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Abstract

Background: Gene regulatory relationships can be inferred using matched array comparative genomics and
transcriptomics data sets from cancer samples. The way in which copy numbers of genes in cancer samples are often
greatly disrupted works like a natural gene amplification/deletion experiment. There are now a large number of such
data sets publicly available making a meta-analysis of the data possible.

Results: We infer inter-chromosomal acting gene regulatory relationships from a meta-analysis of 31 publicly
available matched array comparative genomics and transcriptomics data sets in humans. We obtained statistically
significant predictions of target genes for 1430 potential regulatory genes. The regulatory relationships being inferred
are either direct relationships, of a transcription factor on its target, or indirect ones, through pathways containing
intermediate steps. We analyse the predictions in terms of cocitations, both publications which cite a regulator with
any of its inferred targets and cocitations of any genes in a target list.

Conclusions: The most striking observation from the results is the greater number of inter-chromosomal regulatory
relationships involving repression compared to those involving activation. The complete results of the meta-analysis
are presented in the database METAMATCHED. We anticipate that the predictions contained in the database will be
useful in informing experiments and in helping to construct networks of regulatory relationships.

Keywords: Gene regulatory relationship, aCGH, Transcriptomics, Cancer, Meta-analysis, Activation, Repression,
Cocitations

Background
We performed a joint analysis of 31 matched array com-
parative genomics (aCGH) and transcriptomics human
cancer data sets; that is, experiments in which aCGH and
transcriptomics arrays have been run on the same sam-
ples. We obtained inter-chromosomal acting regulatory
relationships inferred from these data sets. By regulatory
relationship we mean either a direct relationship, of a
transcription factor on its target gene, or a very indirect
one, through a pathway containing many intermediate
regulatory steps.

*Correspondence: richard.newton@mrc-bsu.cam.ac.uk
Biostatistics Unit, Medical Research Council, Robinson Way, CB2 0SR
Cambridge, UK

For tumour samples, aCGH microarrays compare gene
copy numbers in the DNA extracted from the cells under
investigation to the gene copy numbers in normal control
cells, in order to detect gene deletions or gene amplifi-
cations (double or more copies of a gene compared to
normal). Typically, the DNA is extracted from a tumour
sample containing many cells, which may exhibit differ-
ent alterations in copy number. So for each gene the
measured change in copy number is an average for all
the cells in the sample and will, in general, be fractional
rather than integer. The gene expression experiments also
utilise microarrays, but measure the abundance of mRNA.
Reviews of matched experiments, their analysis and uses
can be found in Huang et al. [1] and Lahti et al. [2].
The way in which copy numbers of genes in cancer

samples are often greatly disrupted works like a natural
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gene amplification/deletion experiment, so when tran-
scriptomics data is also available for the same samples,
then information can be gleaned on how changes in a
gene’s copy number affects that gene’s expression. In addi-
tion, but more challenging, the data can be used to inves-
tigate whether the change in a gene’s copy number, and
concomitant change in expression, affects the expression
of other genes, hence inferring regulatory relationships.
Predicting regulatory relationships from this type of

data faces multiple obstacles. The signal is quite weak, due
to the noise in the data, and the complexity of the biology
involved presents a number of additional problems. There
can be a high degree of non-linearity in the relationship
between copy number and expression, in fact gene ampli-
fication in some circumstances may actually reduce the
expression of that gene [1, 3, 4]. One cause of non-linearity
in regulatory relationships is that amplification or dele-
tion of genes can result in alternative regulatory pathways
being activated. A further problem for the analysis is that
the results for a potential regulator can be confounded by
coamplified/codeleted genes situated in the same region
of the genome, and it is for this reason that we concentrate
on inter-chromosomal acting regulatory relationships.
Many genes that have altered copy number in one can-

cer type are found to have altered copy number in other
cancer types [5], so combining data sets from multiple
cancer types should help reinforce any information within
the data on regulator-target relationships. The 31 data sets
used for the inference are comprised of several types of
human cancer and a total of 2574 samples. Heterogene-
ity between cancer types does mitigate any improvement,
however we have shown experimentally in Goh et al. [6]
and computationally in Newton &Wernisch [7] that there
is useful signal on regulatory relationships within the data.
Inferences from ameta-analysis of matched data sets were
presented in Newton & Wernisch [7] for a few potential
regulators whereas the present analysis makes available
the results for all potential regulators in the matched data
sets. The complete results of the meta-analysis are pre-
sented in the METAMATCHED database (http://sysbio.
mrc-bsu.cam.ac.uk/METAMATCHED).

Methods
Data
Table 1 lists the 29 experiments used in the meta-analysis.
If an experiment used two different expression platforms
then the samples for each expression platform are treated
as a separate data set. This is done in order to avoid the
possibility of spurious correlations which may be caused
by systematic distortions or shifts between the two sets
of expression data. This situation pertains to two of the
experiments, so these two experiments contribute four
data sets to the study, resulting in a total of 31 data sets
from the 29 experiments.

The aCGHdata was location and scale normalized using
the median and mad, as was the expression data. The
aCGH and expression probes were mapped by the gene
names of probes to give the maximum number of probes
with corresponding aCGH and expression profiles. If nec-
essary probe gene names were converted from synonyms
to standard gene names using the database of the HUGO
Gene Nomenclature Committee (HGNC) [8]. If there was
more than one probe for any gene name then the median
value of the probes was taken to represent that gene name.
Note that the aCGH data was not thresholded so that, in
general, fractional rather than integer aCGH values were
used in the analysis. Fractional variations in copy number
occur because of the heterogeneity of the cancer samples
being studied. By using matched aCGH and expression
profiles we eliminated the effects of a sample’s hetero-
geneity considering that both sets of data were affected
equally.

