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Abstract

Background: Papillary Thyroid Cancer (PTC) is the most prevalent type of endocrine cancer. Its incidence has
rapidly increased in recent decades but little is known regarding its complete microRNA transcriptome (miRNome).
In addition, there is a need for molecular biomarkers allowing improved PTC diagnosis.

Methods: We performed small RNA deep-sequencing of 3 PTC, their matching normal tissues and lymph node
metastases (LNM). We designed a new bioinformatics framework to handle each aspect of the miRNome: whole
expression profiles, isomiRs distribution, non-templated additions distributions, RNA-editing or mutation. Results were
validated experimentally by gRT-PCR on normal samples, tumors and LNM from 14 independent patients and in silico
using the dataset from The Cancer Genome Atlas (small RNA deepsequencing of 59 normal samples, 495 PTC, and 8 LNM).

Results: We performed small RNA deep-sequencing of 3 PTC, their matching normal tissues and lymph node metastases
(LNM). We designed a new bioinformatics framework to handle each aspect of the miRNome: whole expression profiles,
isomiRs distribution, non-templated additions distributions, RNA-editing or mutation. Results were validated
experimentally by gRT-PCR on normal samples, tumors and LNM from 14 independent patients and in silico using the
dataset from The Cancer Genome Atlas (small RNA deep-sequencing of 59 normal samples, 495 PTC, and 8 LNM). We
confirmed already described up-regulations of microRNAs in PTC, such as miR-146b-5p or miR-222-3p, but we also
identified down-regulated microRNAs, such as miR-7-5p or miR-30c-2-3p. We showed that these down-regulations are
linked to the tumorigenesis process of thyrocytes. We selected the 14 most down-regulated microRNAs in PTC and we
showed that they are potential biomarkers of PTC samples. Nevertheless, they can distinguish histological classical variants
and follicular variants of PTC in the TCGA dataset. In addition, 12 of the 14 down-regulated microRNAs are significantly less
expressed in aggressive PTC compared to non-aggressive PTC. We showed that the associated aggressive expression
profile is mainly due to the presence of the BRAF V60OE mutation. In general, primary tumors and LNM presented similar
microRNA expression profiles but specific variations like the down-regulation of miR-7-2-3p and miR-30c-2-3p in LNM
were observed. Investigations of the 5p-to-3p arm expression ratios, non-templated additions or isomiRs distributions
revealed no major implication in PTC tumorigenesis process or LNM appearance.

Conclusions: Our results showed that down-regulated microRNAs can be used as new potential common biomarkers of
PTC and to distinguish main subtypes of PTC. MicroRNA expressions can be linked to the development of LNM of PTC. The
bioinformatics framework that we have developed can be used as a starting point for the global analysis of any microRNA
deep-sequencing data in an unbiased way.
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Background

Thyroid cancer is the most prevalent type of endocrine
cancer and papillary thyroid cancer (PTC) is, by far, the
most frequent form 40 to 60 % patients present lymph
node metastases (LNM). These metastases increase the
risk of recurrence. The rate of mortality is low but the
presence of LNM decreases long term survival, mainly
for older patients (>45 years) [1, 2]. The diagnostic
process is mainly based on the cytological profile of the
tissue performed on a biopsy of the thyroid nodule.
However, up to 30 % of the preoperative biopsies are in-
conclusive [3, 4]. The lobectomy or total thyroidectomy
is then frequently proposed even if the probability of a
malignant nodule is low and the surgery risky [5, 6].
There is thus a need for molecular biomarkers to avoid
unnecessary surgery and to personalize treatment. micro-
RNAs are among the most studied potential biomarkers
of thyroid cancers [7, 8]. In addition, the implication of
microRNAs in the aggressiveness of PTC and LNM for-
mation is poorly known.

MicroRNAs are a class of small non-coding RNAs, 19
to 25 nucleotides long, which act on the stability and the
translation efficiency of their target mRNAs [9]. It has
been described that each microRNA may control the ex-
pression of up to several hundreds of genes, involved in
almost all programs of cell biology [10]. The intermedi-
ate precursor (pre-miR) form is composed by a double-
stranded duplex consisting of two arms (formerly known
as miR/miR* but now referred as 5p-arm/3p-arm) and a
terminal stem loop. In some cases, it has been shown
that both arms can produce a functional mature micro-
RNA [11]. An expression ratio of the amount of the 5p-
arm to the 3p-arm can then be calculated.

MicroRNAs may exist under different isoforms in the
cells. These forms may result from alternative cleavages
of the precursor during the maturation process. This
leads to the coexistence, in individual cell types, of a di-
versity of sequence lengths, called isomiRs, with a vari-
ation of one or several bases at the 5" end or the 3" end
of the microRNA [12]. Furthermore, some sequence var-
iations may also result from one or several nucleotide
additions occurring after cleavage of the precursor.
These supplemental nucleotides (mainly A or U bases)
are added by nucleotidyl transferases and are generally
found at the 3" end of the mature microRNA. These ad-
ditions create very particular isomiRs which are called
non-templated additions (NTA). NTA generally induce a
divergence between the microRNA sequence and its cor-
responding genomic sequence. SNPs also produce varia-
tions in microRNA sequences but their frequency in
microRNAs is very low compared to the frequency of
SNPs observed across the whole human genome [12]. A-
to-I RNA-editing involves the hydrolytic deamination of
adenosine to inosine in double-stranded RNA. Since
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pre-miR form double-stranded duplexes, the editing ma-
chinery can modify microRNA sequences as well [13].

These different mechanisms of isoform diversification
may co-exist for the same microRNA and the isoform
profile of each microRNA may change between cell types.
Changes in the 3" part of the microRNAs are widely the
most found, most of the time they do not lead to a mo-
dification of the function of the microRNAs [12, 14].
However, changes in the 5 may drastically modify the se-
lection of the mRNA targets [15].

It has been shown that microRNA expressions can dis-
criminate human tumor samples from normal samples in
different types of cancers [16]. Many studies have shown
that microRNAs are involved in the tumorigenesis
and the metastatic process of many types of human
cancers [17-19]. In particular, for thyroid cancers, numer-
ous modulated microRNAs between normal and tumor
samples have been identified [20]. Many of these studies
were performed with quantitative RT-PCR or microarrays.
These methodologies are broadly used but are based on
primer or probe specificity and can miss some expressions
due to a lowest affinity for isoforms of the same mature
microRNA. Small RNA deep-sequencing offers a more ef-
ficient way to study every aspect of the microRNA biogen-
esis [21, 22]. Some deep-sequencing studies suggest that
NTA, isomiRs, 5p-to-3p arm expression ratio or A-to-I
editing could be involved in the tumorigenesis of different
cancer types [23-28] but only one study analyzed the
isomiR distribution in PTC [27]. Small RNA deep-
sequencing analysis is often restricted by the necessity of
bioinformatics analyses flexible enough to explore every
aspect of the miRNome and to decrease technical biases
[22, 29]. So far, most of the small RNA deep-sequencing
studies used a “homemade” analysis method and there is
no “gold standard” procedure.

In our study, we searched for modulated microRNAs
in PTC and in LNM samples. We performed small RNA
deep-sequencing of a first set of samples composed by 3
PTC, their matching normal tissues and LNM. The sam-
ples presented a weak (or lack of) contamination by nor-
mal cells, lymphocytes and fibroblasts. We collected and
applied all the specific guidelines to design a dedicated
bioinformatics framework for the analysis of each aspect
of the miRNome from small RNA deep-sequencing data.
The results were validated on about 600 independent
samples: experimentally by qRT-PCR on normal sam-
ples, tumors and LNM from 14 independent patients
and in silico using the data from The Cancer Genome
Atlas (small RNA deep-sequencing data already proc-
essed of 495 PTC, 59 normal samples and 8 LNM) [30].
We analyzed all miRNome variations of the samples in
order to identify new strong and common biomarkers
that might be related to tumorigenesis of the thyrocytes
and LNM formation.
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Methods

Tissue collection

Normal tissues, adjacent tumors and LNM were collected
from 17 patients with a PTC diagnosis, confirmed by
anapathological analyses. Samples were obtained from:
« Service d'anatomopathologie, Institut ] Bordet » (Brussels,
Belgium) and « Service d’anatomie et de cytologie patholo-
giques, Centre de Biologie Sud, Centre Hospitalier Lyon
Sud » (Lyon, France). This study was approved by the
ethics committees of Institut ] Bordet and Centre Hospita-
lier Lyon Sud. Written informed consent was obtained
from all participants involved in the study. Tissues were
immediately dissected, placed on ice, snap-frozen in liquid
nitrogen and stored at —-80 °C until RNA processing. All
samples were stained by hematoxylin and eosin and their
cellular composition was established by a pathologist. The
presence of TAM (Tumor Associated Macrophages) was
established using a CD163 staining [31]. Cellular compos-
ition was estimated in terms of percentage of tumor cells,
percentage of adjacent non-tumor cells, lymphocytes and
fibrosis infiltrations. Both tumor and metastatic samples
were included in the study only if they contained at
least 70 % of cancer cells. 3 PTC (classical form) and
matched samples were selected for human small RNA
deep-sequencing, microdissection, quantitative RT-PCR
confirmation and Sanger sequencing (Table 1). 14 PTC
(10 classical forms, 3 follicular forms and 1 diffuse
sclerosis variant) and matched samples were used for
quantitative RT-PCR validation. Main clinical and
pathological information are described in Additional
file 1: Table S1.

