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Abstract

Background: MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction,
disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses
from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high
temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus
pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation
sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene
expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different
temperatures.

Results: Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and
20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C
and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77
novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed
known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that
high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling,
indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks.
Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and
base tissues by gRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while
negatively reqgulated miRNA-mediated target genes related to resistance disease defense and hormone signal
transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These
results suggested that miRNAs may have important functions in the high temperature-dependent decrease of
ASGV titer in in vitro-grown pear shoots.
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Conclusions: This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of
pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of
the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.

Keywords: Pyrus pyrifolia, microRNA, High temperature, Small RNA sequencing, Apple stem grooving virus

Background

Plant microRNAs (miRNAs) and small interfering RNAs
(siRNAs) are two major classes of non-coding small
RNAs with 21-24 nucleotides in length that mediate
RNA silencing pathways to regulate gene expression and
innate immune response [1-4]. However, miRNA and
siRNA are distinct from modes of biogenesis and defense.
Specifically, miRNA is primarily generated from a single-
stranded precursor that forms a self-complementary stem
and loop structure, whereas siRNA is derived from double-
stranded RNAs or exogenous viruses. In plants, most miR-
NAs are processed specifically by the Dicer-Like 1 (DCL1)
protein, and in contarst, siRNAs are cleaved by DCL2,
DCL3 and DCL4. After excision, mature miRNAs or siR-
NAs are loaded onto the Argonaute (AGO) proteins, with
other factors to assemble the RNA-induced silencing com-
plex (RISC), guiding miRNA/siRNA to pair with specific
RNA targets to implement the translational repression or
silencing [5—-11]. siRNA function is primarily to detect and
eliminate invading viruses by targeting the virus-derived
single strand RNA (ssRNA). However, miRNAs species
usually negatively regulate their target genes via transla-
tional inhibition or cleavage of target mRNAs and thus play
a pivotal role in a wide variety of biological processes such
as plant development, signal transduction, resistance path-
ways, as well as abiotic and biotic stresses [12—16]. Upon
viral infection, miRNAs often exhibit differential expression
profiles [17-19]. For instance, miRNAs in cotton plants are
differentially regulated by infection with Cotton leafroll
dwarf virus (CLRDV) and some CLRDV-induced symp-
toms may be correlated with the deregulation of miRNA
and/or epigenetic networks [20]. In N. benthamiana and
Arabidopsis, the expression of miR168 and AGO1 mRNA
is up-regulated in response to infection by several plant
viruses [21-24]. The same also holds true for soybean
mosaic virus (strain G7)-infected soybean plants carrying
the resistance gene RsvI [19]. As AGOL1 protein is a central
component of the RISC in the miRNAs/siRNAs-mediated
post-transcriptional gene silencing (PTGS) pathways [25],
these findings suggest the possible role of miRNA in regu-
lating the innate antiviral silencing pathways in plants.

Pear is an important fruit tree crop cultivated world-
wide. China, the world’s major producer of pears, has
distinctive local pear varieties; however, many pear culti-
vars are commonly infected with Apple stem grooving
virus (ASGV) and Apple chlorotic leaf spot virus

(ACLSV), and viral infection dramatically reduces fruit
quality [26—29]. Obtaining virus-free seedlings by heat
treatment combined with shoot meristem tip culture is
an effective way to control virus diseases in fruit trees
[30]. In a previous study, we found that viruses were dis-
tributed unevenly in in vitro-grown pear shoots, and that
the viral titer apparently decreased in the pear shoot
apical meristem in response to high temperature treat-
ment [31]. However, the molecular mechanism under-
lying the thermotherapy elimination of viruses is not
known. To understand the relationship between the high
temperature-dependent decrease in viral titer and the
miRNA pathways in pear shoots, we used in vitro-grown
pear shoots infected with ASGV, a member of the genus
Capillovirus [32], as a research material. We sequenced
and compared small RNAs prepared from P. pyrifolia
shoot meristem tip tissue cultured in vitro at 24 °C and
at 37 °C, a high temperature treatment. The expression
levels of viral genomic RNA, miRNAs and mRNAs of
their predicted target genes in the shoot meristem tip
and base tissues were analyzed to explore the possible
roles of miRNA regulation in the high temperature-
dependent decrease in virus titer.