Analysis
Introduction
Full details of the algorithm used and a diagram illus-
trating the steps involved in the analysis can be found
in Newton & Wernisch [7] and in Goh et al. [6], where
the code, written in the R statistical environment [9], can
also be found. Here we provide a summary of the analysis
methods used.
We use a relatively straight-forward method based

on correlations which provides a robust method for
analysing relationships amongst large amounts of data
of unknown complexities. More sophisticated network
inference methods are generally much more susceptible
to noise and heterogeneity between data sets. The great
strength of our simple approach is that it avoids the con-
founding that can occur when expression data alone is
used in the analysis.
We define a ‘regulating gene’ as one whose up or down

expression change has a direct or indirect effect on the up
or down regulation of a ‘target gene’. Primary candidates
for regulating genes are genes having significant corre-
lated changes in their mRNA expression levels following
copy number alterations. Potential target genes of a reg-
ulating gene are those genes with significant correlation
between the expression changes of the target gene and the
aCGH profile of the regulating gene.
We first describe the methods adopted for identifying

genes worth investigating as potential regulators. We then
describe how we identify potential regulator-target rela-
tionships for these genes. We use Spearman correlation
throughout the analysis.

Identifying potential regulators
In order to identify genes worth investigating as poten-
tial regulators we focus on genes that have a high

http://sysbio.mrc-bsu.cam.ac.uk/METAMATCHED
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Table 1 Details of the 31 data sets used in the meta-analysis

Code GEO Publication N P Pathology

parr GSE20486 Parris et al. 2010 [24] 97 18616 Breast cancer (Diploid)

crow GSE15134 Crowder et al. 2009 [25] 31 16153 Breast cancer (ER+)

sirc GSE17907 Sircoulomb et al. 2010 [26] 51 14689 Breast cancer (ERBB2 amplified)

myll a Myllykangas et al. 2008 [27] 46 17050 Gastric cancer

junn a Junnila et al. 2010 [28] 10 16844 Gastric cancer

ch.w b Chitale et al. 2009 [29] 91 10285 Lung adenocarcinoma

ch.s b Chitale et al. 2009 [29] 94 10285 Lung adenocarcinoma

hoac GSE20154 Goh et al. 2011 [30] 54 14388 Oesophageal adenocarcinoma

zho GSE29023 Zhou et al. 2012 [31] 115 13697 Multiple myeloma

shai GSE26089 Shain et al. 2012 [32] 68 14201 Pancreatic cancer

vain GSE28403 Vainio et al. 2012 [33] 13 10107 Prostate cancer

bott GSE29211 Bott et al. 2011 [34] 53 10321 Pleural mesothelioma

bekh GSE23720 Bekhouche et al. 2011 [35] 173 13682 Breast cancer (Inflammatory)

chap GSE26863 Chapman et al. 2011 [36] 245 13667 Multiple myeloma

ooi GSE22785 Ooi et al. 2012 [37] 14 10091 Neuroblastoma

brag GSE12668 Braggio et al. 2009 [38] 11 10310 Waldenström’s macroglobulinemia

jons GSE22133 Jönsson et al. 2010 [39] 356 4183 Breast cancer

mura GSE24707 Muranen et al. 2011 [40] 47 4472 Breast cancer

lin1 GSE19915 Lindgren et al. 2010 [41] 72 4965 Urothelial carcinoma

beck GSE17555 Beck et al. 2010 [42] 18 12174 Leiomyosarcoma

toed GSE18166 Toedt et al. 2011 [43] 74 4289 Astrocytic gliomas

ell GSE35191 Ellis et al. 2012 [44] 124 13569 Breast cancer

gra.1 GSE35988 Grasso et al. 2012 [45] 85 12849 Prostate cancer

gra.2 GSE35988 Grasso et al. 2012 [45] 34 12813 Prostate cancer

lenz GSE11318 Lenz et al. 2009 [46] 203 15212 Lymphoma

lin2 GSE32549 Lindgren et al. 2012 [47] 131 8450 Urothelial carcinoma

micc GSE38230 Micci et al. 2013 [48] 12 16657 Vulva squamous cell carcinoma

tayl GSE21032 Taylor et al. 2010 [49] 155 14572 Prostate cancer

coco GSE25711c Coco et al. 2012 [50] 36 4394 Neuroblastoma

med GSE14079 Medina et al. 2009 [51] 8 6376 Lung cancer

przy GSE54188 Przybyl et al. 2014 [52] 53 17032 Synovial sarcoma

GEO = Gene Expression Omnibus data set reference (http://www.ncbi.nlm.nih.gov/geo/), N = Number of samples, P = Number of matched probes,
ahttp://www.cangem.org/, bhttp://cbio.mskcc.org/Public/lung_array_data/, cExpression data in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/): E-TABM-38, E-MTAB-161

correlation between their copy number and their gene
expression.
In the first instance, 31 Spearman rank correlations

(from the 31 data sets), and their p-values for being greater
than zero, were calculated for each gene (R function
cor.test). These 31 correlation p-values were combined
for each gene into a single p-value statistic using Fisher’s
method (R function survcomp::combine.test). In order not
to rely on any statistical assumptions we obtained a null
distribution of combined p-value statistics through per-
mutation of gene identifiers (see below). The resulting

p-values for each gene were finally corrected for multi-
ple testing by the Benjamini-Hochberg (B-H) method, to
give a false discovery rate (fdr) for each gene based on its
aCGH/expression correlations in the 31 data sets. In the
following the Benjamini-Hochberg adjusted p-values are
referred to as adjusted p-values and are now fdr values
rather than p-values in the sense of a type I error.
We were also interested in how many, and which, of the

