical isolates in spu-
tum compared to lab growth medium indicate that while
PA4384 and PA1922 tended to be up-regulated, lipA, lipH
and PA4880 were down-regulated [132]. The three zinc
acquisition genes up-regulated in the current study were
also up-regulated in CF sputum compared to LB in the
study by Bielecki et al. (GEO accession GSE25945 [132]).

Metabolic adaptation of PAHM4 to the lung of a chron-
ically infected bronchiectasis patient appears to differ from
what has been observed in previously characterized CF

isolates, which have been shown to have an increased
arginine catabolism, up-regulation of branched amino-
acids synthesis, unchanged levels of transcripts of enzymes
involved in central metabolism and up-regulation of tran-
scripts of enzymes involved in the TCA cycle [16]. These
adaptations were not observed in PAHM4.

Defects in twitching and swarming motility described
above may be a result of down-regulation of the rham-
nolipid biosynthetic machinery (rhlA, rhiB, rhiC, rhil
and rhlR) (Additional file 5: Table S5), presumably due
to a result of the loss of QS in this strain. Transcriptome
analysis also indicated a decrease in expression of other
motility-related genes in PAHM4 compared to PAO1
including chemotaxis (ze2 and PA0177-PA0179), TFPa
pilin (pilA), TFPb pilin, and flagellar biosynthesis ma-
chinery (flg, fliC, PA1093, fliD, PA1095, PA1096).
Rhamnolipid assays demonstrated a lack of rhamnolipid
production by PAHM4 (data not shown). Similar results
have been reported in hypermutator CF isolates [16].

Metabolic modeling connects transcriptome analysis,
genome sequence, and observed phenotypes

To understand the specific metabolic adaptations in the
context of global metabolic function in PAHM4, transcrip-
tome data was contextualized using a previously published
genome-scale metabolic reconstruction of P. aeruginosa,
iMO1086 [133, 134]. Accounting for the inter-dependent,
metabolic functions of 1086 genes, this computational
model can predict metabolic phenotypes relevant to
chronic infection of the lung during steady state growth
using flux balance analysis. Flux balance analysis (FBA)
is used to predict the ability to grow by calculating the
flux that is possible through an objective reaction (here
representing compounds required for production of
biomass) in a given environmental condition. This ana-
lytical method can also be used to predict the capacity
for production of an array of virulence factors, connect-
ing substrates to all intermediate pathways necessary
for synthesis of the factors.

Computational predictions are improved with the inte-
gration of high-throughput profiling data such as gene
expression into the model which captures the collection
of genes that are active in a given condition [135]. Sub-
sets of the differentially expressed genes identified in the
transcriptome analysis were used to develop genome-scale
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metabolic models of PAO1 and PAHM4 using iMO1086.
A total of 33 genes down-regulated in PAHM4 and 63
genes down-regulated in PAO1, as identified by the Rank-
Prod differential expression analysis, were accounted for
in iMO1086. The models were constrained using GIMME,
with an expression value cutoff to separate likely active
and inactive genes. These analyses identified 113 likely in-
active genes to incorporate into the conditional metabolic
state of PAHM4 and 181 likely inactive genes to incorpor-
ate into the PAO1 metabolic state.

After applying these metabolic states to iMO1086 and
performing FBA, several of the genes implemented as in-
active in one or both models appeared necessary for
growth. For example, though glyceraldehyde 3-phosphate
dehydrogenase (gapA - PA3195) is significantly down-
regulated in PAHM4 as indicated in Fig. 10b, inactivating
this enzyme prevented in silico growth in rich media con-
ditions. This prediction of the apparent essentiality of
PA3195 suggests that while glyceraldehyde 3-phosphate
dehydrogenase is expressed at low levels it is sufficient to
enable growth and/or PAHM4 is expressing an alternate
gene that enables glyceraldehyde 3-phosphate dehydro-
genase activity. A search for potential alternate genes
identified a probable glyceraldehyde 3-phosphate dehydro-
genase (PA3005) that shows a small increase in expression
in PAHM4 compared to PAO1. Additionally, erythrose 4-
phosphate dehydrogenase (PA0551) is highly up-regulated
in PAHM4 and may also be capable of low levels of glycer-
aldehyde 3-phosphate dehydrogenase activity, as has been
shown for the E. coli homolog [136]. Including the cata-
lytic activity of glyceraldehyde 3-phosphate dehydrogenase
in the model restored in silico growth, demonstrating the
potential ability of these two genes to compensate for the
function of down-regulated PA3195 in PAHM4. Overall,
the inactive genes that we reverted to active status in the
metabolic states were few (PA3195, PA2023, PA4055, and
PA4513) and some are likely artifacts of the conversion
from relatively high and low gene expression values to
binary on-off states. Additionally, iMO1086 is a large, well
curated model, but it contains network gaps and incom-
plete implementation of the relationships between genes,
proteins, and reactions that reflect the still-evolving
genome annotation and understanding of P. aeruginosa
metabolism for both strains studied here.