Results

Analysis of small RNAs from in vitro-cultured pear shoots
infected with ASGV in response to high temperature

To identity miRNAs associated with high temperature
treatment, small RNA differential expression libraries
were constructed from 24 °C- and 37 °C-treated in vitro-
grown pear shoots infected with ASGV and sequenced
using high-throughput Solexa sequencing. After remov-
ing the low quality reads, 5' primer contaminants, reads
without the 3’ primer, reads with no insert tags, reads
containing poly A tags, and reads shorter than 18 nt and
longer than 30 nt reads, a total of 22,592,997 and
20,411,254 clean reads were obtained from the meristem
tips of in vitro pear shoots cultured at 24 °C and 37 °C,
respectively (Additional file 1). The sequenced clean
small RNAs included different categories of exon anti-
sense and sense, intron antisense and sense, rRNA, re-
peats, tRNA, snRNA, snoRNA, miRNA and other
unannotated reads, of which miRNA tags accounted for
9,547,708 (42.26 %) and 11,115,138 (54.46 %) for the 24 °
C and 37 °C libraries, respectively (Table 1), indicating
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that the proportion of miRNAs in the 37 °C library was
higher than in the 24 °C library.

Analysis of the length distribution of the small RNAs
showed that the 21 nt molecules were the most abun-
dant, with 10,360,625 (45.83 %) and 11,933,515 reads
(58.4 %) in the 24 °C and 37 °C libraries, respectively.
The next most abundant class was the 24 nt molecules,
with 8,025,208 (35.5 %) and 4,646,604 reads (22.74 %)
from the the 24 °C and 37 °C libraries (Fig. 1a). Interest-
ingly, among the unique sequences, the 24 nt sRNA
sequences were most abundant, followed by the 23 nt
sRNA sequences, while the 21 nt and 22 nt sequences
were present in similar amounts (Fig. 1b). Based on the
sizes of miRNAs, the most abundant were 21 nt in
length, with a total of 8,963,557 and 10,485,304 reads in
the 24 °C and 37 °C libraries, respectively (Fig. 2a); this
relative abundance of 21-nt miRNAs is similar to results
reported previously in P. mume [33]. The majority of
unique miRNA sequences fell in the range of 21-24 nt
in length in both libraries (Fig. 2b), and among them,
the 21-nt unique miRNAs were most abundant with
5285 and 5329 reads, followed by the 24-nt miRNAs
with 5481 and 4104 reads, while 22-nt and 23-nt
sequences were present in similar amounts in the 24 °C
and 37 °C libraries, respectively .

Of the clean reads, the common and specific reads in
the 24 °C and 37 °C libraries from the in vitro-grown
pear plants, including the unique reads and total reads,
were calculated (Addiitonal file 2). The results showed
that 11.65 % total sSRNAs (51.78 % unique sRNAs) with
an average sequence mean frequency of 1.17 were specif-
ically present in the 24 °C library, 6.9 % (32.92 % unique)
with an average frequency of 1.09 were found only in
the 37 °C library, and 81.45 % (15.3 % unique) with an
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average common sequence frequency of 27.78 were co-
present in both libraries (Additional file 2). Taken to-
gether the above results suggested that there is a huge
difference in the number of reads between the 24 °C and
37 °C samples.