RNA and DNA extraction

Total RNA was extracted from tissues using Qiazol,
followed by purification on miRNeasy columns (Qiagen)
according to the manufacturer’s recommendations. Gen-
omic DNA was extracted from the remaining mix of
phenol-chloroform using homemade protocol described
in Additional file 2.

Table 1 Cellular composition of the deep-sequenced samples
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Laser capture microdissection, qRT-PCR and other ex-
perimental procedures are described in Additional file 2.

Human small RNA deep-sequencing: mapping strategy
and downstream analyses

Small RNA deep-sequencing of the 3 PTC and their
matched samples were performed by the Beijing Genomics
Institute (BGI) using the TruSeq Small RNA Sample Prep
Kit (Illumina). 24 to 31 million of clean reads per sample
were obtained. Illumina reads collapsed by sequence in
fasta format are available from NCBI's Gene Expression
Omnibus [32] and are accessible through GEO series ac-
cession number GSE57780. In the following sections and
in Additional file 2 we describe the bioinformatics pipeline
that we used to analyze our small RNA deep-sequencing
data and the already processed validation data from the
TCGA.

microRNA reads mapping: from now on, we will
refer to a microRNA tag as a subset of individual Illu-
mina reads having identical sequences and that were col-
lapsed together during data preprocessing. A tag is then
defined by its DNA sequence and a count value corre-
sponding to the number of Illumina reads sharing this
sequence. To lower computational efforts, tags instead
of individual reads were mapped to the specified refer-
ence. This increased alignment speed by several orders
of magnitude. For the rest of this section, read mapping
and tag mapping are equivalent expressions.

There is so far no gold standard method for micro-
RNA reads mapping. Whether reads are mapped on the
whole reference genome, known microRNA precursors
or even mature microRNAs varies from one study to an-
other, as for the number of allowed mismatches. None-
theless, specific issues relative to the nature of small
RNA deep-sequencing are frequently pointed out and
should be considered:

— additions of non-templated nucleotides (NTA) will
naturally introduce bases that differ from the

Patient ID Sample type % of tumor cells % of fibrosis % of lymphatic cells
1 Normal 0 0 0

1 Tumor 75 0 0

1 Metastasis 80 0 10

2 Normal 0 0 0

2 Tumor 70 30 0

2 Metastasis 90 0 5

3 Normal 0 10 0

3 Tumor 70 0 0

3 Metastasis 80 10 10

All the samples showed a very low (<5 %) CD163 staining, reflecting a very low macrophage infiltration.
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reference mainly at the 3’ end of mature microRNA.
Short read mappers do not distinguish NTA from
“inner” mismatches that are due to SNPs, sequence
variation or sequencing errors and this further leads
to ambiguous alignments. This problem, referred as
cross-mapping [29], occurs mainly for microRNAs
appearing in families that differ only by one or two
nucleotides;

— the presence of multi-loci microRNAs (such as let-
7a-1, let-7a-2, let-7a-3) complicates the definition of
unique match. Such tags cannot be excluded on the
simple basis that they map equally to multiple
places, since the mature microRNA itself can be
transcribed from multiple genomic loci;

— cross-mapping issues may also appear when tags are
aligned directly to microRNA precursors instead of
the whole reference genome [22]. Because small
RNA libraries also contain other short RNAs
(snRNAs, tRNAs...), these could be mistaken with
mature microRNAs having a similar sequence.

We designed a multi-step reads mapping procedure il-
lustrated in Fig. 1 to address these issues. It aims at distin-
guishing variations due to NTA from “inner” mismatches
by trimming tags iteratively until a match can be found.
The number of allowed mismatches is gradually increased
at each alignment step so that perfect matches are always
preferred. Alignment was performed with the Bowtie
v0.12.7 aligner [33] setting the —v argument to the desired
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maximum number of allowed mismatches. During the
first step, no mismatches are allowed and reads that fail to
align to the specified reference are iteratively trimmed at
their 3" end until a perfect match can be found, or a speci-
fied limit is reached (either in terms of minimum length
or maximum number of trimmed bases). Then, all tags
that could not be perfectly mapped are used as input for
the second step, in which one mismatch is allowed this
time. When passed to the next step, reads are reverted to
their original length, prior any trimming at their 3" end.
The same iterative alignment is applied, so that if a read
has one inner mismatch and one mismatch due to 3’
addition, it will be mapped with one mismatch only, after
trimming of the latter 3’ addition. Similarly, additional
steps can be added with increased number of mismatches.
For each mapped tag, we required both its 5-prime and 3-
prime coordinate to be located within a maximum of 5
base pairs of its corresponding canonical microRNA coor-
dinates. The size of these windows was chosen so that
most isomiR variation could be captured while excluding
potential artifacts.

We first applied this strategy using known microRNAs
precursors (miRBase v19) as reference. Repeats were
kept but tags that were mapped on the opposite strand
of known pre-microRNA were considered incorrect and
removed. We then used the full reference genome
(hg19) as reference with three additional restrictions: (1)
only a maximum of one mismatch was allowed; (2) a
maximum of 2 bases were trimmed for each tag to avoid

5 mature miRNA 3
miRNA precursor I
o t1 mapped (iteration 2)
! t2 mapped (iteration 0)
step 1 1 1 t3 mapped (iteration 1)
(no mismatch allowed) 1 I 1 t4
| 1, n t5
11 1 N 1 t6
1
1
1
1
i
step 2 1 = 1 t4 mapped (iteration 1)
(1 mismatch allowed) 1 ren 1
11 1 i 1 t6
i
1
I
i
step 3 1 I | | t5 mapped (iteration 2)
(2 mismatches allowed) 7N | I | t6 fail to align
3’ trimming limit (18 nt)
Fig. 1 Overview of the stratified alignment strategy used to map short Illlumina tags to human pre-microRNAs or whole genome. Three steps
allowing respectively 0, 1 and 2 mismatches were used. In each step, tags were iteratively trimmed at the 3" end until hits could be found with
respect to the number of allowed mismatches. A tag was mapped at iteration i if i nucleotides were removed at its 3" end before hits could be
found. Trimmed tags that could not be mapped before they reached the minimum length of 18 bp were forwarded to the next step where the
number of allowed mismatches was gradually increased. This ensured that tags with mixed 3" addition and genomic variation, such as t4, will
show only the real genomic variation when aligned on human precursors or whole genome
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excessive length reduction; and (3) repeats were kept
only if all matches corresponded to multiple loci of the
same microRNA (e.g. multiple matches on let-7a-1, let-
7a-2, let-7a-3 were all kept, matches on miR-548a, miR-
548b, miR-548e were all discarded). With this strategy,
up to 93 % of individual reads could be mapped during
the first step when using the human genome hgl9 as
reference.

microRNA differential expression profiles: after
aligning reads to the reference genome, we counted the
number of mapped reads for both annotated and novel
mature microRNAs. Expression analysis was performed
using edgeR [34] distributed as an R [35] package avail-
able at Bioconductor [36]. As advised in the documenta-
tion, we first extracted all microRNAs with a normalized
expression (in CPM: Count Per Million mapped reads)
of 1 CPM in at least 3 samples, leading to a total of 398
microRNAs that were used as input for differential ex-
pression analysis. We used a generalized linear model
and designed our analysis so that 3 replicates were avail-
able per condition while retaining the paired information
for tissue types collected from the same patient. This
was done to remove baseline differences between pa-
tients when comparing microRNA expressions between
conditions (e.g tumor versus normal samples, LNM ver-
sus normal samples and LNM versus tumor). By default,
edgeR estimates the original size of each library by sum-
ming read counts across all genes for a given sample. Be-
cause let-7 microRNAs are highly expressed and appear
as multi-loci microRNAs (e.g. hsa-let-7a-1, hsa-let-7a-2
and hsa-let-7a-3), several millions of reads were counted
multiple times and library sizes were highly over-
estimated. Therefore, we set library sizes to the total
number of individual sequences present in fasta files for
each sample prior computing normalization factors
using edgeR calcNormFactors function. Multidimen-
sional scaling analysis and hierarchical clustering were
performed in R, Spearman correlations were performed
in GaphPad Prism.