Using expression data to constrain iMO1086 into
modPAHM4 and modPAO1 growing in rich media in
silico enables the comparison of the conditional meta-
bolic states of these strains. Essentiality of the active
genes in each state was analyzed by preventing the func-
tion of the remaining genes one at a time and optimizing
for growth. Failure to achieve biomass flux indicated that
the deleted gene was essential to the model’s growth in
that state. This analysis showed that an almost identical
set of genes was essential to in silico growth of modPAO1
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and modPAHM4 on rich media (152 and 151 genes per
model, respectively, Additional file 5: Table S6). As the
number of genes classified as essential is nearly identical
between strains, it confirms that important central meta-
bolic functions are enabled in both strains though their
levels of activity may not be comparable, as is suggested
by the gapA example discussed above. P. aeruginosa can
utilize a wide variety of carbon sources; growth can be
achieved through many different catabolic pathways in
rich media despite an array of inactive genes. However,
functional metabolic changes induced by the gene expres-
sion integration are apparent in more peripheral pathways
related to virulence factor production and amino acid
utilization.

The models enable the comparison of the maximum
theoretical production capacity of an array of virulence
factors of PAHM4 and PAOLI. For each virulence factor
capacity prediction, the objective function was changed
to a reaction enabling the maximal production of the
virulence factor of interest [134, 137]. Fig. 1la shows
that modPAHM4 has notably higher production capacity
for the polysaccharide alginate and phenazine pyocyanin
than modPAO1. While our previously described assays
demonstrated a comparative lack of pyocyanin produc-
tion in PAHM4, false positives for this trait were previ-
ously observed with an earlier version of the model and
are hypothesized to be the result of regulatory changes
within the bacterium that the model does not account
for [137].

Contrastingly, modPAO1 has higher production capacity
for QS molecules. LPS O-antigen production capacities
remain similar for each strain, though further investigation
of O-antigen genes as explained in a previous section sug-
gests that a frame shift mutation is preventing O-antigen
synthesis in PAHM4.

The models were then used to predict the utilization of
carbon sources commonly present in the lung, such as
amino acids. The in silico media was altered to only
provide the models with a single carbon source in addition
to the standard required salts and ions. Fig. 11b shows the
difference in biomass yield on the carbon sources sur-
veyed. It is important to note that the apparent inability of
PAOL1 to grow on certain substrates reflects our model
implementation of down-regulated (but potentially active)
genes from in vitro expression data as in silico inactivated
genes, and PAO1 could catabolize many of the substrates
given time to adapt its conditional expression profile in
appropriate media. The integration of PAHM4 expression
data shows that PAHM4 is currently better adapted to
growth in the lung environment on a systemic level;
modPAHM4 has a clear advantage over modPAOL in its
ability to catabolize amino acids as energy sources, par-
ticularly in the utilization of branched-chain amino acids.
ModPAHM4 also shows higher capacity for phenylalanine
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Fig. 11 Expression-constrained metabolic modeling. a In silico model
predictions of the potential capacity of PAO1 and PAHM4 to produce
various virulence factors of interest when grown in rich medium.
Capacity units correlate to the maximum flux through an objective
reaction representing the production of each factor normalized by
the max uptake flux through the limited carbon uptake reactions
for the optimization. b In silico estimation of biomass yield during
growth in minimal media conditions supplemented with a single carbon
source (amino acids and a selection of sugars as shown). Presented
values are flux through the optimized biomass function normalized by

flux through the single carbon source uptake reaction

degradation, and the utilization of L-lactate, both iden-
tified as important carbon sources in a study of cystic
fibrosis lung sputum [138].

Thus, the expression-integrated comparative modeling
predicts that PAHM4 has adapted to its available nutri-
tional resources in the lung environment in addition to
altering its virulence factor production profile. The model
not only reflects the predisposition of PAHM4 towards
amino acid catabolism, it evaluates all other pathways
necessary for growth on amino acids and confirms on a
genomic scale the heightened capacity for growth using
these substrates. Additionally, the model quantifies the
high capacity of PAHM4 for alginate and pyocyanin pro-
duction while other virulence factor production capacities
are lowered, expanding on a more functional level the
insights provided by the transcriptome analysis and indi-
cating important phenotypic changes relevant to virulence.