Characterization of known miRNAs in P. pyrifolia

Known miRNAs in P. pyrifolia were identified by align-
ment to a designated part of miRBasel7.0. One hundred
forty-nine known miRNAs in the two P. pyrifolia libraries
were obtained and identified after removing miRNAs in
which the expression levels were too low to be analyzed
for differential expression (Additional file 3). Forty-seven
members, belonging to 25 conserved miRNA families,
were found in the two P. pyrifolia libraries. The numbers
and the read counts for the conserved miRNA families
were analyzed (Figs. 3 and 4). A majority of the 25 miRNA
families contained 2 members, families miR156 and miR159
each contained 4 members, and the remaining ones includ-
ing miR162, miR391, miR395, miR397, miR399%, miR403,
and miR408 had only one member each. The most abun-
dant miRNA was miR156 with 8,192,170 and 9,689,927
reads in the 24 °C and 37 °C libraries from P. pyrifolia,
respectively, while miR156, miR157, miR397, and miR408
were moderately abundant. These results showed that
the miRNA members exhibited significant differential
expression levels, in agreenment with findings from
other fruit species such as apple and grape [34, 35].
In addition to the conserved miRNAs, 102 non-
conserved miRNAs were identified, of which miR535
was the most abundant with 438,839 and 413,421
reads in the 24 °C and 37 °C libraries, respectively
(Additional file 3).

Table 1 Distribution of small RNA sequences among the different categories in the 24 °C and 37 °C treatment libraries constructed

from in vitro-grown pear shoots

T24

137

Unique sRNA reads (percent %)  Total SRNA reads (percent %)  Unique sRNA reads (percent %)  Total sRNA reads (percent %)

Total 5529063 (100 %)

22592997 (100 %)

3974771 (100 %) 20411254 (100 %)

Exon antisense
Exon sense
Intron antisense
Intron sense
miRNA

rRNA

Repeat

SNRNA

snoRNA

tRNA

Unannotated

30748 (0.56 %)
4 (091 %)
154430 (2.79 %)
264322 (4.78 %)
20376 (0.37 %)
91764 (1.66 %)
2480 (0.04 %)
4025 (0.07 %)
1365 (0.02 %)
7596 (0.14 %)
4901793 (88.66 %)

113906 (0.5 %)
145765 (0.65 %
498616 (2.21 %
1148358 (5.08 %
9547708 (42.26 %,
1174482 (5.2 %)
8235 (0.04 %)
10705 (0.05 %)
2996 (0.01 %)
)

)

125805 (0.56 %
9816421 (4345 %,

28998 (0.73 %)
46755 (1.18 %)
116982 (2.94 %)
215436 (542 %)
18595 (047 %)
92261 (2.32 %)
1913 (0.05 %)
4470 (0.11 %)
1591 (0.04 %)
9030 (0.23 %)

)

3438740 (86.51 %,

96547 (047 %)
113202 (0.55 %)

3441841 (1.69 %)

856349 (4.2 %)

11115138 (54.46 %

)
1337417 (6.55 %)
5485 (0.03 %)
13331 (0.07 %)
3814 (0.02 %)
172127 (0.84 %)
)

6353660 (31.13 %
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Fig. 1 Length distribution of small RNA reads in the 24 °C and 37 °C libraries constructed from in vitro-grown shoots of P. pyrifolia. Length
distribution of SRNA reads (a) and unique sequences (b) in the two libraries
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Identification of novel candidate miRNAs in P. pyrifolia

The characteristic hairpin structure of miRNA precur-
sors or detection of the corresponding miRNAs can be
used to identify novel miRNAs. Beijing Genomics Insti-
tute (BGI) company (Shenzhen city, China) has devel-
oped a prediction software, Mireap to predict novel
miRNAs by exploring the secondary structure using the
mfold web server, the Dicer cleavage sites, and the mini-
mum free energy of the annotated small RNA tags which
could be mapped to the pear genome sequence (http://
peargenome.njau.edu.cn) [36—40]. A total of 630 new
miRNAs were identified, of which 491 and 530 miRNA
candidates were from the 24 °C and 37 °C libraries,
respectively. After removing those miRNAs with expres-
sion levels that were too low to be analyzed for differen-
tial expression, 141 novel miRNAs were identified, of
which 77 were differentially expressed; novel262 had the
highest abundance with 833 transcripts per million
(TPM), followed by novel345 with 43 TPM in the 24 °C
library. In the 37 °C library, novell9 had the highest
abundance at 30 TPM, followed by novel337 and
novel540 with 18 and 10 TPM, respectively (Table 2).
The results from this analysis revealed that most of the
novel miRNAs were present in relatively low abundance,
as indicated by their frequencies, in comparison with the
conserved miRNAs. In addition, among the 141 novel
miRNAs, 32 had complementary miRNA*s, with precursor