Results

Down-regulated microRNAs are potential biomarkers of
main subtypes of papillary thyroid cancers and associated
lymph node metastases

= microRNA deep-sequencing data

We analyzed small RNA deep-sequencing expression
profiles of the first sample set (three PTC primary tu-
mors (classical variants) and their matched normal adja-
cent tissues and LNM). These samples were carefully
selected on the basis of their normal or tumor cellular
composition (Table 1). Multidimensional scaling analysis
showed that global microRNA expression patterns of
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normal samples were close to each other while tumor
samples were similar to their related lymph node metas-
tases (Fig. 2a). Tumor and metastasis samples of patient
2 were distant from tumor and metastasis samples of pa-
tients 1 and 3. This can be explained by the fact that pa-
tients 1 and 3 are both young women, whereas patient 3
is an old man presenting a larger tumor at the time of
surgery (Additional file 1: Table S1). These results were
confirmed by a hierarchical clustering (Fig. 2b).

We identified microRNAs differentially expressed be-
tween tissue types. We found 32 up-regulated and 30
down-regulated microRNAs in PTC compared to nor-
mal samples. As expected, we found well characterized
up-regulated microRNAs in PTC (miR-146b-5p, miR-
221... [8, 20]), but also significantly down-regulated
microRNAs in PTC compared to normal samples (Fig. 3a).
Furthermore, we found significant modulations between
primary tumors and LNM (Fig. 3b). Small RNA deep-
sequencing analysis also identified novel mature mi-
croRNAs on known precursors, but none of them
appeared to be differentially expressed between tissue
types (Additional file 1: Table S2).

= Experimental validation

We decided to focus our validations on the newly dis-
covered down-regulated microRNAs in PTC and on
microRNAs modulated between tumors and LNM. We
used quantitative RT-PCR assays for 20 microRNAs
selected from the most down-regulated microRNAs in tu-
mors compared to normal samples (14 assays): miR-1179,
miR-7-2-3p, miR-7-5p, miR-876-5p, miR-204-5p, miR-
138-3p, miR-138-5p, miR-30c-2-3p, miR-139-3p, miRk-
139-5p, miR-451a, miR-504, miR-152, miR-873-5p (Fig. 3a)
and from the most up- and down-regulated microRNAs
in LNM compared to tumors (7 assays): the down-
regulated miR-873-5p, miR-876-5p, miR-199b-5p and the
up-regulated miR-375, miR-196a-5p, miR-509-3p, miR-
509-5p (Fig. 3b). miR-873-5p and miR-876-5p were se-
lected by both criteria. The well-known up-regulated
microRNA in PTC miR-146b-5p was used as a control.

We analyzed the expression profiles of the 20 micro-
RNAs in each deep-sequenced sample (Additional file 1:
Figure S1). We found a significant correlation between
fold changes (tumor/normal or metastasis/tumor) ob-
tained by deep-sequencing and by qRT-PCR experiments
(Spearman r=0.64, P=0.0023). This result confirmed
the utility of qRT-PCR as validation tool. To further
validate our deep-sequencing results, we performed
qRT-PCR experiments on matched normal, primary
tumor and LNM samples from an independent set of 14
patients (Additional file 1: Table S1). Like for deep-
sequenced samples, only normal samples with no detect-
able tumor cells and tumors or metastases with at least
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70 % of tumor cells were considered (see Methods).
Among the 14 microRNAs downregulated in tumors, we
confirmed 9 significant decreases: miR-1179, miR-7-5p,
miR-7-2-3p, miR-876-5p, miR-204-5p, miR-139-5p, miR-
451a, miR-152 and miR-873-5p (Fig. 4). Although not
significantly down-regulated in tumors compared to nor-
mal samples, miR-138-5p, miR-30c-2-3p and miR-504
showed nevertheless a decreased expression. Interest-
ingly, some down-regulations were even more pro-
nounced in the LNM and showed significant differences
between tumors and LNM: miR-7-5p, miR-7-2-3p, miR-
30c-2-3p, miR-139-5p and miR-152. Among the 7
microRNAs differentially expressed between LNM com-
pared to primary tumors, only miR-196a-5p showed a
significant up-regulation in the LNM samples, and no
modulation between tumors and normal tissues. Al-
though not significantly regulated in the LNM compared
to the tumors, miR-375, miR-509-3p and miR-509-3-5p
were nevertheless up-regulated and miR-873-5p and
miR-876-5p down-regulated in the tumors compared to
normal samples. The strong up-regulation of miR-146b-
5p in both tumors and LNM is in accordance with previ-
ous data (Fig. 4).

To confirm the specific thyroid cell expression of
the modulated microRNAs, we performed Laser Cap-
tured Microdissection (LCM) on frozen sections from
the deep-sequenced samples, and we analyzed the ex-
pression profiles of the 20 microRNAs by qRT-PCR
in the normal and tumor thyroid cells. Expression
variations identified by deep-sequencing, especially
for the down-regulated microRNAs in tumors (miR-
1179, miR-7-5p, miR-7-2-3p, miR-204-5p, miR-873-5p
and miR-876-5p) and the up-regulation of miR-196a-
5p in LNM, were detected in the microdissected
samples as well (Additional file 1: Figure S1). In
addition, we found a significant correlation between
fold changes (tumor/normal or metastasis/tumor) ob-
tained by qRT-PCR on deep-sequenced samples and
on the microdissections of these samples (Spearman
r=0.63, P=0.0045).

These results on a small set of samples suggest
that some of the down-regulated microRNAs are
potential biomarkers of PTC tumorigenesis and
lymph node metastasis formation and that miR-
196a-5p could be related to lymph node metastasis
formation.
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A precursor|microRNA