Conclusions

In conclusion, we have presented the analysis of the
phenotypic characteristics, genome, transcriptome, and
metabolic model of a P. aeruginosa non-CF bronchiectasis
isolate, showing that P. aeruginosa undergoes a similar
process of adaptation in the lung of these patients com-
pared to the lung of CF patients. However, we also identi-
fied a collection of genetic and phenotypic traits particular
to this strain suggesting niche-specific differences and
selection that occur in bronchiectasis. This distinction was
typified by the in vitro infection phenotypes which differed
from wound and burn isolates (PAO1 and PA14, respect-
ively) as well as from acute and chronic CF isolates.

The results obtained in this study have advanced our
understanding of P. aeruginosa virulence in the context of
chronic bronchiectasis infections. However as PAHM4 is
currently the only sequenced P. aeruginosa isolate from
chronic bronchiectasis, evaluation of additional isolates
would be useful for determining if the characteristics ob-
served in PAHM4 are common to bronchiectasis isolates
or strain specific. This additional characterization in turn
will be vital to study the epidemiology and control of
chronic infections in patients with bronchiectasis, and
provide valuable insights for the identification of prospect-
ive therapeutic targets and intervention strategies.
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Methods

Ethics statement

The clinical P. aeruginosa isolates described here, including
PAHM4, originated from a study that was approved by the
Research Committee of Hospital Son Espases (formerly
Hospital Son Dureta).

Murine experiments were performed in strict accord-
ance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes
of Health. Protocols were approved by the Institutional
Animal Care and Use Committee at the University of
Virginia (Protocol number 2844). All efforts were
made to minimize animal suffering during the course
of these studies.

Bacterial strains

Table 8 lists strain sources and serotypes for P. aeruginosa
strains used in this analysis. P. aeruginosa strain PAHM4
was isolated in 2003 from the sputum of a 78 year old
female patient at the Hospital Universitario Son Dureta
(Palma de Mallorca, Spain). The patient was diagnosed
with chronic diffuse bilateral bronchiectasis and was first
documented with evidence of chronic respiratory infection
by mucoid P. aeruginosa in 2000. The patient received
multiple courses of antibiotics to treat the infection,
including ciprofloxacin, cotrimoxazole, ceftazidime and
several years of nebulized tobramycin.

Bacterial growth and DNA preparation

P. aeruginosa strains were typically grown in LB (per L:
10 g tryptone, 5 g NaCl, 5 g yeast extract, solidified with
15 g Bacto-agar, as necessary) at 37 °C. Genomic DNA
was purified by the method of Pospiech and Nuemann
[139] modified with 30 min incubations.

Adhesion and invasion assays

The human lung carcinoma cells, A549 (ATCC CCL185),
derived from type-II pneumocytes were propagated in
RPMI 1640 plus 1 % HEPES (hydroxyethyl piperazine

Table 8 Origin of P. aeruginosa strains used in this analysis
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ethane sulphonic acid), supplemented with 10 % fetal calf
serum and 1 % penicillin-streptomycin (Sigma-Aldrich, St.
Louis, MO, USA). Cells were cultured in 24-well tissue
culture plates at 37 °C and 5 % CO, until confluence was
reached (~5 x 10° cells per well).

Adhesion and invasion assays were performed as previ-
ously described [140]. Briefly, a bacterial suspension was
prepared at 107 colony-forming units (CFU)/mL in RPMI-
HEPES and incubated for 1 h with the cell monolayers
(multiplicity of infection (MOI) 20:1). The wells were
washed with PBS and either lysed and plated to quantify
adhesion or incubated with fresh medium containing gen-
tamicin (100 pg/mL) to kill extracellular bacteria. After
1 h, an aliquot of the medium was plated to confirm the
elimination of extracellular bacteria, and the gentamycin-
containing medium was washed from the monolayer. The
epithelial cells were lysed with a solution of 0.5 % Triton
X-100 (Sigma-Aldrich) in PBS and intracellular bacteria
were quantified by plating appropriate dilutions on LB
agar plates. Experiments were performed in duplicate and
the data were analyzed using an unpaired two-tailed ¢-test
with GraphPad Prism 5.01.