lengths ranging from 83 to 349 nt and predicted minimal
folding energy (MFE) ranging from -28.6 to -161.4 kal/
mol (Additional file 4, Additional file 5, and Additional file
6). This is in agreement with published criteria for novel
miRNA [36-38], and indicates that these candidate miR-
NAs are most likely to be new miRNA family members in
P. pyrifolia. Twenty out of 32 new miRNA/new family
members were 21 nt in length, while four, seven, and one
miRNA had lengths of 23, 22, and 20 nt, respectively
(Additional file 4). Also, 109 miRNAs without miRNA*s
detected were identified as candidate miRNAs (Additional
file 7); these loci, pre-miRNA sequences and structures,
and reads from deep sequencing were also shown in
Additional file 6 and Additional file 7. The base bias in the
first position among the predicted novel miRNA candidates
showed that the majority of these novel miRNA candidates
started with a 5" uridine (U) as shown in Additional file 8.
In addition, novel miRNA candidate nucleotide bias at each
position were also analyzed (Additional file 9).

Changes in differential abundance levels of miRNAs in
response to high temperature in P. pyrifolia

To identify high temperature-responsive miRNAs, the
normalized expression of miRNAs in the two libraries
constructed from the 24 °C and 37 °C treatments was
compared. The miRNAs that showed changes in expres-
sion levels >1.0-fold with p-values less than 0.05 in
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response to high temperature treatment in P. pyrifolia
infected with ASGV were presented in Table 2. The
results showed that seven known miRNA candidates
were differentially expressed, while 77 potentially new
miRNA candidates were differentially expressed be-
tween the two libraries. Three known miRNAs and

47 novel miRNAs were up-regulated, while four
known miRNAs and 30 novel miRNAs were down-
regulated in response to 37 °C treatment. Among the
77 differentially expressed potentially novel miRNAs/
new members, 37 novel miRNA were expressed spe-
cifically in response to 37 °C, while 22 novel miRNAs
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were specifically expressed in the 24 °C library
(Table 2).

To validate the existence of the predicted differential
expression of miRNAs in the pear shoot meristem tip
tissue, four known and eight novel miRNAs that were
differentially expressed in the two libraries were analyzed
by poly (A) real-time quantitative PCR. The PCR
primers were listed in Additional file 10. Gene expres-
sion levels were presented as fold-changes in the 37 °C
treatment shoots relative to expression in the 24 °C
shoots. The results showed that the expression patterns
of four known miRNAs and eight novel miRNAs deter-
mined by qRT-PCR were similar to those from the deep
sequencing data except for miRNA5519, novel482, and
novel566 (Fig. 5a, b). Results from deep sequencing and
real-time PCR demonstrated that 37 °C high temperature-
responsive miR397a and miR3627-5p were up-regulated
in the shoot meristem tip tissue, while miR477b, novel262,
novell77, novel345, novell88, novell97, and novel241
were down-regulated in response to 37 °C treatment
(Fig. 5a, b).

To investigate the effect of high temperature on viral
titer with respect to miRNA pathways in different tissues,
the expression levels of miR397a, miR477b, miR3627-5p,
miR5519, novel262, novell77, novel345, novel482, novel
566, novel188, novel197, and novel241 were also quanti-
fied in the shoot basal tissues treated at 24 °C and 37 °C
using qRT-PCR. The results showed that the 37 °C treat-
ment induced 2-16 fold increases in miR397a, miR477b,
novel262, novell77, novel482, and novell88 expression
levels in shoot basal tissue. Treatment at 37 °C also re-
sulted in a 0.32-fold decrease in miR5519 and a 0.5-fold
decrease in novel345 expression levels, with no appar-
ent fold-change in novel566 (Fig. 5¢). The relative ex-
pression levels of four miRNAs (miR477b, novel262,