31 data sets indicated an aCGH/expression correlation.
This was assessed for each of the genes using an arbi-
trary threshold of 0.05 on a gene’s 31 correlation p-values

http://www.ncbi.nlm.nih.gov/geo/
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(after the correlation p-values for each data set had been
adjusted for multiple testing).
To generate the null distribution, 5 · 106 permutations

of gene identifiers were generated for each data set and
the above procedure, using Fisher’s method, for obtaining
combined p-value statistics repeated. In practice only a
minority of genes are present in all 31 data sets. In general
a gene will be present in less than 31 data sets, hence we
generated 31 null distributions for n combined p-values, n
from 1 to 31.
Altogether there were 12,674 genes considered worth

investigating as potential regulators (out of the 19,391
genes which occur in at least one of the data sets), having
significant correlation (adjusted p-value < 0.05) between
copy number profile and gene expression in at least one of
the data sets.

Predicting regulator-target relationships
After we had identified genes worth investigating as
potential regulators we looked for potential target genes of
these regulators. Expression changes of a potential target
genemust correlate highly with its regulating gene’s aCGH
profile. Only inter-chromosomal acting relationships were
investigated.
The correlation tests were similar to those in the pre-

vious section to find potential regulators but with three
additions. Firstly, we tested separately the two alternative
hypotheses: that the correlation of a regulator-target pair
is greater than zero and that the correlation is less than
zero, and we generated separate null distributions for the
two conditions. Secondly, for each potential regulator only
those data sets were included in the analysis for which
that regulator had a significant self aCGH/expression cor-
relation. Thirdly, since we were only interested in inter-
chromosomal acting relationships the null distributions
were derived using potentially inter-chromosomal acting
gene pairs.
Just because a gene appears in a regulator’s list of pre-

dicted targets, does not mean that regulator is the most
probable regulator for that target. Therefore, for each
potential regulator, any predicted inter-chromosomal
acted targets were removed if the data indicated an alter-
native, more probable gene as its regulator. This proce-
dure was found to be important, reducing the number of
predicted targets in most cases.
There are however two different criteria that could

be used to denote a gene as the most probable regula-
tor of a target gene. Most obviously the lowest adjusted
p-value from the meta-analysis could be used as the cri-
terion. However there are examples where the regulator
with the lowest meta-analysis adjusted p-value only has
a significant correlation with the target in one of the
data sets, when there are other potential regulators that
do have higher meta-analysis adjusted p-values, but have

significant correlations with the target in more data sets.
In this analysis we provide results for both criteria for
selecting the most probable regulator, the lowest adjusted
p-value from the meta-analysis and the greatest number
of data sets with significant correlations.

Co-citations
Co-citation analysis was performed using the Biocon-
ductor [10] package org.Hs.eg.db [11] (version 3.1.2) and
functions from the package CoCiteStats [12]. org.Hs.eg.db
links a gene identifier to Pubmed identifiers [13] for the
papers in Pubmed which cite the corresponding gene.
The analysis restricts the results to papers which contain
fewer than 100 genes, in order to exclude papers that cite
very many genes. Whilst the version 3.1.2 of org.Hs.eg.db
was used for the work presented in this paper the cocita-
tion content of the database will be updated at each new
release of org.Hs.eg.db. The R package igraph [14] was
used to generate network graphs showing how cocitations
link genes in a target list.

Gene ontology annotations
Gene Ontology (GO) [15] annotations for gene lists com-
prising the regulator and its predicted target were found
using the Bioconductor packages GOstats [16] and GO.db
[17] (version 3.1.2). Again the GO annotations will be
updated for each new release of GO.db.

Results
METAMATCHED database
The complete results of the meta-analysis can be found
in the METAMATCHED database of inferred regula-
tory relationships, available at http://sysbio.mrc-bsu.cam.
ac.uk/METAMATCHED. The database contains entries
for 12,674 potential regulatory genes (those genes having
significant correlation between copy number profile and
gene expression in at least one of the data sets). The entry
for a gene can be found through a search box on the main
page. One thousand four hundred thirty of the potential
regulators have significant predicted targets (significance
level, adjusted p-value < 0.1), and these genes are listed
as links on the main page. Additional file 1 summarises
the results for the 1430 regulators in a spreadsheet. The
website can also be used to access information in the
database on 19,391 genes as targets. When a particular
gene is searched for from the main page, links are pro-
vided to information on the gene as a regulator (if any) and
information on the gene as a target.
A web page for a gene as a regulator gives summary

statistics for the gene, namely the number of predicted
target genes activated and repressed by the regulator, the
number of regulator-target pairs which have cocitations,
the total number of papers which cocite at least two
genes from a list containing the predicted targets and the
regulator, and the statistical significance of finding this

http://sysbio.mrc-bsu.cam.ac.uk/METAMATCHED
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number of cocites. The predicted target genes are listed
on the web page and there are links to spreadsheets giving
more detailed information on each target’s relationship
with the regulator, for example, the number of datasets,
and in which datasets, the relationship is significant. The
papers which cite both the regulator and a target are listed
on the web page with their Pubmed links. The papers
which cocite genes in the target list are given in a spread-
sheet linked to from the web page. If some of the target list
are cocited then a network graph will be displayed show-
ing how cocitations link the genes in the target list (the
regulator is also included in the graph if it has cocitations
with any of the targets). There is also a link to a page with
GO annotations of the target list. Further details of the
database can be found in Additional file 2.
Consistent coamplification or codeletion of neighbour-

ing potential regulators coupled with the inherent noise
in the data can lead to ambiguity in the database as to
which of the regulators is actually regulating a particular
target gene. So the results files contain columns giving the
‘best’ regulator in the database for each target based on the
criterion of minimum p-value and the ‘best’ regulator in
the database based on the criterion of significance in the
most number of data sets. In addition each gene has a web
page containing information in the database on the gene
as a target. This page contains spreadsheets giving all the
significant regulators of the target gene in question.
A web page for a gene as a target gives the predicted

regulator of the target, for both activation and repression,
and based on both the criterion of lowest adjusted p-value,
and on the criterion of significance in the most number of
data sets. Adjusted p-values are given for each. Primarily
due to coamplification/codeletion of genes in the genomic
region of the actual regulator there may be a number of
significant predicted regulators, and the number of signif-
icant predicted regulators is also given on the web page.
Details of all the significant predicted regulators for the
target can be found in a spreadsheet linked to on the page.
The number of the significant predicted regulators cocited
in at least one paper with this target is also given and the
papers are listed on the web page.