Alginate quantification

Alginate was quantified by carbazole determination of
uronic contents adapted from Knutson et al. [141]. PAO1
and PAHM4 were grown on LB plates at 37 °C for 18 h.
Colonies were resuspended in Ringer’s buffer (155 mM
NaCl, 5 mM KCl, 2 mM CaCl,, 1 mM MgCl,, 2 mM
Na,HPO,4, 10 mM HEPES, 10 mM glucose) to an ODyyq
of 1. CFU were determined by plating the appropriate
dilutions on LB agar plates. The suspension was vigor-
ously vortexed for 15 min and centrifuged at 16,000 x g
for 3 min. 500 pL of supernatant was incubated at 100 °C
with 3 mL 0.025 M sodium tetraborate in sulfuric acid for
10 min. Then 100 pL of 0.125 % weight/volume carbazole
(Sigma-Aldrich) in ethanol was added to the mixture and
boiled for 15 min. The amount of alginate was measured
spectrophotometrically at ODs3, against a standard curve

P. aeruginosa strain Disease isolate Genome Status Serotype® Accession # Reference
PAHMA4 Chronic bronchiectasis Draft nt 013 AYSZ01000000 This study
PAO1 Wound Complete 05 NC_002516.2 [123]
PA14 Burn Complete 010 NC_008463.1 [171]

PA7 Wound Complete 012 NC_009656.1 [85]
PA2192 Cystic fibrosis Complete nt O1 NZ_AAKWO00000000 [169]
LESB58 Cystic fibrosis Complete nt 06 NC_011770.1 [172]
NCMG2.51 Urinary tract infection Complete o1 NC_017549.1 [173]
C3719 Cystic fibrosis Complete 03 NZ AAKV00000000 [169]
Serotype O13 013 G.B. Pier

nt non-typable
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of glucuronolactone (Sigma-Aldrich) and expressed as
micrograms of alginate per CFU.

Macrophage phagocytosis assay

Bone marrow-derived macrophages were isolated from
BALB/c mice as previously described [142]. Harvested
macrophages were allowed to differentiate for 5 days at
37 °C in the presence of L-cell-conditioned medium.
Macrophages were then trypsinized and 0.5 x10° cells
were added to wells in 24-well plates and allowed to adhere
for 2 h. Bacteria were grown at 37 °C in LB for 18 h before
a suspension was prepared in minimum essential medium
(MEM) and incubated with adherent macrophages for
15 min at an MOI of 500:1 (25 x 10° CFU/well). After
15 min, cells were washed and lysed to quantify bacterial
uptake or incubated with fresh medium containing genta-
micin (100 pg/mL) to kill extracellular bacteria. After 15,
30, 60 and 90 min of incubation at 37 °C, cells were washed
three times with PBS and lysed, as described above, to
quantify intracellular bacterial survival by plating of appro-
priate dilution on LB agar. Experiments were performed in
triplicate and the data were analyzed using an unpaired
two-tailed ¢-test and the software GraphPad Prism 5.01.

Lettuce infection assay

Lettuce leaves were infected as previously described
[143]. Bacteria were grown at 37 °C in LB for 18 h and
washed three times in sterile 10 mM MgSO,. Healthy-
appearing leaves were obtained from commercially pur-
chased romaine lettuce, washed with 0.1 % bleach and
rinsed with sterile water. The midrib was infected with
10° CFU and incubated at 25 °C for 48 h. The diameter
of the soft rot area at the site of inoculation was mea-
sured. Experiments were performed in triplicate and the
data were analyzed using an unpaired two-tailed #-test
with GraphPad Prism 5.01.

Biofilm quantification

Biofilm assays were based on previously described proto-
cols [102]. Briefly, P. aeruginosa LB cultures were grown
overnight and diluted to an ODgy of 0.1 in fresh LB
unsupplemented or supplemented with 2 % glycerol and/
or 100 uM FeCl; [144, 145]. For each replicate, 150 pL of
this suspension was added to a sterile 96 well flat bottom
PVC microtitre plate and statically incubated for 48 h at
37 °C. After the growth period, plates were thoroughly
rinsed with de-ionized water and stained with 165 pL 0.1 %
crystal violet for 5 min. The plates were then rinsed to
remove excess dye, allowed to air dry and the crystal violet
was extracted with 175 puL of methanol. The ODsyq of the
methanol was measured and blanked against an uninocu-
lated negative control. Samples were grown in duplicate
with 5 technical replicates and the reported values are the
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average of the biological replicates with error bars repre-
senting the standard deviation.