novell77, and novell88) changed significantly in both
tissues but in opposite directions. Two miRNAs (miR397a
and novel345) changed significantly in the base as com-
pared to the tip (Table 3). Thus, our results show that
miRNAs in pear shoots cultured in vitro have different
expression profiles in the shoot meristem tip as compared
to base tissues, indicating that miRNAs differentially regu-
lated at high temperature exhibit tissue-specific expression
patterns.

Prediction of potential targets of differentially expressed
miRNAs in P. pyrifolia

Hundreds of putative target genes of differentially
expressed miRNAs that responded to high temperature
treatment in pear were predicted by bioinformatics ana-
lysis. Our results showed that P. pyrifolia miRNA targets
encoded not only indispensible transcription factors, but
also non-transcription factor proteins involved in diverse
physiological processes. To investigate the regulatory
function of miRNAs in P. pyrifolia infected with ASGYV,
hundreds of potential target genes for four conserved
and 64 novel differentially-expressed miRNAs were pre-
dicted by Gene Ontology (GO) analysis. There are three
structured ontologies in GO as followings: biological
processes, cellular component, and molecular function
(Fig. 6). In biological processes, the genes were classified
into 19 categories. The top five over-represented GO
terms were metabolic process, cellular process, single-
organism process, response to stimulus, and signaling.
Nine cellular components were identified, with the top
four being cell, cell part, organelle, and membrane. Nine
molecular functions were identified, with the most
frequent being catalytic activity, binding, transporter ac-
tivity, and nucleic acid binding transcription factor
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Table 2 miRNAs expressed differentially between the 24 °C and 37 °C treatments from in vitro-grown shoots of P. pyrifolia

miRNA T24 T37 Fold-change P-value Mode Sig-lable
hame Counts Normalized Counts Normalized logy(T37/724)

miR1043-3p 43 19 16 0.78 —-1.28 0.001 Down **
miR3627-5p 368 16.29 1827 89.51 246 2.29e-265 Up **
miR397a 56569 2503.83 104360 511287 1.03 0 Up **
miR477b 38 1.68 13 0.64 -14 0.001 Down *>*
miR4993 1677 74.23 749 36.7 -1.02 5.55e-62 Down **
miR5519 18 08 34 1.67 1.06 0.01 Up **
miR5801 90 398 40 1.96 —-1.02 0.0001 Down **
novel124 45 1.99 18 0.88 -1.18 0.003 Down **
novel125 30 133 0 0.01 —7.05 4.32e-09 Down **
novel147 28 1.24 12 0.59 —-1.07 0.02 Down *
novel160 28 1.24 58 2.84 1.20 0.0002 Up **
novel166 39 1.73 0 0.01 —743 1.32e-11 Down **
novel168 85 376 0 0.01 -8.56 1.82e-24 Down **
novel177 118 522 0 0.01 -9.02 1.09e-33 Down **
novel188 42 1.86 0 0.01 —7.54 191e-12 Down **
novel19 214 9.5 611 29.93 1.66 2e-54 Up **
novel190 45 1.99 0 0.01 —7.64 2.77e-13 Down **
novel197 27 12 10 049 -1.29 0.01 Down *
novel202 31 1.37 0 0.01 =71 2.27e-09 Down *x
novel203 139 6.15 0 0.01 -9.26 1.46e-39 Down **
novel228 11 049 25 1.22 133 0.008 Up **
novel233 12 053 22 1.08 1.02 0.04 Up *
novel241 145 6.42 0 0.01 -9.33 3.08e-41 Down **
novel246 31 1.37 5 025 —249 2.84e-05 Down **
novel247 29 1.28 0 0.01 -7 8.22e-09 Down xx
novel250 il 049 23 1.13 1.21 0.02 Up *
novel26 24 1.06 0 0.01 —6.73 2.05e-07 Down **
novel262 18817 832.87 0 0.01 -16.35 0 Down **
novel266 327 14.47 0 0.01 -105 4.1e-92 Down **
novel27 37 1.64 0 0.01 -7.36 4.77e-11 Down **
novel281 25 1.11 1 0.54 -1.04 0.04 Down *
novel290 57 252 0 0.01 —7.98 122e-16 Down **
novel306 18 08 42 2.06 1.37 0.00046 Up **
novel308 29 1.28 0 0.01 -7 8.22e-09 Down **
novel312 26 1.15 0 0.01 —6.85 5.67e-08 Down **
novel337 131 58 364 17.83 1.62 4.89e-32 Up **
novel338 16 0.71 29 142 1.004 0.02 Up *
novel345 961 4253 0 0.01 -12.05 2.43e-269 Down **
novel348 35 1.55 0 0.01 —7.28 1.73e-10 Down **
novel363 7 031 24 1.18 1.92 0.00078 Up **
novel379 0 0.01 34 1.67 7.38 941e-12 Up **
novel385 0 0.01 48 235 7.88 277e-16 Up **
novel393 0 0.01 38 1.86 7.54 4.78e-13 Up o
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Table 2 miRNAs expressed differentially between the 24 °C and 37 °C treatments from in vitro-grown shoots of P. pyrifolia