N1 T1 M1 N2 T2 M2 N3 T3 M3 logFC PValue
hsa-mir-372|hsa-miR-372 1 0 0 0 83 155 0 5 0 5.806910066  0.0002642
hsa-mir-146b|hsa-miR-146b-3p 6 420 757 4 452 1571 7 84 168 5.312454786 1.78E-12
hsa-mir-146b|hsa-miR-146b-5p 9948 649349 1776793 8323 686401 4188933 9278 154499 482460 5.307953036 1.72E-15
hsa-mir-187|hsa-miR-187-3p 52 1420 163 7 931 217 36 263 143 4.619468898 2.02E-10
hsa-mir-187|hsa-miR-187-5p 2 61 10 0 47 19 4 28 11 4.391516904 7.95E-08
hsa-mir-221|hsa-miR-221-3p 18894 581471 407718 36214 687632 1304521 14596 132249 283892 4.088828129 1.70E-12
hsa-mir-222|hsa-miR-222-3p 8158 182202 169854 16455 265737 462375 5395 45226 94421 3.80201266 6.89E-12
hsa-mir-221|hsa-miR-221-5p 7294 120212 82280 10514 107513 140933 3765 24517 46008 3.320709012 7.23E-10
hsa-mir-551b|hsa-miR-551b-3p 22 1724 628 97 267 142 35 221 223 3.027750622 0.000108
hsa-mir-34alhsa-miR-34a-5p 102 1579 1234 433 1988 5563 148 850 975 2.887427704 1.45E-06
hsa-mir-184|hsa-miR-184 17 1020 73 42 75 216 9 14 39 2.873522964 0.0029019
hsa-mir-31|hsa-miR-31-3p 38 1356 374 11 52 391 24 45 45 2.868200173  0.0006891
hsa-mir-944|hsa-miR-944 10 52 37 1 83 76 9 26 49 2.828296562 0.0001053
hsa-mir-21|hsa-miR-21-5p 65619 398071 357117 57104 659851 517200 64564 331022 393176 2.763987592 2.16E-07
hsa-mir-155|hsa-miR-155-5p 122 582 1071 196 5934 2142 215 406 914 2.734080149 8.75E-05
hsa-mir-21|hsa-miR-21-3p 29 213 160 82 483 202 15 129 159 2.67489953 3.20E-05
hsa-mir-1-2|hsa-miR-1 23467 51989 33113 48511 852091 4749 42483 109115 108501 2.531325416  0.0025616
hsa-mir-1-1|hsa-miR-1 23100 50969 32443 47738 837331 4682 41867 106661 106694 2.525581435  0.0025951
hsa-mir-551b|hsa-miR-551b-5p 13 127 66 5 13 17 5 33 25 2.493497298 0.0004178
hsa-mir-3065|hsa-miR-3065-3p 25 216 42 10 38 54 7 27 26 2.345710065 0.0004883
hsa-mir-217|hsa-miR-217 14 241 12 19 53 8 14 22 46 2.258398399 0.005469
hsa-mir-205|hsa-miR-205-5p 86 161 99 30 1154 139 41 69 51 2.248327617  0.0033247
hsa-mir-3065|hsa-miR-3065-5p 35 199 36 8 39 67 8 35 18 2.247437743  0.0010049
hsa-mir-134|hsa-miR-134 15 85 20 27 206 56 20 39 46 2.145011205 0.0007569
hsa-mir-182|hsa-miR-182-5p 142 370 342 107 693 595 95 459 304 2.053556752  0.0004361
hsa-mir-409|hsa-miR-409-3p 21 123 16 18 317 35 103 86 39 2.051868627 0.0027216
hsa-mir-31|hsa-miR-31-5p 6199 81606 22332 1538 4381 3743 5068 8523 11933 1.979450454  0.0004223
hsa-mir-183|hsa-miR-183-5p 72 113 128 51 360 240 32 184 121 1.936112667  0.0032014
hsa-mir-34a|hsa-miR-34a-3p 22 156 120 64 206 196 38 94 102 1.844021394  0.0020127
hsa-mir-96|hsa-miR-96-5p 62 138 204 82 285 438 44 216 171 1.717244682  0.0048171
hsa-mir-181b-2|hsa-miR-181b-5p 29881 104462 79495 14825 48205 42304 15527 47100 73827 1.614827104 0.001432
hsa-mir-181b-1|hsa-miR-181b-5p 25210 85817 63044 12257 37865 32986 12923 38546 58066 1.568277921  0.0017051
hsa-mir-181a-1|hsa-miR-181a-5p 26166 91127 68499 14020 46150 37070 14422 36736 58216 1.546890866  0.0018425
hsa-mir-181a-2|hsa-miR-181a-5p 26167 91127 68500 14020 46151 37071 14423 36736 58216 1.54685464 0.0019025
hsa-mir-203a|hsa-miR-203a 1069 1743 2944 734 2558 3039 616 2971 2935 1.538283614  0.0051154
hsa-mir-152|hsa-miR-152 59886 10427 12901 42809 24495 6312 45870 17737 8722 -1.509182326 0.0051808
hsa-mir-338|hsa-miR-338-3p 114 35 50 74 22 15 54 21 13 -1.658631582 0.0081656
hsa-mir-126|hsa-miR-126-5p 1670 489 959 2096 515 541 1666 805 708 -1.66618406 0.005315
hsa-mir-486|hsa-miR-486-5p 2362 1445 1470 4659 1663 744 9369 1719 567 -1.715503085  0.002712
hsa-mir-126|hsa-miR-126-3p 582 170 293 688 150 111 646 298 249 -1.77772274  0.0033101
hsa-mir-30a| hsa-miR-30a-3p 6182 1847 3981 4469 809 432 5922 2912 4380 -1.944071768 0.0014237
hsa-mir-504|hsa-miR-504-3p 153 5 38 47 24 7 80 21 11 -2.138344436 0.0047989
hsa-mir-345|hsa-miR-345-5p 3598 481 1183 2679 680 863 2984 987 983 -2.162078644 0.0001587
hsa-mir-144|hsa-miR-144-3p 309 113 98 624 60 31 397 149 33 -2.169189131 0.0016838
hsa-mir-30a|hsa-miR-30a-5p 51581 10109 23893 39005 4277 2491 37034 20312 26164 -2.402241115 0.0002269
hsa-mir-144|hsa-miR-144-5p 595 195 297 1638 118 112 1010 328 99 -2.42308739  0.0004757
hsa-mir-138-1|hsa-miR-138-5p 28260 3674 3050 7492 970 402 9733 4669 2238 -2.482469709  3.70E-05
hsa-mir-874|hsa-miR-874-3p 536 186 293 1332 85 17 333 235 211 -2.503524715  0.003948
hsa-mir-138-2|hsa-miR-138-5p 27528 3277 2792 7037 926 366 9412 4460 2064 -2.515197444  3.58E-05
hsa-mir-139|hsa-miR-139-3p 4108 310 1200 4468 536 674 3718 1640 1103 -2.606006063  6.49E-05
hsa-mir-451a|hsa-miR-451a 8477 4776 5260 21523 1096 1727 20698 3910 1114 -2.654494903  8.51E-05
hsa-mir-139|hsa-miR-139-5p 629 86 380 1171 105 206 729 215 156 -2.672080309  6.88E-05
hsa-mir-4732|hsa-miR-4732-5p 66 21 25 149 6 11 156 36 10 -2.737912399 0.000222
hsa-mir-30c-2|hsa-miR-30c-2-3p 8025 1648 2296 3954 280 120 4801 1758 2420 -2.866526668  3.14E-05
hsa-mir-504|hsa-miR-504-5p 153 11 23 201 25 0 109 38 26 -2.875705796 0.0003783
hsa-mir-3664|hsa-miR-3664-3p 207 27 26 81 4 1 132 35 11 -3.063353332  3.29E-05
hsa-mir-345|hsa-miR-345-3p 38 8 26 213 10 2 114 29 12 -3.099220329 0.0003879
hsa-mir-4521|hsa-miR-4521 80 13 22 173 1 8 166 45 1 -3.177391313 0.0010833
hsa-mir-138-1|hsa-miR-138-1-3p 1148 52 86 327 27 6 481 159 48 -3.21717763 2.16E-05
hsa-mir-873|hsa-miR-873-5p 169 33 2 163 3 0 200 17 1 -3.786267376  3.32E-07
hsa-mir-876|hsa-miR-876-5p 85 7 0 79 1 0 71 12 0 -3.827990126  2.38E-06
hsa-mir-1179|hsa-miR-1179 403 12 24 241 1 4 166 32 1 -4.36899806 8.73E-06
hsa-mir-7-2|hsa-miR-7-5p 152 0 2 51 3 4 84 12 1 -4.373513693 1.81E-06
hsa-mir-204|hsa-miR-204-5p 702 12 37 739 18 7 901 99 9 -4.487066877 1.20E-07
hsa-mir-204|hsa-miR-204-3p 3623 22 59 1008 53 12 4169 303 15 -4.551411401 1.73E-08
hsa-mir-7-2|hsa-miR-7-2-3p 211 1 8 178 0 0 111 12 2 -5.783233746  3.58E-08
B precursor|microRNA N1 T1 M1 N2 T2 M2 N3 T3 M3 logFC PValue
hsa-mir-196a-2|hsa-miR-196a-5p 4 5 593 12 813 825 11 5 472 3.962661378  0.0007352
hsa-mir-196a-1|hsa-miR-196a-5p 3 5 415 7 616 630 7 3 309 3.744847676 0.001113
hsa-mir-508|hsa-miR-508-3p 14 2 13 8 45 386 3 2 18 3.120001493  0.0001911
hsa-mir-514a-2|hsa-miR-514a-3p 6 3 16 5 68 287 2 1 12 2.498622525 0.0011051
hsa-mir-514a-3|hsa-miR-514a-3p 6 3 16 5 68 287 2 1 12 2.498105968  0.0010842
hsa-mir-514a-1|hsa-miR-514a-3p 6 3 16 5 68 287 2 1 12 2.497927532  0.0010771
hsa-mir-375|hsa-miR-375 3677 1841 5486 549 1066 5987 631 451 1807 2.228640329  0.0001215
hsa-mir-509-3|hsa-miR-509-3p 30 30 74 19 131 919 14 13 38 2.220744285 0.0018246
hsa-mir-509-2|hsa-miR-509-3p 30 30 74 19 131 919 14 13 38 2.220735575 0.0018306
hsa-mir-509-1|hsa-miR-509-3p 30 30 74 19 131 919 14 13 38 2.220639027  0.0018993
hsa-mir-146b|hsa-miR-146b-5p 9948 649349 1776793 8323 686401 4188933 9278 154499 482460 2.146327411  0.0002132
hsa-mir-509-3|hsa-miR-509-3-5p 87 24 111 56 339 1308 38 19 70 2.109540594  0.0026365
hsa-mir-487b|hsa-miR-487b 34 103 27 50 140 29 45 49 16 -1.78701617  0.0029825
hsa-mir-494|hsa-miR-494 23 69 10 36 134 28 58 56 30 -1.835788743 0.0025715
hsa-mir-495|hsa-miR-495-3p 65 206 48 87 371 52 135 117 62 -1.849111643 0.0029004
hsa-mir-433|hsa-miR-433 79 85 15 52 256 51 90 110 43 -1.893863135 0.0021912
hsa-mir-187|hsa-miR-187-3p 52 1420 163 7 931 217 36 263 143 -1.91214991  0.0026493
hsa-mir-136|hsa-miR-136-5p 38 64 16 51 118 14 69 49 22 -1.929793518 0.0018686
hsa-mir-127|hsa-miR-127-3p 578 1279 232 500 3236 402 1245 1069 604 -2.031564178  0.000584
hsa-mir-376c|hsa-miR-376c-3p 35 93 16 45 143 19 85 43 24 -2.031791479 0.0014561
hsa-mir-485|hsa-miR-485-3p 46 112 16 42 297 36 87 147 86 -2.033887507 0.0015625
hsa-mir-199b|hsa-miR-199b-5p 397 206 36 535 1046 107 778 245 144 -2.094216413 0.0008084
hsa-mir-485|hsa-miR-485-5p 196 275 59 167 1145 105 404 285 152 -2.162499969 0.0007515
hsa-mir-210|hsa-miR-210-3p 300 466 181 272 1964 84 237 173 97 -2.174397385 0.0019173
hsa-mir-382|hsa-miR-382-3p 30 84 11 29 326 27 59 56 43 -2.261306922 0.0008969
hsa-mir-409|hsa-miR-409-3p 21 123 16 18 317 35 103 86 39 -2.446081871 0.0002424
hsa-mir-873|hsa-miR-873-5p 169 33 2 163 3 0 200 17 1 -3.787954055 5.99E-05
hsa-mir-876|hsa-miR-876-5p 85 7 0 79 1 0 71 12 0 -6.79150197 8.56E-05