Analysis of secreted factors

Protease and elastase assays were done following protocols
from Kessler et al. [146]. Briefly, cells were grown overnight
in LB at 37 °C. The ODgq of the overnight cultures was
determined before centrifugation to remove the cells.
Supernatants were filtered through 0.22 pM filters and the
filtrates were placed on ice until use. For the protease assay,
a 0.3 % azocasein (Sigma-Aldrich) solution was made in
buffer B (50 mM Tris—HCI, 0.5 mM CaCl,, pH 7.5). 1 mL
of filtrate was added to 1 mL of azocasein solution which
was then incubated at 37 °C for 15 min. After incubation,
500 pL of 10 % trichloroacetic acid (w/v) was added to each
sample and briefly vortexed. Samples were centrifuged for
5 min at 18,000 x g at room temperature and the OD 4oy of
the resulting supernatants was determined. The values
reported are OD400/ODgqo. For the elastase assay, 400 pL of
filtrate was added to a solution of 0.45 % elastin-congo red
(w/v) (Sigma-Aldrich) resuspended in buffer B. The sam-
ples were then incubated shaking at 37 °C for 2 h. The reac-
tions were stopped by adding 100 pL of 120 mM EDTA
before centrifugation. Supernatants were removed and the
ODyg5 was determined. Values reported are OD495/ODggo.
For protease and elastase assays, cultures were grown in
triplicate and the reported values are the averages, with
error bars representing the standard deviation. Probabilities
were determined with Tukey’s multiple comparison test
within GraphPad Prism.

MutS characterization

P. aeruginosa mutS sequences were obtained from the
Pseudomonas Genome Database (www.pseudomonas.com)
[147] and as published by Warren and colleagues [11].
Sequence alignments were performed with ClustalW
in CLC Main Workbench (CLC, Aarhus, Denmark,
www.clcbio.com). The hypermutator phenotype was
characterized by electroporating PAHM4 with plasmids
harboring PAO1 wild-type mutS (pUCPMS) [40], mutL
(pUCPML) [40] or mutY (pLM102) [148]. Transformants
were selected on LB agar plates containing 250 pg/mL
gentamycin (pUCPMS and pUCPML) or 200 pg/mL tetra-
cycline (pLM102). To evaluate the complementation of
the mutator phenotype, mutant frequencies and mutation
rates were determined. Approximately 10% cells from
overnight cultures of either wild-type PAHM4 or PAHM4
harboring a plasmid were inoculated into each of ten
1 mL Miiller-Hinton (MH) broth tubes and incubated for
24 h at 37 °C and 180 rpm. Serial dilutions were then
plated on MH agar or on MH agar supplemented with
300 pg/mL rifampicin and incubated at 37 °C for 24 h (total
CFUs) or 48 h (rifampicin-resistant mutants), respectively.
Mutant frequencies (mutants per cell) were calculated by
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dividing the median number of mutants by the median
number of total CFUs [40] and mutation rates (mutations
per cell division) were estimated using fluctuation test
(www.bio.upenn.edu/faculty/sniegowski/#software) [149].

Motility assays

Swimming, swarming and twitching motility were deter-
mined as described previously [150]. Briefly, bacteria
were grown overnight in LB and cells were transferred
to swimming semi-solid agar medium (1 % tryptone,
0.5 % NaCl, and 0.3 % DNA grade agarose) or swarming
semi-solid agar medium (0.5 % Nutrient broth, 0.5 %
glucose, 0.5 % bacto-agar) using a sterile toothpick. The
swimming and swarming zones were measured after
48 h incubation at 37 °C.

Twitching motility was measured in LB solidified with
12 % bacto-agar. Agar plates were inoculated with a
toothpick through the media to the bottom of a Petri
dish and incubated at 37 °C for 48 h. Following incuba-
tion, agar was removed and the plates were stained for
5 min with 0.5 % crystal violet. Swimming, swarming,
and twitching assays were performed in triplicate.

Antibiotic susceptibility testing

MICs of cefotaxime (CTX), ceftazidime (CAZ), cefepime
(FEP), piperacillin (PIP), piperacillin-tazobactam (PTZ),
aztreonam (ATM), imipenem (IMP), meropenem (MER),
ciprofloxacin (CIP), gentamicin (GEN), tobramycin (TOB),
amikacin (AMK) and colistin (COL) were determined on
Miiller-Hinton (MH) agar plates by Etest. Additionally,
MICs of tetracycline (TET), azithromycin (AZT), ceftolo-
zane (CTZ) and carbenicillin (CAR) were determined by
broth microdilution in MH. All MICs were determined in
duplicate experiments for strains PAHM4 and wild-type
reference strain PAO1. When available, the breakpoints
recommended by the Clinical Laboratory Standards Insti-
tute (CLSI) [151] were used to assign the corresponding
clinical susceptibility categories: susceptible, intermediate,
or resistant.