(Continued)

novel395 0 0.01 48 2.35 7.88 2.77e-16 Up o
novel412 0 0.01 84 412 8.68 6.19e-28 Up **
novel413 0 0.01 39 191 7.58 227e-13 Up **
novel421 0 0.01 21 1.03 6.69 1.52e-07 Up o
novel423 0 0.01 44 2.16 7.75 546e-15 Up **
novel429 0 0.01 23 1.13 6.82 342e-08 Up **
novel438 0 0.01 116 5.68 9.15 2.72e-38 Up x*
novel439 0 0.01 22 1.08 6.75 7.2e-08 Up **
novel447 0 0.01 42 2.06 7.68 242e-14 Up **
novel457 0 0.01 33 1.62 7.34 1.98e-11 Up **
novel476 0 0.01 94 4.61 8.85 3.5%-31 Up **
novel482 0 0.01 165 8.08 9.66 3.77e-54 Up **
novel497 0 0.01 22 1.08 6.75 7.2e-08 Up **
novel498 0 0.01 41 201 7.65 5.11e-14 Up **
novel504 0 0.01 49 24 79 132e-16 Up o
novel509 0 0.01 67 3.28 8.36 197e-22 Up **
novel516 0 0.01 30 147 7.2 1.85e-10 Up **
novel52 35 1.55 15 0.73 -1.08 0.01 Down **
novel526 0 0.01 142 6.96 944 1.05e-46 Up o
novel531 0 0.01 40 1.96 761 1.08e-13 Up **
novel533 0 0.01 26 1.27 6.99 3.65e-09 Up **
novel540 0 0.01 216 10.58 10.05 1.18e-70 Up o
novel543 0 0.01 24 1.18 6.88 1.62e-08 Up **
novel558 0 0.01 22 1.08 6.75 7.2e-08 Up **
novel560 0 0.01 22 1.08 6.75 7.2e-08 Up o
novel564 0 0.01 24 1.18 6.88 1.62e-08 Up **
novel566 0 0.01 30 147 7.2 1.85e-10 Up o
novel573 0 0.01 25 122 6.94 7.7e-09 Up **
novel579 0 0.01 41 201 7.65 5.11e-14 Up **
novel585 0 0.01 32 157 7.29 4.18e-11 Up **
novel586 0 0.01 24 118 6.88 1.62e-08 Up **
novel598 0 0.01 37 1.81 7.5 1.01e-12 Up **
novel6 224 9.91 82 4.02 =13 1.5e-13 Down *x
novel601 0 0.01 26 127 6.99 3.65e-09 Up **
novel603 0 0.01 66 3.23 8.34 4.14e-22 Up **
novel615 0 0.01 118 578 9.18 6.13e-39 Up **
novel69 842 37.27 372 1823 -1.03 9.68e-33 Down x*
novel8 31 1.37 58 2.84 1.05 0.00082 Up **
novel83 24 1.06 0 0.01 —6.73 2.05e-07 Down **
novel84 27 1.2 0 0.01 -6.9 2.98e-08 Down xx
novel99 23 1.02 0 0.01 —-6.67 391e-07 Down **