Statistical synopsis
Number of targets
Altogether 1430 potential regulators had at least one pre-
dicted target. This is out of 12,674 genes which have sig-
nificant self aCGH/expression correlation in at least one
data set. There are a total of 22,255 predicted regulator-
target pairs in the database. The number of predicted
targets for a regulator ranged from 1 to 380, the mean
value being 16.
Figure 1 shows a scatter plot of the number of predicted

targets (activation and repression lists combined) for each
regulator against the number of data sets the regulator
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Fig. 1 Scatter plot showing, for the 1430 regulators in the database,
the number of predicted targets against the number of data sets the
regulator shows significant self aCGH/expression correlation. Plot
annotated with some of the regulators with large numbers of targets
and/or data sets: MED4 - Mediator complex interacts with
DNA-binding gene-specific transcription factors to modulate
transcription, AZIN1 - Inhibits antizyme-dependent ornithine
decarboxylase degradation by binding to antizyme, YWHAZ - Adapter
protein implicated in the regulation of a large spectrum of signaling
pathways, MRPS28 - Mitochondrial ribosomal protein, POGZ - Zinc
finger protein found to interact with the transcription factor SP1,
HSBP1 - Overexpression represses the transactivation activity of HSF1,
PTS - Biosynthesis of Tetrahydrobiopterin an essential cofactor and
regulator of various enzyme activities, TERF2IP - Acts both as a
regulator of telomere function and as a transcription regulator,
ZBTB43 - Zinc finger and BTB domain containing 43, may be involved
in transcriptional regulation, WRB - Receptor, ZCCHC9 - Zinc finger,
CCHC domain containing 9, nucleic acid binding, CXCL14 - Belongs to
cytokine family which encode proteins involved in immunoregulatory
processes, SYT11 - Possibly mediates calcium-dependent regulation
of membrane trafficking in synaptic transmission, GNL3L - Essential
for ribosomal pre-rRNA processing and cell proliferation, HOXD9 -
Belongs to the homeobox family of genes which encode transcription
factors, MNS1 - May play a role in the control of meiotic division

shows significant self aCGH/expression correlation. The
plot is annotated with the names of some of the regu-
lators with large numbers of targets and/or significance
in many data sets. The caption gives the function of the
genes annotated in the figure, several having a known role
in transcription regulation. Of the 1430 regulators, 206 of
these are known to be involved in transcription regulation
in humans (list from AMIGO version: 2.1.4 [18])
Figure 2 shows a histogram of the frequency of the

number of predicted targets, for activation and repres-
sion (x-axes truncated at 100). The figure indicates that
there is a noticeable difference between the number of
predicted targets for activation and for repression, which
is discussed in a later section.
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Fig. 2 Histograms of the frequency of the number of predicted targets for the regulators in the database, for activation and repression (x-axes
truncated at 100 targets, the maximum number of targets for activation is 245 and for repression 206)

Target clusters
There is evidence that some of the predicted targets for
some regulators form spatial clusters, that is, they are
found in close proximity on a chromosome. For each reg-
ulator in the data set, if the regulator had more than one
predicted target located on a particular chromosome, we
took the mid point of each target and recorded the dis-
tance between adjacent targets. We repeated the analysis
but replacing the predicted targets by the same number
of genes selected at random from the same chromosome,
and we repeated the randomisation analysis 100 times.
Figure 3 shows the results. All the recorded distances have
been pooled and divided into 0.25 Mb bins and the num-
ber of entries in each bin counted. The figure shows a
boxplot of the counts in each bin from the 100 sets of ran-
domised data, the boxplot whiskers marking the extreme
values. Superimposed on the graph are the counts for each
bin from the actual data. The figure shows that there are
more predicted targets located closer together than you
would expect to find at random, suggesting that some of
the targets are forming locational clusters.

Chromosome
Figure 4a shows a bar chart of the number of regulators on
each chromosome (separated into activation and repres-
sion). 60% of all regulators in the database lie on chromo-
somes 1, 5, 11, 16 or 19. When the numbers are corrected

for chromosome length, chromosome 19 has the highest
density of regulators in the database (Fig. 4b). When the
numbers are corrected for the number of known genes
on each chromsome, chromosomes 5 and 16 dominate
(Fig. 4c). Variation of the density of regulators between
chromsomes recorded in the database could be due to
two different underlying causes. Firstly it could reflect
an actual variation in the density of regulators between
chromosomes. Secondly it could arise from variation in
genomic instability between chromosomes. The nature of
the analysis means that higher genomic instability will in
general reveal more potential regulators. Figure 5a shows
a bar chart of the number of targets per chromosome.
There is a considerable variation in the number of tar-
gets on different chromosomes with a maximum of 2288,
a minimum of 15 and a mean of 927. However when the
numbers are corrected for the number of known genes
on each chromosome the density of targets shows far less
variation between chromosomes (Fig. 5c).