Expression of resistance genes

The levels of expression of ampC, creD, mexB, mexD,
mexY, and mexF were determined by RT-qPCR following
previously described protocols [45, 152]. Briefly, strains
were grown to an ODgyy of 1 in 10 mL of LB at 37 °C
and shaking at 180 rpm. Total RNA was isolated from cell
pellets using an RNeasy minikit (Qiagen, Carlsbad CA).
RNA was eluted with RNAse-free water and treated with
2 U of Turbo DNase (Ambion, Austin TX) for 30 min at
37 °C to remove contaminating DNA. The reaction was
stopped by the addition of 5 puL of DNase inactivation
reagent. 50 ng of purified RNA was used for one-step
reverse transcription and real-time PCR amplification
using a QuantiTect SYBR green RT-PCR kit (Qiagen,
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Carlsbad CA) and a SmartCycler II system (Cepheid,
Sunnyvale CA). Previously described primers and condi-
tions [45] were used for amplification of ampC, creD,
mexB, mexD, mexY, mexF, with rpsL as a reference gene
[153]. In all cases, the mean values of relative mRNA
expression obtained in at least three independent duplicate
experiments were considered. For ampC and creD induc-
tion experiments, cultures were incubated in the presence
of 50 pug/mL cefoxitin.

Genome sequencing, assembly, closure and annotation
Genome sequencing and de novo assembly was performed
by Otogenetics (Athens, GA). Briefly, a 175 bp mate pair
library was produced and used to generate approximately
10 million 110 bp reads using the Illumina HiSeq platform.
de novo assembly was accomplished using SOAP DeNovo
[154]. The preliminary de novo assembly resulted in 732
contigs and scaffolds, with an average length of 8,791 bp, a
median length of 127 bp, and a total predicted genome
size of 6,426,282 bp. The resulting N50 and N90 were
64,165 bp and 17,120 bp, respectively. This assembly
was submitted to GenBank (AYSZ00000000), and was
annotated with the Rapid Annotation using Subsystem
Technology (RAST) server [155]. The assembly was im-
proved by alignment of PAHM4 contigs with completed P.
aeruginosa genomes and combining them where overlaps
were present, as described in detail in the supplemental
methods contained within Additional file 7: Data File 4.
The projected genome size is 6,381,186 bp and the final
assembly, included as Additional file 1: Data File 1, has an
N50 of 203,730 bp, an N90 of 71,127 bp, and was used for
all subsequent analyses. The annotation of this assembly is
included as Additional file 2: Data File 2.

Comparative genomics

Genome characteristics of P. aeruginosa strains used for
bioinformatic comparisons to PAHM4 are listed in Table 4.
Unless otherwise noted, data were collected from the RAST
Seed Viewer [155]. Multi-locus sequence type (MLST) ana-
lysis was performed at the Pseudomonas aeruginosa MLST
website (pubmlst.org/paeruginosa/) [48].

PAHM4-specific chromosome regions and P. aeruginosa-
pan-genome regions absent in PAHM4 were identified
using PanSeq (Ifz.corefacility.ca/panseq/) [50]. PanSeq was
run with default parameters, except for minimal frag-
ment size which was set at 300 bp and the analyzed
PAHM4 genome was limited to contigs and scaffolds
larger than 300 bp.

Secondary metabolite prediction

Secondary metabolite prediction was performed using
antiSMash (antismash.secondarymetabolites.org) [120].
The PAHM4 contigs were concatenated based on the
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alignment with PA14 and all P. aeruginosa strains were
analyzed using default settings.

Prophage characterization

Putative prophage were identified from P. aeruginosa
genomes using ProphageFinder (131.210.201.64/~phage/
ProphageFinder.php) [56] and PHAST (phast.wishartlab.
com) [55]. ProphageFinder was used to aggressively
detect prophage remnants in the genome and was run
with default settings, except for hit spacing, which was
set at 6,000 bp, and tRNA scan, which was enabled.
PHAST was used to conservatively identify intact or
mostly intact prophage within the genome.