* represnt Fold-change(log T37/T24) >1.0 or Fold-change(log T37/T24) <-1.0, and 0.01<=P -values <0.05; ** represnt Fold-change(log T37/T24) >1.0 or Fold-
change(log T37/T24) <-1.0, and P -values <0.01
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Table 3 Expression patterns of differentially expressed miRNAs and targeted mRNA genes analyzed in meristem tip and base tissue

of in vitro-grown pear shoots by gRT-PCR and deep sequencing

ID miRNA Log,(T37/T24)  q RT-PCR ID target q RT-PCR Functional annotation

Tip Tip Base gene Tip Base
miR397a Up (1.03) Up 2.0) Up (15.9) Pbr0359622 Down (0.15) Up (1.22) Laccase-4-like
miR477b Down (—1.4) Down (0.3) Up (2.39) Pbr027204  Up (4.43) - DELLA protein RGL1-like
miR3627-5p  Up (2.46) Up (88) - - - - -
miR5519 Up (1.06) Down (0.67) Down (0.32) Pbr002489  Up (1.32) - Proteasome subunit alpha type-4
novel262 Down (=16.35) Down (0.22) Up (2.1) Pbr030437  Up (1.23) Up (147) ABC transporter A family member
novel177 Down (=9.02)  Down (0.55) Up (9.1) Pbr019211  Up (3.66) Up (2.64) NAC domain-containing protein 72-like
novel345 Down (=12.05) Down (0.25) Down (0.5  Pbr042600  Up (1.8) Up (1.04) 2-oxoglutarate dehydrogenase, mitochondrial-like
novel482 Up (9.66) Down (0.33) Up (11.3) Pbr025376  Up (1.42) Down (0.37) disease resistance protein RGA2-like
novel566 Up (7.2) Down (046) Down (0.99) Pbr023226  Down (0.59) Up (1.32) E3 ubiquitin-protein ligase UPL1-like
novel188 Down (=7.54)  Down (0.63) Up (10.7) Pbr017710  Up (24) Up (26) Squamosa promoter-binding-like Protein13A
novel197 Down (—=121)  Down (0.22) - Pbr039336 - - probable methyltransferase PMT24
novel241 Down (=933) Down (0.74) - Pbr004679 - - probable mannitol dehydrogenase

“-" indicate no detected data by real-time PCR; “~" indicates that miR3627-5p had no predicted target gene

activity. These results indicated that the miRNAs have
broad functions in gene regulatory networks. In addition,
many miRNAs may regulate target genes that are in-
volved in disease resistance and defense. For example,
the expression of the putative disease resistance protein
targeted by novell66, was up-regulated in response to 37 °
C treatment by RNA-seq analysis (unpublished). High
temperature treatment (37 °C) specifically induced
expression of noveld76 and novel482 miRNAs that
target a disease resistance RPP13-like protein and
disease resistance protein RGA2-like, respectively.

This indicates that the predicted miRNA target genes
have important functions in the response to high
temperature; however the mechanism behind the miRNA-
mediated high temperature reduction in viral titer is pres-
ently unknown.

The effect of high temperature on ASGV in the shoot
meristem tip tissue of in vitro-grown P. pyrifolia

To investigate the effects of high temperature on ASGV
accumulaiton in in vitro-grown P. pyrifolia shoot meri-
stem tip tissues, the ASGV genomic RNA in the samples

100

Percent of genes

Number of genes

biological_process

Fig. 6 Gene ontology (GO) analysis of the predicted targets for the differentially expressed miRNAs

cellular_component molecular_function
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treated at 24 °C (normal growth temperature) and 37 °C
(high temperature; thermotherapy) was quantified by
real-time PCR to detect the cp gene. It was found that in
comparison with the control, ASGV was reduced to 0.6-
fold and to 0.25-fold after 37 °C treatment for 1 and
5days, respectively (Fig. 7). Apparantly, the ASGV titer in
the meristem tip tissue decreased along with increasing
treatment times at high temperature.