Fig. 3 (See legend on next page.)
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(See figure on previous page.)

Fig. 3 Significant modulated microRNA expressions between samples types in the small RNA deep-sequencing data. Normal samples (N), primary
tumors (T) and LNM (M) from 3 patients (M) were analyzed. The read counts are described for each sample. The fold change (FC) is the log 2
expression ratio in CPM. We used a generalized linear model and designed our analysis so that 3 replicates were available per condition while
retaining the paired information for tissue types collected from the same patient (See Methods). a: comparison between tumors and normal
samples. Up-regulated microRNA in tumors are in red and down-regulated microRNAs in tumors are in green. b: comparison between LNM and
tumor samples. Up-regulated microRNAs in metastases are in red and down-regulated microRNAs in metastases samples are in green
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= In silico validation on the TCGA small RNA deep-
sequencing dataset

In order to further validate our results on the largest
set of independent PTC samples, we collected the TCGA
public small RNA deep-sequencing data processed by
the Broad Institute with an independent bioinformatics
approach (see Additional file 2 for a complete descrip-
tion of collected datasets). The microRNA expression
profiles of 59 normal samples, 495 primary tumors of all
histological subtypes and 8 LNM were available. We
used Table S2 from the recent TCGA publication on
PTC [30] to obtain the clinical and pathological cha-
racteristics of samples. We analyzed the differential
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expression of the 20 microRNAs previously investigated
by qRT-PCR.

Down-regulated microRNAs are biomarkers of PTC
tumorigenesis and LNM formation

We confirmed the down-regulations of the 14 micro-
RNAs in tumors compared to normal samples (Fig. 5).
We obtained the same results when we selected tumor
samples based on a cell content filter (see Methods),
which reduced the number of primary tumors to 120,
and when we compared the 59 matched tumor and nor-
mal samples. Among these microRNAs, we confirmed
the down-regulations obtained by qRT-PCR in LNM
compared to primary tumors for miR-7-5p, miR-7-2-3p,
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miR-30c-2-3p and miR-152 but not for miR-139-5p.
Additional down-regulated microRNAs between LNM
and tumors were detected: miR-138-1-3p, miR-204-5p,
miR-873-5p, miR-876-5p and miR-1179. Concerning
miR-196a-5p, even if its expression is increased in LNM,
its significant up-regulation between LNM and tumors
observed by qRT-PCR was not validated in the TCGA
data. No other modulations between LNM and tumors
were found. The lack of confirmation of the differentially
expressed microRNAs between primary tumors and
LNM might result from differences in the cellular com-
position of the samples, and in particular from the pres-
ence of high amounts of immune cells in the LNM. We
did not perform the analysis by comparing matched pri-
mary tumors and LNM or LNM samples selected on the
basis of their high thyroid tumor cells content, because
such selection resulted in a great loss of samples.

Down-regulated microRNAs can distinguish the two
principal histological variants of PTC

To further analyze our results we compared the expres-
sion levels of the 14 down-regulated microRNAs be-
tween the normal samples (7 =59), the classical variants
(n=323) and the follicular variants of PTC (1z=99) in
the TCGA dataset (Fig. 6a). Less frequent variants and
non-annotated samples were not taken into account. 11
microRNAs are down-regulated in both variant types
and, except for miR-451a and miR-504, they are also sig-
nificantly less expressed in classical variants. miR-7-5p,
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miR-204-5p and miR-139-5p are only significantly
down-regulated in the classical variants. These results
suggest that, in addition to their ability to discriminate
PTC from normal samples, the studied down-regulated
microRNAs are also able to distinguish tumor histo-
logical major subtypes.

Down-regulated microRNAs can distinguish aggressive from
non-aggressive phenotype of PTC

We obtained similar results when we compared the nor-
mal samples with the BRAF V600E positive PTC sam-
ples (n =233) and the BRAF negative PTC samples (n =
168) in the TCGA dataset (Fig. 6b). Again, non-
annotated samples were not taken into account. The
same 11 microRNAs plus miR-139-5p are down-
regulated in both tumor types but, except for miR-451a
and miR-504, they are significantly less expressed in
BRAF V600E positive samples. miR-7-5p and miR-204-
5p are only significantly down-regulated in BRAF V600E
positive tumors. These results were not unexpected tak-
ing into account that in the 191 BRAF V600E positive
PTC samples annotated for variant type, 179 are clas-
sical and only 12 are follicular. In addition, in the 151
BRAF V600E negative samples annotated for variants,
only 80 are classical and 71 are follicular. The difference
of the histological variants repartition in the BRAF
V600E negative and positive tumor populations was
assessed by a two-side Fisher’s exact test which was very
significant: pval < 0.0001.

Fig. 6 Down-regulated microRNAs in PTC are differentially expressed in tumor subtypes. A/B: the expressions of the 14 validated down-regulated
microRNAs were investigated in in classical and follicular histological variants (a) and in BRAF VE0OE positive and negative tumor samples (b). For
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Globally, similar results were obtained when com-
paring LNM positive N1 (n =206) vs LNM negative NO
(n=214) PTC samples and high risk (n =24) vs low risk
(n=171) PTC samples (Additional file 1: figure S2). As
expected, the proportion of BRAF mutated tumors in
the aggressive population is significantly higher than in
the non-aggressive population (Fisher’s exact test pval <
0.01 in both comparisons).