Cocitations
Of the 1430 regulators in the database 10% have coc-
itations with at least one of their predicted targets. Of
the 22,255 predicted regulator-target pairs in the database
1% have at least one cocitation; 35 cocitations being
the maximum for any regulator-target pair. The low per-
centage of regulator-target pairs that have co-citations



Newton and Wernisch BMCGenomics  (2015) 16:967 Page 7 of 12

0.25 1 1.5 2 2.5 3 3.5 4 4.5 5

0
20

0
40

0
60

0
80

0
10

00

Gene midpoint separation (Mb)

C
ou

nt
s

Fig. 3 Plot showing the number of counts in 0.25 Mb bins when the genomic separation of target genes are analysed. The boxplot shows the
results for random selections of genes (whiskers mark extreme values) and the dots mark the values obtained from the actual data

probably reflects the current relative paucity of evidence
for the function of genes, with only a small percentage
of genes having direct experimental evidence for their
function ([19]).
As well as looking for regulator-target cocitations we

looked at cocitations between the genes in a list of

targets predicted for a regulator. For example POGZ
has cocitations with two of its predicted targets (SP1
& XRCC6), but in addition, many of the 218 predicted
targets are cocited together in papers. The maximum
number of targets cocited in one paper is 6 but there are
many different combinations of targets cocited in a total
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Fig. 4 Number of regulators in the database located on each chromosome (blue = those with activation lists, red = those with repression lists)
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Fig. 5 Number of predicted targets in the database located on each chromosome (blue = those activated, red = those repressed) a Number of
targets b Density of targets per Mbase c Number of targets/Number of known genes on chromosome

of 411 papers so altogether 65% of the 218 targets are
cocited with at least one other target. We ran a resampling
to see whether this proportion of cocitations in a random
list of genes of the same length could occur by chance and
found it had a p-value of 0.0002. For TERF2IP, of the 380

predicted targets 80% are cocited with at least one other
target in at least one paper, with a p-value of 0.00001.
Analysing the target lists of all regulators, 523 (37%) of

the 1430 regulators had cocitations of some of their tar-
get list genes and 135 of these were significant (adjusted
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p-value < 0.1). Figure 6 shows a scatter plot of target
list cocitation adjusted p-values (-log10) for all the 1430
regulators against the number of data sets in which the
regulator shows significant self aCGH/expression corre-
lation (the target lists for activation and repression have
been combined for any given regulator). The plot has been
annotated with some of the regulators with the most sig-
nificant cocited target lists and the largest number of data
sets. The database gives a network graph for each regula-
tor showing how cocitations in the literature, where they
exist, link together the genes in the target list (activation
and repression combined). The figure in Additional file 3
shows an example for the regulator POGZ.

Activation/repression
There is a marked difference in the number of regulators
repressing targets compared with the number activating
targets (see Fig. 2). Altogether 104 regulators only acti-
vate targets but 841 regulators only repress targets; 485
regulators both repress and activate targets. There are
in total 9088 regulator-target pairs showing activation
and 13,167 regulator-target pairs showing repression in
the database. An extra 45% on the number of regulator-
target pairs demonstrating activation are demonstrating
repression. This suggests that inter-chromosomal acting
regulatory relationships causing repression aremore com-
mon than those causing activation. Intuitively this would
seem plausible given the importance of feedback control
in maintaining the stability of complex systems.
There is some evidence in the summary statistics from

the database which suggests the effect is a true effect.
Dividing the regulators into three groups, those which are
predicted to activate and repress (485), those that are pre-
dicted to only activate (104) and those that are predicted
only to repress (841) and examining the cocitations of
the genes in the regulators’ target lists. For the 485 reg-
ulators which are predicted to activate and repress, 224
have cocitations of their activation target list and 212 of
their repression target list. If a large number of the repres-
sion relationships were artefact then we would not expect
similar numbers of lists to cocite. For the 104 regulators
predicted only to activate 17 (16%) have cocitation of tar-
get lists compared to 182 (22%) of the 841 regulators
predicted only to repress. Again if many of the repression
relationships were artefact then we would not expect sim-
ilar percentages to have cocitations of target lists. Other
aspects of the results also show a consistency between
activation and repression, for example, analysing the data
for target clusters, as described in a previous section,
but analysing activation and repression targets separately,
gives very similar results (not shown). Also examining the
number of regulators in the activation and repression lists
which are known to be transcription factors (TFs), 12%

of the 104 regulators which purely activate are TFs and
15.0% of the 841 regulators which purely repress are TFs.

Discussion and conclusions
We have predicted inter-chromosomal regulator-
target relationships from 31 publicly available matched
aCGH/expression data sets for 1430 potential regulators.
206 of these are known to be involved in transcription reg-
ulation, although our definition of regulatory relationship
extends beyond the direct relationship of transcription
factor on a target to encompass very indirect relation-
ships, through a pathway containing many intermediate
regulatory steps. There is evidence that some of the
targets of regulators are clustered by genomic location.
The cocitations found for many of the target lists lends
support to the predictions contained in the database.
The most striking observation from the results is the