Preparation and analysis of lipopolysaccharide (LPS) and
lipid A

P. aeruginosa strains were grown overnight at 37 °C in
LB. LPS preparation used 1 mL of cultures adjusted to
an ODggp of 0.5 by a method modified from Davis and
Goldberg [156]. Briefly, cell pellets were generated, resus-
pended in 200 pL of 1X sodium dodecyl sulfate (SDS)
buffer (0.1 M Tris—HCI pH 6.8, 2 % [B-mercaptoethanol
(w/v), 2 % SDS (w/v), 10 % glycerol (w/v)) and boiled for
15 min. Upon cooling, DNAse and RNAse were added to
final concentrations of 10 pg/mL each, and the samples
were incubated at 37 °C for 30 min. Proteinase K was
then added to a final concentration of 10 pg/mL and the
samples further incubated for 60 min at 59 °C. 200 pL of
2X SDS buffer was added to the samples, and 10 puL was
run on a 12 % polyacrylamide gel and transferred to
nitrocellulose using a Trans-Blot Cell (Biorad, Hercules
CA). The blots were analyzed using polyclonal serogroup
013 antiserum (Accurate Chemical & Scientific, Westbury
NA) or common antigen-specific monoclonal antibody
(MAb) N1F10 (J.S. Lam, University of Guelph, Guelph,
Ontario, Canada). The secondary antibodies were goat
anti-rabbit immunoglobulin G coupled to IR dye 680 (Mo-
lecular Probes, Eugene OR) or anti-mouse immunoglobu-
lin G coupled to horseradish peroxidase (Sigma-Aldrich),
respectively. LPS was directly visualized by staining a 12 %
polyacrylamide gel with ProQ Emerald 300 Lipopolysac-
charide Gel Stain (Molecular Probes, Eugene OR).

Lipid A samples were isolated from 25 mL overnight
cultures grown in LB supplemented with 1 mM MgCl,.
Cell pellets corresponding to 5 mL of this culture were
resuspended in 400 pL isobutyric acid/1 M ammonium
hydroxide in a 5:3 vol:vol ratio. Samples were boiled for 1 h
with occasional vortexing. Tubes were cooled on ice, and
then centrifuged at 200 x g for 15 min. The supernatant
was transferred to a new test tube and diluted with 1.5
volumes of water followed by overnight lyophilization.
Dried samples were washed twice with 1 mL methanol.
Lipid A was extracted in 100-200 uL chloroform/metha-
nol/water 3:1.5:0.25 (volivol:vol). A final centrifugation
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step was carried out at 2,000 x g for 1 min to pellet
debris. Lipid A isolates were analyzed using negative-ion
matrix-assisted laser desorption ionization time of flight
(MALDI-TOF) mass spectrometry (MS) experiments as
previously described [157]. Norharmane MALDI matrix in
chloroform/methanol 2:1 (vol:vol) was applied to the sam-
ple plate followed by 1 pL of purified lipid A. Experiments
were performed using a Bruker Autoflex MALDI-TOF
mass spectrometer (Bruker Daltonics Inc., Billerica, MA).
Each spectrum was an average of 300 shots. ESI tuning mix
(Agilent, Palo Alto, CA) was used as a calibration standard.

Quorum sensing (QS) analysis

The production of known P. aeruginosa autoinducers C4-
acyl homoserine lactone (C4-HSL) and C12-acyl homoser-
ine lactone (C12-HSL) were assayed using published
protocols with the P. aeruginosa rhl reporter pECP65.1
and las reporters pJN105 and pSC11, respectively [79, 80].
Triplicate cultures of P. aeruginosa PAO1 and PAHM4
were grown overnight at 37 °C with shaking in LB with
200 mM MOPS, pH 7, and supernatants were filter
sterilized and used for -galactosidase assays measuring
QS-induced reporter activity. [(-galactosidase assays
were performed by standard protocols [158].

Total RNA isolation and microarray analysis
P. aeruginosa strains PAO1 and PAHM4 were grown in
triplicate at 37 °C in 50 mL of LB to an ODgg of 3 and
stabilized with RNA protect (Qiagen, Carlsbad CA). The
PAO1 37 °C array data has been recently described
[159]. RNA was processed as described previously [160].
Briefly, RNA was extracted using RNeasy mini kit
(Qiagen, Carlsbad CA), and samples obtained from three
different cultures were pooled and amplified following the
MessageAmp II Bacteria procedure (Ambion, Austin TX).
1 pg of RNA was polyadenylated and the complementary
strand was synthesized by reverse transcription primed
with T7-oligo-dT. RNA was removed by treatment with
RNase H and second strand synthesis was accomplished
with DNA polymerase. Antisense amplified RNA (aRNA)
was transcribed from this template using T7 RNA poly-
merase with biotinylated dUTP and dCTP. aRNA quality,
concentration and possible degradation was assessed on a
2100 BioAnalyzer (Agilent Technologies, Santa Clara CA).
aRNA was fragmented using 5x fragmentation buffer
and the total amount of fragmented biotinylated aRNA
used per chip was 6.5 pg. Biotinylated aRNA was then
spotted in triplicate on P. aeruginosa GeneChips®
(Affymetrix, Santa Clara CA) following the procedure
established by the manufacturer. The hybridization
and washing steps were performed in the Affymetrix
Array facility at the Helmoltz Center for Infection
Research (HZI) in Braunschweig, Germany.
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The analyses of the arrays were performed using Bio-
conductor microarray analysis suite [161]. The quality of
all chips was assessed by fitting a linear model to the
probe level data using the fitPLM function from the
affyPLM package. Expression values were computed using
the Robust Multichip Average algorithm. Differentially
expressed genes were identified using the Rank Products
algorithm [162]. The value of 0.05 was accepted as a cut-
off for pfp.