In order to compare the discrimination ability of re-
lated clinical and pathological information, we per-
formed different PCA analyses on the TCGA dataset
with the expression of the 14 down-regulated micro-
RNAs. Information regarding BRAF mutational status,
histological subtype, clinical risk, presence of lymph
node metastases, clinical tumor stage, presence of extra-
thyroidal extension, age and gender were used to create
different PCA plots. Non annotated samples for one of
these parameters were not used in the corresponding
plot. Normal samples were added to each PCA analysis
(Additional file 1: figure S3). The BRAF V600E muta-
tional status and the histological subtype variations
showed the most effective separation between the ana-
lyzed samples (Fig. 7), suggesting that the variations of
microRNA expressions between PTC samples are mainly
explained by these parameters.

In conclusion, we have validated the modulation of ex-
pression of our microRNAs in independent samples.
These down-regulated microRNAs are systematically
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less expressed in more aggressive PTC samples, in cor-
relation with the presence of the BRAF V600E mutation.

Deep investigation of the miRNome revealed no major
implication of isoforms variation or arm shift in PTC
tumorigenesis and lymph node metastatic progression
Since microRNA 5p-to-3p arm expression ratio modula-
tions, NTA distribution and isomiRs distribution have been
associated with tumorigenesis in several cancers [23-28],
we investigated the presence of such variations in our deep-
sequenced tumor and LNM samples (Table 1). We vali-
dated our results on independent samples from 14 patients
by qRT-PCR when possible and with the TCGA dataset.

= Sp-to-3p arm ratio

We calculated for each sample type and each pre-miR
the expression ratio between both microRNAs (5p arm
versus 3p arm) encoded by the same pre-miR. This calcu-
lation was only performed for microRNAs precursors en-
coding both a 5p and 3p mature microRNA. Expression of
mature arms was performed in two ways: (1) using all dis-
tinct isoforms identified for a given microRNA (2) using
only its canonical isoform reported in miRBase (v19). We
found 9 pre-miR for which the 5p arm versus 3p arm ex-
pression ratio showed a fold change above 1.5 or below
0.66 between sample types (let-7d, mir-17, mir-27b, mir-
92a-1, mir-181a-1, mir-181c¢, mir-221, mir-324, mir-1307),
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Fig. 7 Principal component analyses of whole TCGA dataset. a/b: the analysis was performed on the 59 normal samples and annotated tumors
for BRAF mutational status (a) or histological subtypes (b). Non annotated samples for one of these parameters were not used in the
corresponding PCA. No additional filtering criterion was used. The analyses were performed with the expression of the 14 validated down-regulated
microRNAs in PTC. Numbers in brackets correspond to the number of available samples in the TCGA dataset for each tissue type
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but only one of them (pre-miR-17) had an inversion of the
dominant arm. We performed Tagman and SYBR Green
(Exiqon) qRT-PCR validation experiments for 3 selected
pre-miR (mir-324, mir-17, mir-1307) on the deep-
sequenced samples and the validation sample set. These
two methods have been designed to target the canonical
isoform reported in miRBase, unlike deep-sequencing. Al-
though we confirmed the significant modulations ob-
served for the 3 pre-miR in deep-sequenced samples, we
only succeeded in validating the significant modulation
observed for pre-miR-324 in the validation sample set.
However, neither pre-miR-324 nor the 8 other pre-miR
had a significant modulation of the 5p-to-3p arm ex-
pression ratio in the TCGA validation dataset with or
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without filtering out samples with low tumor cells con-
tent (Additional file 1: Figure S4). These data suggest
that 5p-to-3p arm modulation is not a common feature
of PTC tumorigenesis and lymph node metastatic
progression.

= NTA distribution

Non-templated additions were identified directly dur-
ing read mapping. The pipeline associates to each tag
the nucleotides that had to be removed at the 3" end to
obtain a match on the reference. First, we evaluated the
contribution of each type of NTA across all microRNAs
in all our deep-sequenced samples (Fig. 8a). As expected,
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the major contribution came from adenine and uracil nu-
cleotides. Next, we represented the relative contribution of
each type of NTA for every sample independently (Fig. 8b).
In general, the contribution of each type of NTA is very
similar across all samples. Then, we computed the fraction
of adenylated and uridylated mapped reads for each ma-
ture microRNA in every samples. We identified the most
adenylated and uridylated microRNAs in our samples and
noticed that there was no overlap between them excepted
for 2 microRNAs (Additional file 1: Figure S5). Further-
more, the majority of microRNAs had a level of adenyla-
tion or uridylation below 30 % of all mapped reads. We
also screened NTA to identify specific microRNAs harbor-
ing different patterns of additions when comparing normal
tissues to matching tumors and metastases, but we did not
find variations of adenylation or uridylation accounting for
at least 20 % of all mapped reads. This suggests that non-
templated additions in human are tissue and microRNA
specific, as previously suggested [37—40], but do not seem
to be strongly related to tumor initiation or progression in
the case of thyrocytes. Since the TCGA miRSeq public
data only include per-sample isoform read counts and nor-
malized expression, it was not possible to use them to re-
produce this calculation (no information was available
regarding the sequence of mapped reads).

= isomiRs distribution

We first compared the number of distinct isomiRs per
mature microRNA between each of our deep-sequenced
sample. A specific isomiR was considered present in a
given sample if it accounted for at least 1 % of the ex-
pression of the mature microRNA. We found no differ-
ence between sample types. The vast majority of mature
microRNAs, covered by a minimum of 100 reads pre-
sented between 2 and 8 isomiRs (Fig. 8c). We repeated
this analysis with the TCGA data with or without filter-
ing out samples with high tumor cells content but we
found no difference between sample types (Fig. 8d,e).
We then grouped isomiRs by classes, according to the
modification of their start and end coordinates com-
pared to their canonical counterpart. In order to analyze
the distribution of these classes between sample types,
we calculated the contribution of each class for every
microRNA in the 9 samples that were deep-sequenced.
We did not find any variation of these contributions be-
tween sample types (Additional file 1: Figure S6A). As
expected, the canonical isoform defined in miRBase v19
was not always the most expressed. Indeed, we averaged
class contribution across all 9 samples and the canonical
isoform was the most expressed for only 48 % (93/194)
of the selected microRNAs. The same values were ob-
served for the end-site (3") isomiR class. On the oppos-
ite, the start-site (5) and both sites classes (5'and 3")
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were dominant for only 1 % (2/194) and 3 % (6/194) of se-
lected microRNAs respectively. We then redefined the ca-
nonical microRNA as the one having the highest relative
contribution to total microRNA expression in the three
normal samples. The classes were reassigned accordingly.
In these conditions, the end-site (3") class had still the most
variable contribution across all selected microRNAs
(ranging from O to 73 %) compared to classes involving 5’
coordinate shifts (ranging from 0 to 36 % and 0 to 30 % for
start-site and both sites classes respectively) (Additional
file 1: Figure S6B). Furthermore, there was still no variation
of these contributions between sample types. We also
searched for specific isomiRs whose contribution to total
expression of the corresponding microRNA would be
altered during the course of tumorigenesis and metastatic
formation in the 9 samples. We found 5 microRNAs (let-
7i-5p, miR-19b-3p, miR-27a-3p, miR-27b-3p, miR-148b-3p)
for which at least one isomiR showed a variation of at least
20 % when comparing its mean contribution over normal
tissues to primary tumors or LNM. However, all these iso-
miRs were 3" variants of the canonical form, leaving the
seed region unmodified. Additionally, we failed to confirm
these observations using TCGA data. This suggests that
isomiRs do not seem to be strongly related to tumor initi-
ation or progression of thyrocytes.