difference in the number of relationships involving acti-
vation and repression, and we present statistics from the
database that suggests this bias is a true effect. It seems
plausible that a complex dynamic system would require
a preponderance of repression over activation in order
to provide feedback control and maintain stability. There
are however a number of other possible reasons for the
observation. One potential cause of course is that it is an
artefact of the analysis, however using Spearman corre-
lation, with separate positive and negative null distribu-
tions, should avoid the introduction of any bias. Another
hypothesis would be that amplification of some genes may
be causing a sufficient elevation in the concentration of
their transcript to result in excessive non-specific bind-
ing to the genome, disrupting and reducing the expres-
sion of genes not normally regulated by these amplified
genes. We could also postulate that amplification of the
DNA of a gene may result in elevated expression of the
gene’s mRNA, but the sequence of the transcript is in
some way deviant resulting in incorrect translation. In this
way genes, which appear to be amplified, with correlated
increases in expression, would actually have reduced lev-
els of their proteins to activate targets, thus giving the
impression of repression. Furthermore the difference in
the numbers of activation and repression relationships
could reflect differences in how the cell responds to the
genomic disruption commonly found in cancer, rather
than representing actual differences in levels of activa-
tion and repression in a non-disrupted cell. Finally, due
to noise and tissue heterogeneity, the meta-analysis is
only picking out a fraction of all regulatory relationships,
so there is the possibility that the activation/repression
bias may only occur in these relatively strong and more
ubiquitous relationships selected by the analysis.
The results are available in the METAMATCHED

database. We anticipate that the predictions contained in
the database should be useful in constructing networks of
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regulatory relationships, informing experiments and per-
haps in helping to predict downstream effects of drugs on
their targets.
It should be noted that although cancer data sets are

being used, this analysis is unlikely to pick out oncogenes
which are consistently amplified or deleted in cancer sam-
ples. If a potential regulator is amplified or deleted in all
the samples in a data set, and by the same amount, it prob-
ably will not have a high self aCGH/expression correlation.
The genes with the highest self aCGH/expression corre-
lation will be those that show a wide variation of copy
number between samples in any given data set, with con-
comitant changes in expression. It is interesting to note
that there are genes which do show this wide variation
of copy number between samples in multiple data sets.
One gene, MED4, has significant self aCGH/expression
correlation in 18 datasets, and there are 120 regulators
with significant self aCGH/expression correlation in 10
or more data sets. Perhaps these genes are located in
genomic regions which are prone to disruption in cancer
cells, but this disruption occurs erratically. Another rea-
son might be that they occur in genomic regions which
are consistently disrupted, but in later stages of the can-
cer development, and the data sets contain samples from
a range of stages. If this is the case then some of these reg-
ulators may have an oncogenic role in later phases of the
disease.
Whereas self aCGH/expression correlation can be con-

sistent over many of the data sets, regulator-target corre-
lations are significant in fewer data sets. This is partly due
to noise in the experiments, but also suggests the relation-
ships are rather specific to tissue type and pathology, and
can be obscured by biological phenomena such as path-
way remodelling and epigenomic effects. It is interesting
to note that the regulator-target relationships identified
in this study are likely to be gene regulatory relationships
which are particularly susceptible to copy number disrup-
tion. They are not relationships which are protected from
such disruption by alternative pathways and other buffer-
ing mechanisms. This may be important if any of these
regulators do have an oncogenic role in later stages of
cancer development.
Consistent coamplification or codeletion of neighbour-

ing regulators and noise in the data can lead to ambiguity
in the results as to which of the regulators is regulating
a particular target gene. However in the database we do
provide information beyond the best predictions, indicat-
ing what alternatives are suggested by the data. The results
are of course constrained by the probes available on the
arrays used in the matched experiments, further relation-
ships are likely, but hidden by the absence of appropriate
probes on the arrays.
It is not impossible that some of the predicted rela-

tionships in this study have arisen through a confounding

factor as part of one of the many little understood or as
yet unknown genetic mechanisms. For example there is
now evidence that histone modification can promote copy
number variation [20, 21]. If a histone modification was
causing copy number variation in a regulator gene and the
root cause of this histone modification was also affecting
the expression of a second gene on a separate chromo-
some then this analysis might identify the second gene
as an inter-chromosomal target of the regulator (provided
the copy number of the second gene was not also affected,
since we filter out these instances). Similarly there is some
evidence from protozoa that copy number can be affected
by RNA-mediated epigenetic effects [22], which suggests
another potential route for confounding if this was found
to occur in the human genome. So as well as detecting
inter-chromosomal relationships arising from direct inter-
actions, or indirect ones through pathways, the analysis
may be picking up far more complex and subtle genomic
effects, which cannot be isolated with our current state of
knowledge.
There are a number of possible avenues for further

work that could be pursued with this data. We chose
to structure the meta-analysis to highlight gene relation-
ships which are found in the maximum number of data
sets. Alternative approaches emphasising sensitivity over
specificity are possible and these could be assessed using
target list cocitations. Similarly using Pearson correlation
might reveal relationships not evident using Spearman
correlation. Having established that there is useful signal
in the data using a relatively simple but robust statistical
approach it would be interesting to explore more complex
methods such as maximal information-based nonpara-
metric exploration statistics [23], designed to cope with
non-linearities in the data being analysed.
We plan to include further matched aCGH/expression

experiments as and when they become publicly available.
We will update the cocitations and GO annotations at
each release of the R packages org.Hs.eg.db and GO.db,
and it will be interesting to see how cocitation support for
the predictions changes with time.

Additional files

Additional file 1: Spreadsheet summarizing the results for all 1430
regulators in the database with significant predicted targets.
(XLS 746 kb)

Additional file 2: Detailed description of METAMATCHED database
content. (PDF 108 kb)

Additional file 3: Network representation of the cocitations of the
target genes predicted for one regulator, POGZ. Any two genes in the
network are connected if they are cocited together in at least one
publication. (PDF 11 kb)

Competing interests
The authors declare that they have no competing interests.

http://dx.doi.org/10.1186/s12864-015-2100-5
http://dx.doi.org/10.1186/s12864-015-2100-5
http://dx.doi.org/10.1186/s12864-015-2100-5


Newton and Wernisch BMCGenomics  (2015) 16:967 Page 11 of 12

Authors’ contributions
The authors contributed equally to the publication. Both authors read and
approved the final manuscript.