Transcriptome data were mapped to metabolic path-
ways at the Kyoto Encyclopedia of Genes and Genomes
(www.genome.jp/kegg) [163].

Metabolic modeling

Expression data for metabolic genes was contextualized
using the well-curated genome scale metabolic reconstruc-
tion of P. aeruginosa PAO1, referred to as iMO1086, which
captures the relationship between 1021 metabolites, 1031
reactions, and 1086 genes using a stoichiometric matrix
connecting metabolites to reactions and gene-protein-
reaction relationships (GPRs) [134].

Significantly down-regulated genes were identified by ap-
plying the Rank Products algorithm to the P. aeruginosa
PAO1 and PAHMA4 transcriptomics data. The GIMME
(Gene Inactivity Moderated by Metabolism and Expres-
sion) algorithm [164] included in TIGER (Toolbox for
Integrating Genome-scale Metabolism, Expression, and
Regulation), a Matlab toolbox designed to complement the
abilities of the COnstraint-Based Reconstruction and Ana-
lysis (COBRA) toolbox for performing FBA [165], was used
to integrate expression data with the metabolic network re-
construction. For the GIMME analysis, an expression value
threshold was defined as the minimum expression value of
all array data plus 0.5 % of the full expression value range.
This data integration resulted in two models representative
of PAO1 and PAHM4. Biomass yield, gene essentiality,
virulence factor production capacity and conditional car-
bon source utilization were analyzed for each model using
FBA as has been previously described [166]. All analyses
were conducted using COBRA Toolbox 2.0.5 [167] and
TIGER Toolbox 1.3.0 in MATLAB.

Accession numbers

The following P. aeruginosa genome sequences were
used for comparisons throughout this manuscript:
PAO1[GenBank:NC_002516.2], PA14 [GenBank:NC_0084
63.1], PA7 [GenBank:NC_009656.1], PA2192 [GenBank:N
Z_AAKWO00000000], LESB58 [GenBank:NC_011770.1],
NCGM2.S1] [GenBank:NC_017549.1], C3719 [GenBank:
NZ AAKV00000000], M18 [GenBank:NC_017548.1].

Bacterial strain and data availability
The P. aeruginosa strain PAHM4 has been deposited in
the repository of the American Type Culture Collection

Page 22 of 27

under the reference number BAA-2530. The Whole Gen-
ome Shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession AYSZ00000000. The version
described in this paper is version AYSZ01000000. Micro-
array data have been deposited to the National Center for
Biotechnology Information’s Gene Expression Omnibus
(GEO) and are accessible through GEO series accession
number GSE40461.

Additional data files

The following additional data files are available with the
online version of this paper. Additional files 1 and 2 are
FASTA-format files containing the manually assembled
genome sequence of PAHM4 and RAST annotations of
predicted ORFs of PAHM4 used for analysis in this
paper, respectively. Additional file 7 contains supplemental
methods including a description of the manual assembly
procedure used to generate the data in Additional file 1,
and descriptions of how Additional file files 3, 4, and 6
were generated, and the accompanying figure legends.
Additional file 5 contains Supplemental Tables S1-Sé.
These tables contain, respectively, Novel DNA regions in
PAHM4, Conserved DNA regions absent in PAHM4, Pro-
phage contents of PAHM4, VgrG and Hcp complement of
PAHM4, Up- and down-regulated genes from PAHM4
microarray analysis, and genes identified as essential in
modPAO1 and modPAHMA4. Three supplemental images
are included as Additional file 3 (BRIG plot of genomes
compared to PAO1), 6 (BRIG plot of genomes compared
to PAHM4), and 7 (heat map of significant array results).

Additional files

Additional file 1: (FA 6441 kb)
Additional file 2: (FA 2008 kb)
Additional file 3: (PNG 2085 kb)
Additional file 4: (PNG 2553 kb)
Additional file 5: (XLSX 63 kb)
Additional file 6: (TIFF 17230 kb)
Additional file 7: (DOCX 13 kb)
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