MicroRNA A-to-l editing is present in weakly expressed
mature microRNA in thyrocytes

We designed a custom variant calling approach to deal
with the extreme coverage of some highly expressed
microRNAs. Read alignments of the 9 deep-sequenced
samples confirmed the A-to-I edition of the miR-376 fam-
ily, which was already reported in glioblastoma cells [26].
However, this microRNA is weakly expressed in each sam-
ple type. We identified new A-to-I edited positions. We
identified 4 single nucleotide substitutions matching our
filtering criteria but in weakly expressed microRNAs
(Additional file 1: Table S3). In addition, editing fre-
quencies obtained from read alignments did not show any
significant difference between sample types. We fur-
ther validated these editions by cDNA Sanger sequen-
cing with primers designed to target the pri-miR sequence
(Additional file 1: Table S4), and confirmed the absence of
substitution in the DNA of these samples by genomic DNA
sequencing. A-to-I RNA-editing (recognized as a G by the
sequencer) was found for miR-605-3p in each sample type
(Additional file 1: Figure S7). We also screened read align-
ments for other mutations located in mature microRNAs
and potential variation of the mutational status between
sample types but we did not find any candidate mutation.

Discussion
In our study, we searched for new microRNA biomarkers of
PTC tumorigenesis and lymph node metastasis formation.



Saiselet et al. BMC Genomics (2015) 16:828

We used a custom bioinformatics framework for the ana-
lysis of the microRNA expression profiles of 3 PTC,
matched normal samples and lymph node metastases.
The choice of a first limited but well characterized set of
samples is completely assumed. Indeed, this could lead to
a loss of non-common variations in each sample but in
this study we looked for strong and common new bio-
markers of PTC. These samples were carefully selected on
the basis of their normal or tumor cells composition to
avoid cell contamination which would bias the results
[41-43]. These samples were used as a small “training” set
to find modulations in the whole miRNome, which were
then validated in a very large amount of samples by two
different approaches. First, by qRT-PCR on independent
samples from 14 other patients. These samples were also
carefully selected based on their normal or tumor cell
composition. Secondly, we validated the results by an in
silico analysis of the TCGA database which is the largest
available dataset of PTC to our knowledge [30]. qRT-PCR
and in silico data were not always concordant. This can be
due to different reasons. First, the number of samples
analyzed is quite different between the 2 datasets. This
variation changes the power of the associated statistics.
Secondly, the methodologies are conceptually different
[21]. Finally, unlike qRT-PCR dataset, the TCGA dataset
does not allow to adjust for interindividual variations by
patient matched analyses without a great loss of informa-
tion regarding LNM samples and not all the samples have
been selected on the basis of their cell composition.

Our study revealed the strong ability of down-
regulated microRNAs in PTC to distinguish tumors and
LNM from normal thyroid samples. Their specific ex-
pression in thyrocytes was confirmed experimentally by
LCM analyses, and then validated experimentally and in
silico by selecting tumors with a low content of contam-
inating cells. Unlike commonly reported up-regulated
microRNAs in PTC, very few down-regulated micro-
RNAs were identified in microarrays studies [8, 20].
Only recent small RNA deep-sequencing studies showed
a common list of down-regulated microRNAs in PTC
[27, 30, 44]. However, their functions and abilities to dis-
tinguish sample types and tumor subtypes were little ex-
plored. This is the reason why we decided to focus our
study on these microRNAs. In 2013, Swierniak et al. re-
ported a list of 44 up- and down-regulated microRNAs in
14 PTC samples compared to matched normal thyroid
samples [27]. They used small RNA deep-sequencing
analysis and validated their results by microarray on 9
additional sample pairs. Recently, Mancikova et al. de-
scribed a smaller list composed by 10 up-regulated and 5
down-regulated microRNAs in PTC compared to normal
samples [44], by performing small RNA deep-sequencing
analysis on a training set of 35 PTC and 8 normal samples
and a validation set of 43 PTC and 9 normal samples.
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Several microRNAs were common between both studies,
but there were also differences. The number of samples
considered, the RNA extraction method used and the bio-
informatics pipeline used for the analysis of the deep-
sequencing data may explain the discrepancies between
the different studies. In our study, we identified by small
RNA deep-sequencing analysis 31 up-regulated and 30
down-regulated microRNAs in PTC (classical variants)
compared to matched normal samples. We confirmed
that, as already described for up-regulation, consistent
down-regulation of microRNAs occurs as well during
PTC tumorigenesis. The list of the 14 most down-
regulated microRNAs that we validated by qRT-PCR and
in silico analyses, on subtypes of PTC, extends the obser-
vations of Swierniak et al. on the largest available set of
PTC samples. In addition, we have extended these obser-
vations to LNM and have shown that these selected
down-regulated microRNAs are differentially expressed
between the 2 major histological subtypes of PTC (clas-
sical and follicular). Among the described down-regulated
microRNAs, miR-7-5p has already been studied as a diag-
nostic marker for PTC but with limited efficacy (sensibility
82 %, specificity 73 %) [8, 45]. Accordingly in our work,
miR-7-5p was not significantly modulated in follicular var-
iants of PTC compared to normal samples. However, since
it has been shown that a diagnostic signature based on
multiple microRNA expressions can outperform previous
single microRNA signatures [8], we propose to combine
the down-regulated microRNA described in this study to
the panel of microRNAs already explored to define a very
efficient diagnostic signature of PTC in thyroid biopsies.
However, more studies are required to assert the efficiency
of any microRNA signature on rare subtypes of PTC, like
diffuse sclerosing variants.

Many publications report that PTC samples with differ-
ent degrees of aggressiveness present different microRNA
expression profiles [46—48], on the basis of microarrays
and qRT-PCR analyses. These studies revealed the com-
mon up-regulation of the well-characterized miR-146b-5p,
miR-221-3p and miR-222-3p in aggressive PTC compared
to non-aggressive samples but no commonly down-
regulated microRNAs. Since the BRAF V600E mutation
has been associated with PTC aggressiveness [49-51],
Swierniak et al. searched for a BRAF V60OE associated ex-
pression profile in their small RNA deep-sequencing data
but without success [44]. However, the recent global ana-
lysis of the TCGA data revealed that the BRAF mutational
status deeply modulate the wide transcriptome of PTC
[30]. In particular miR-7-5p, miR-204-5p and other micro-
RNAs expressions in PTC are associated with the pres-
ence of the BRAF V600E mutation. In our study, we
found that 12 of the 14 strongest down-regulated micro-
RNAs in PTC were significantly less expressed in BRAF
V600E positive PTC samples compared to negative PTC
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samples. In addition, miR-7-5p and miR-204-5p were not
significantly down-regulated in BRAF V600E negative
PTC samples compared to normal samples. In accordance
with our observations, Mancikova et al. recently showed
that miR-7-5p and miR-204-5p expressions are deeply as-
sociated with the BRAF V600E mutational status [44]. We
found similar results when we compared tumors with a
“high” clinical risk to tumors with a “low” clinical risk and
tumors with LNM (N1) to tumors without LNM (NO),
suggesting the general implication of the down-regulated
microRNAs in the aggressiveness of the tumor. The
“aggressiveness” of a tumor is a complex notion which in-
volves clinical and pathological aspects like BRAF V600OE
mutational status, histological subtype, clinical tumor
stage... We showed that the variations of microRNA ex-
pressions between PTC sample subtypes seemed mainly
related to the BRAF V600E mutational status. This sug-
gests that the constitutive activation of the RAS/RAF/
MAPK pathway by the BRAF V600E mutation results in a
higher deregulation of microRNA expressions. However, it
is not clear if these modulations are a cause or a conse-
quence of the aggressive phenotype.

The majority of the down-regulated microRNAs have
been reported to be “tumor suppressor” microRNAs in
other cancers. This is the case for miR-7-5p [52, 53] and
miR-204-5p. Interestingly, one of the validated targets of
miR-7-5p is EGFR (epidermal growth factor receptor)
mRNA [54, 55] which is a major inducer of thyrocyte
proliferation. miR-204-5p has been reported as a repres-
sor of both MMP3 and MMP9 (matrix metalloprotein-
ase) mRNA and also as a direct repressor of HMGA2
(High-mobility group AT-hook 2) mRNA. The proteins
encoded by these mRNAs play an active role in the mo-
bility and the invasiveness of cancer cells [56, 57]. So, in
addition to their role as potential strong biomarkers can-
didates these microRNAs probably play a functional role
in tumor progression.