Received: 16 September 2015 Accepted: 15 October 2015

References
1. Huang N, Shah PK, Li C. Lessons from a decade of integrating cancer

copy number alterations with gene expression profiles. Brief Bioinform.
2011;13:305–16.

2. Lahti L, Schäfer M, Klein HU, Bicciato S, Dugas M. Cancer gene
prioritization by integrative analysis of mRNA expression and DNA copy
number data: a comparative review. Brief Bioinform. 2013;14(1):27–35.
doi:10.1093/bib/bbs005.

3. Chao HH, He X, Parker JS, Zhao W, Perou CM. Micro-scale genomic DNA
copy number aberrations as another means of mutagenesis in breast
cancer. PLoS One. 2012;7:51719.

4. Phillips JL, Hayward SW, Wang Y, Vasselli J, Pavlovich C, Padilla-Nash H,
et al. The consequences of chromosomal aneuploidy on gene expression
profiles in a cell line model for prostate carcinogenesis. Cancer Res.
2001;61(22):8143–9.

5. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J,
et al. The landscape of somatic copy-number alteration across human
cancers. Nature. 2010;463:899–905.

6. Goh XY, Newton R, Wernisch L, Fitzgerald R. Testing the utility of an
integrated analysis of copy number and transcriptomics datasets for
inferring gene regulatory relationships. PLoS One. 2013;8:63780.

7. Newton R, Wernisch L. A meta-analysis of multiple matched copy
number and transcriptomics data sets for inferring gene regulatory
relationships. PLoS One. 2014;9(8):105522.

8. HUGO Gene Nomenclature Committe (HGNC). http://www.genenames.
org/cgi-bin/hgnc_downloads. Accessed August 2014.

9. R Development Core Team. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
http://www.R-project.org.

10. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
et al. Bioconductor: Open software development for computational
biology and bioinformatics. Genome Biol. 2004;5:80.

11. Carlson M. org.Hs.eg.db: Genome Wide Annotation for Human. R package
version 3.1.2.

12. Ding B, Gentleman R. CoCiteStats: Different Test Statistics Based on
Co-citation. R package version 1.36.0.

13. Pubmed, US National Library of Medicine, National Institutes of Health.
http://www.ncbi.nlm.nih.gov/pubmed/. Accessed March 2015.

14. Csardi G, Nepusz T. The igraph software package for complex network
research. InterJournal. Complex Systems. 2006;1–9. http://igraph.org.

15. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

16. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term
association. Bioinformatics. 2007;23(2):257–8.

17. Carlson M. GO.db: A Set of Annotation Maps Describing the Entire Gene
Ontology. R package version 3.1.2.

18. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, et al. AmiGO:
online access to ontology and annotation data. Bioinformatics. 2009;25:
2588–589.

19. Brown D, Sjölander K. Functional classification using phylogenomic
inference. PLoS Comput Biol. 2006;2(6):77.
doi:10.1371/journal.pcbi.0020077.

20. Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, et al. KDM4A
lysine demethylase induces site-specific copy gain and rereplication of
regions amplified in tumors. Cell. 2013;154(3):541–55.
doi:10.1016/j.cell.2013.06.051.

21. Rickels R, Shilatifard A. A histone modifier’s ill-gotten copy gains. Cell.
2013;154(3):477–9. doi:10.1016/j.cell.2013.07.010.

22. Nowacki M, Haye JE, Fang W, Vijayan V, Landweber LF. RNA-mediated
epigenetic regulation of DNA copy number. Proc Natl Acad Sci.
2010;107(51):22140–4. doi:10.1073/pnas.1012236107.

23. Filosi M, Visintainer R, Albanese D. Minerva: Maximal Information-Based
Nonparametric Exploration R Package for Variable Analysis. 2014. R
package version 1.4.1. http://CRAN.R-project.org/package=minerva.

24. Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, et al.
Clinical implications of gene dosage and gene expression patterns in
diploid breast carcinoma. Clin Cancer Res. 2010;16:3860–874.

25. Crowder RJ, Phommaly C, Tao Y, Hoog J, Luo J, Perou CM, et al. PIK3CA
and PIK3CB inhibition produce synthetic lethality when combined with
estrogen deprivation in estrogen receptor-positive breast cancer. Cancer
Res. 2009;69:3955–62.

26. Sircoulomb F, Bekhouche I, Finetti P, Adélaïde J, Hamida AB, Bonansea J,
et al. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer.
2010;10:539.

27. Myllykangas S, Junnila S, Kokkola A, Autio R, Scheinin I, Kiviluoto T, et al.
Integrated gene copy number and expression microarray analysis of
gastric cancer highlights potential target genes. Int J Cancer. 2008;123:
817–25.

28. Junnila S, Kokkola A, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O.
Genome-wide gene copy number and expression analysis of primary
gastric tumors and gastric cancer cell lines. BMC Cancer. 2010;10:73.

29. Chitale D, Gong Y, Taylor BS, Broderick S, Brennan C, Somwar R, et al. An
integrated genomic analysis of lung cancer reveals loss of DUSP4 in
EGFR-mutant tumors. Oncogene. 2009;6:2773–783.

30. Goh XY, Rees JR, Paterson AL, Chin SF, Marioni JC, Save V, et al.
Integrative analysis of array-comparative genomic hybridisation and
matched gene expression profiling data reveals novel genes with
prognostic significance in oesophageal adenocarcinoma. Gut. 2011;60:
1317–26.

31. Zhou Y, Zhang Q, Stephens O, Heuck CJ, Tian E, Sawyer JR, et al.
Prediction of cytogenetic abnormalities with gene expression profiles.
Blood. 2012;119:148–50.

32. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD,
Hidalgo M, et al. Convergent structural alterations define switch/sucrose
nonfermentable (SWI/SNF) chromatin remodeler as a central tumor
suppressive complex in pancreatic cancer. Proc Nat Acad Sci. 2012;109:
252–9.

33. Vainio P, Wolf M, Edgren H, He T, Kohonen P, Mpindi JP, et al.
Integrative genomic, transcriptomic, and rnai analysis indicates a
potential oncogenic role for FAM110B in castration-resistant prostate
cancer. The Prostate. 2012;72:789–802.

34. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear
deubiquitinase BAP1 is commonly inactivated by somatic mutations and
3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:
668–74.

35. Bekhouche I, Finetti P, Adelaide J, Ferrari A, Tarpin C, Charafe-Jauffret E,
et al. High-resolution comparative genomic hybridization of
inflammatory breast cancer and identification of candidate genes. Plos
One. 2011;6:16950.

36. ChapmanMA, LawrenceMS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC,
et al. Initial genome sequencing and analysis of multiple myeloma.
Nature. 2011;471:467–72.

37. Ooi WF, Re A, Sidarovich V, Canella V, Arseni N, Adami V, et al.
Segmental chromosome aberrations converge on overexpression of
mitotic spindle regulatory genes in high-risk neuroblastoma. Genes
Chromosomes Cancer. 2012;51:545–56.

38. Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R,
et al. Identification of copy number abnormalities and inactivating
mutations in two negative regulators of nuclear factor-κB signaling
pathways in Waldenström’s Macroglobulinemia. Cancer Res. 2009;69:
3579–88.

39. Jönsson G, Staaf J, Vallon-Christersson J, Ringnér M, Holm K, Hegardt C,
et al. Genomic subtypes of breast cancer identified by array-comparative
genomic hybridization display distinct molecular and clinical
characteristics. Breast Cancer Res. 2010;12:42.

40. Muranen TA, Greco D, Fagerholm R, Kilpivaara O, Kämpjärvi K, Aittomäki K,
et al. Breast tumors from CHEK2 1100delC-mutation carriers: genomic
landscape and clinical implications. Breast Cancer Res. 2011;13:90.

41. Lindgren D, Frigyesi A, Gudjonsson S, Sjödahl G, Hallden C, Chebil G,
et al. Combined gene expression and genomic profiling define two
intrinsic molecular subtypes of urothelial carcinoma and gene signatures
for molecular grading and outcome. Cancer Res. 2010;70:3463–472.

42. Beck AH, Lee CH, Witten DM, Gleason BC, Edris B, Espinosa I, et al.
Discovery of molecular subtypes in leiomyosarcoma through integrative
molecular profiling. Oncogene. 2010;29:845–62.

http://dx.doi.org/10.1093/bib/bbs005
http://www.genenames.org/cgi-bin/hgnc_downloads
http://www.genenames.org/cgi-bin/hgnc_downloads
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/
http://igraph.org
http://dx.doi.org/10.1371/journal.pcbi.0020077
http://dx.doi.org/10.1016/j.cell.2013.06.051
http://dx.doi.org/10.1016/j.cell.2013.07.010
http://dx.doi.org/10.1073/pnas.1012236107
http://CRAN.R-project.org/package=minerva


Newton and Wernisch BMCGenomics  (2015) 16:967 Page 12 of 12

43. Toedt G, Barbus S, Wolter M, Felsberg J, Tews B, Blond F, et al.
Molecular signatures classify astrocytic gliomas by IDH1 mutation status.
Int J Cancer. 2011;128:1095–103.

44. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al.
Whole-genome analysis informs breast cancer response to aromatase
inhibition. Nature. 2012;486:353–60.

45. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP,
et al. The mutational landscape of lethal castration-resistant prostate
cancer. Nature. 2012;487:239–43.

46. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, et al.
Molecular subtypes of diffuse large B-cell lymphoma arise by distinct
genetic pathways. Proc Natl Acad Sci U S A. 2008;105:13520–5.

47. Lindgren D, Sjödahl G, Lauss M, Staaf J, Chebil G, Lövgren K, et al.
Integrated genomic and gene expression profiling identifies two major
genomic circuits in urothelial carcinoma. Plos One. 2012;7:38863.

48. Micci F, Panagopoulos I, Haugom L, Dahlback HS, Pretorius ME,
Davidson B, et al. Genomic aberration patterns and expression profiles of
squamous cell carcinomas of the vulva. Genes Chromosomes Cancer.
2013;52:551–63.

49. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al.
Integrative genomic profiling of human prostate cancer. Cancer Cell.
2010;18:11–22.

50. Coco S, Theissen J, Scaruffi P, Stigliani S, Moretti S, Oberthuer A, et al.
Age-dependent accumulation of genomic aberrations and deregulation
of cell cycle and telomerase genes in metastatic neuroblastoma. Int J
Cancer. 2012;131:1591–600.

51. Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, et al.
The SRY-HMG box gene, SOX4, is a target of gene amplification at
chromosome 6p in lung cancer. Hum Mol Genet. 2009;18:1343–52.

52. Przybyl J, Sciot R, Wozniak A, Schöffski P, Vanspauwen V, Samson I, et al.
Metastatic potential is determined early in synovial sarcoma
development and reflected by tumor molecular features. Int J Biochem
Cell Biol. 2014;53(0):505–13.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data
	Analysis
	Introduction
	Identifying potential regulators
	Predicting regulator-target relationships
	Co-citations
	Gene ontology annotations


	Results
	METAMATCHED database
	Statistical synopsis
	Number of targets
	Target clusters
	Chromosome

	Cocitations
	Activation/repression

	Discussion and conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	References