The implication of microRNAs in lymph node metastasis
formation is only poorly characterized. It has been shown
in different cancer types that microRNA expressions in
LNM reflect the microRNA expressions in the associated
primary tumors [58-60]. Some studies suggest that LNM
formation does not require major microRNA modulations
[60] whereas another reports differentially expressed
microRNAs between primary tumors and associated LNM
[58], suggesting an implication of microRNAs in LNM for-
mation. Concerning PTC metastasis development, very lit-
tle is known. Our small RNA deep-sequencing results
revealed similar microRNA expression profiles between
primary tumors and associated LNM. In addition, we failed
to validate by qRT-PCR 6 of the 7 selected microRNA
modulations between tumors and LNM and only 2 (miR-
873-5p, miR-876-5p) were validated in the TCGA dataset.
However, among the validated down-regulated microRNAs
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in PTC, some of them are nevertheless significantly less
expressed in the LNM than in the primary tumors, such as
miR-7-2-3p, miR-30c-2-3p or miR-873-5p. The number of
microRNA varied between our first deep-sequencing ana-
lysis, qRT-PCR and in silico validations but increased with
the number of samples considered. We also showed that
miR-196a-5p is up-regulated in LNM containing at least
70 % of tumor cells. In other cancers, miR-196a-5p and
miR-30c-2-3p have also been respectively identified as up-
[61-63] and down- [64, 65] regulated during migration
and invasion. So, although the microRNA expression pro-
files of primary tumors of PTC and LNM are very similar,
some microRNAs are modulated and could participate to
metastasis formation. However, the amount of LNM
used in our study is limited and further studies are
therefore required to confirm these preliminary data
as well as to characterize the function of these micro-
ARNs in LNM formation.

Our results showed that there is no major change in
the 5p-to-3p expression ratios, the isomiR distribution
and the NTA distribution which could be involved in
PTC tumor development and constitute new bio-
markers. However, our analyses are limited by the small
number of samples in our “training” set. Furthermore
since the TCGA small RNA deep-sequencing public data
only include per-sample isoform read counts and nor-
malized expression, it was not possible to use them to
validate the results of the NTA analysis. In addition, un-
like the TCGA mapping strategy, our read mapping
strategy was designed to specifically distinguish 3" NTA
from isomiRs. It is thus possible that a given isoform “A”
reported in the TCGA data actually corresponds to iso-
form “B” with one or several non-templated additions in
our own dataset. This limits the accuracy of compari-
sons of isomiR distribution. Nonetheless, we showed
that the large majority of microRNAs had a level of ade-
nylation or uridylation below 30 % of all mapped reads
and it is rare to find microRNA with a high level of ade-
nylation and uridylation at the same time. This is in ac-
cordance with previous results [37, 66]. This particular
issue only concerned isomiRs characterization and had
no effect on expression profiles, obtained using all
isoforms identified for a given mature microRNA.
Additionally, qRT-PCR is inefficient for the validation of
the results of the NTA and the isomiR analyses.

However, to our knowledge, this is the first work
which explores 5p-to-3p expression ratios and NTA dis-
tribution in PTC. IsomiR distribution has already been
studied by Swierniak et al. who showed that this distri-
bution changes during PTC tumorigenesis [27]. In ac-
cordance with them, we showed that the vast majority of
mature microRNAs, covered by a minimum of 100
reads, presented between 2 and 8 isomiRs. However as
opposed to what they report, we did not find modulation
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of the distribution between sample types, even when
considering all the samples from the TCGA dataset. This
discordance could be explained by the number of sam-
ples considered and by technical differences. Indeed,
Swierniak et al used normal samples, normal tissues ad-
jacent to tumor samples and tumors from 14 patients. In
addition, they required perfect matches without any 3’
end NTA trimming when aligning reads. The selection
of isomiR is also slightly different. We therefore con-
cluded that the distribution of well-expressed isomiRs is
similar in normal thyroid samples and PTC.

This absence of major modulation contradicts several
studies on different cancer types which have mentioned
that 5p-to-3p expression ratios, NTA and isomiR distri-
butions may be altered in tumors [23-25, 27, 28]. Two
non-exclusive hypotheses may explain these discrepan-
cies: (1) there is no such modulation in the thyrocytes,
neither during tumorigenesis nor during LNM develop-
ment; (2) these modulations are more related to cellular
contamination and read mapping strategy than to
tumorigenesis. Studies reporting such modulations in-
volve tumor samples without well-defined cellular con-
tent, and the mapping strategy differs between studies
[23-25, 27, 28]. Indeed, contaminating cells like lympho-
cytes or fibroblasts and even normal cells could alter ex-
pression profiles and decrease the specific signal of the
tumor cells [41-43]. However, even when using the full
set of unfiltered TCGA samples, no modulation of 5p-
to-3p expression ratios or isomiR distribution was found
between the sample types.

microRNA editing was observed in thyrocytes, and we
were able to validate a A-to-I editing event occurring in
miR-605-3p. As the edited base was located in the seed
sequence, this specific editing event may change the
mRNA targets of this microRNA. However, no modula-
tion was observed between samples types. We concluded
that editing may be indeed present in mature low-
expressed microRNAs in thyrocytes but does not seem
to contribute to PTC tumorigenesis.

In our study, we developed a new flexible bioinformat-
ics framework to explore every aspect of the miRNome.
Small RNA deep-sequencing outperforms traditional
quantitative technologies like qRT-PCR or microarrays
[21]. However, the absence of “gold standard” read map-
ping guidelines decreases the comparability of the stud-
ies and increases the risk of technical biases in the
results. In 2010, De Hoon et al. [29] showed that, with
an inappropriate analysis pipeline, a microRNA read
may be mapped on a wrong location in the reference
genome. This effect, known as cross-mapping effect,
may dramatically change the conclusion of the analysis
by creating wrong sequence variations and microRNA
quantifications. Two years later, Alon et al. [22] showed
that an alignment of the microRNA reads against the
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whole genome with up to one mismatch tolerated and a
3" end NTA trimming procedure drastically decreases
the level of cross-mapping. Recently, Muller at al. [66]
showed that an analysis pipeline which does not con-
sider isomiRs and NTA variations may result in a loss of
31 % of the microRNA expression signal. Indeed without
isoform detection the number of individual microRNAs
presenting more than 100 reads in at least one sample of
the study decreased from 318 to 219 microRNAs. In our
study, we designed our bioinformatics analysis pipeline
in order to meet guidelines established by the previously
mentioned authors: (1) the microRNA reads were aligned
directly to the whole genome, because small RNA libraries
also contain other short RNAs (snRNAs, tRNAs...) which
could be confounded with mature microRNAs having a
similar sequence; (2) the isomiR variations were captured
by considering all reads mapped within a 5 base pairs win-
dow of every canonical microRNA; (3) the 3" end NTA
were iteratively trimmed until a match could be found
and the information regarding the trimmed nucleotides
were kept; (4) the number of allowed mismatches was
gradually increased by a multistep alignment procedure so
that perfect matches were always preferred. With this
strategy, up to 93 % of individual reads could be mapped
during the first step when using the human genome hg19
as reference (Fig. 1 and Methods). Considering that no
“gold standard” exists in the literature and that all the
authors do not explain in details their bioinformatics
framework in such a way that non experts can repro-
duce the analyses, we addressed alignment issues previ-
ously reported in the literature and proposed unified
guidelines to study every aspect of microRNA biogen-
esis from each small RNA deep-sequencing data in an
unbiased way.

Conclusions

Down-regulation of microRNAs is a common feature
occurring during PTC tumorigenesis. This observation
was expanded to lymph node metastases and we showed
that these modulations occur specifically in the thyroid
tumor cells. These modulations are associated with the
aggressiveness of the primary tumor and are further
amplified in BRAF V600E positive cells. Our results sug-
gest that the observed down-regulated microRNAs in
PTC are not only potential strong biomarker candidates
but may have a functional role at different levels during
thyroid tumorigenesis and metastases formation. This
should be explored by functional studies.

The first complete miRNome analysis of PTC that we
performed showed that there is no major change in the
5p-to-3p expression ratios, the isomiRs and the NTA
distributions, or in the A-to-I editing sites of mature
microRNAs, suggesting that they do not contribute to
PTC tumor development.
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Considering that no “gold standard” exists in the lit-
erature, we propose unified guidelines to analyze each
aspect of microRNA deep-sequencing data in an un-
biased way.
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