Spatial expression patterns of potential miRNA-mediated
target genes in response to high temperature in

P. pyrifolia shoots

To examine if high temperature-responsive miRNAs can
regulate the expression of their target genes, the expres-
sion levels of selected miRNAs and their target mRNAs
were analyzed from tip and base tissues of pear shoots.
The changes in spatial expression patterns of laccase-4-
like, DELLA protein RGLI1-like, proteasome subunit
alpha type-4, an ABC transporter A family member,
NAC domain-containing protein 72-like, 2-oxoglutarate
dehydrogenate, mitochondrial-like, disease resistance
protein RGA2-like, E3 ubiquitin-protein ligase UPL1-
like, and squamosa promoter-binding-like Proteinl3A,
as predicted targets of miR397a, miR477b, miR5519,
novel262, novell77, novel345, novel482, novel566, and
novel188, respectively, were quantified using qRT-PCR
(Fig. 8). The correlations between the expression levels
of these miRNAs and their target mRNAs in pear shoot
tip and base tissues in response to high temperature
were shown in Table 3.

In shoot apices, negative correlations were observed
for miR397a, miR477b, miR5519, novel262, novell77,
novel345, novel482, and novell188 and their correspond-
ing putative target genes, except for novel566. Putative
target gene DELLA protein RGL1-like (targeted by mi
R477b), proteasome subunit alpha type-4 (by miR5519),
ABC transporter A family member (by novel262), NAC
domain-containing protein 72-like (by novell77), 2-
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oxoglutarate dehydrogenate, mitochondrial-like (by nove
1345), disease resistance protein RGA2-like (by nove
1482), and squamosa promoter-binding-like Protein13A
(by novel188) were all up-regulated with relative quanti-
tive (RQ) values of 4.43,1.32, 1.23, 3.66, 1.8, 1.42, and 2.4
in the 37 °C treatment, respectively. We also analyzed
expression patterns of several miRNA-mediated target
genes in shoot base tissue. The results showed that the
expression levels of target gene Laccase-4-like increased
at 37 °C, with RQ 1.22. Expression of ABC transporter A
family member and NAC domain-containing protein 72-
like also increased at 37 °C, with RQ values of 1.47 and
2.64, respectively. mRNA levels of 2-oxoglutarate
dehydrogenase and squamosa promoter-binding-like Pro-
tein13A at 37 °C also increased 1.04 and 2.6-fold, respect-
ively. This shows that the changes in mRNA levels in stem
base tissue and in shoot tip tissue are different. In
addition, the other target genes showed the opposite ex-

pression patterns in base tissue compared with tip tissues
(Fig. 8 and Table 3).

Discussion

High-throughput sequencing of P. pyrifolia small RNAs

In this study, millions of small RNA reads from libraries
prepared from ASGV-infected P. pyrifolia shoots grown at
24 °C and 37 °C were obtained by high-throughput
sequencing. The pear genome sequence, released in 2012,
was used for annotating the specific miRNAs of P. pyrifolia
[40]. The most abundant small RNA reads in the two
libraries prepared from the P. pyrifolia samples were 21 nt
in length, followed by 24 nt, while 24 nt reads were pre-
dominant in the unique small RNA reads (Figs. 1 and 2).
This is different from reports in other plant species in
which 24 nt sRNAs are more abundant, such as in the
wheat response to powdery mildew infection and heat
stress [41, 42]. The ratio of sRNA total reads/unique
sequences in the 24-nt class was 2.3 and 2 in the 24 °C and
37 °C libraries, respectively, while the ratios in the 21-nt

12

Relative expression level
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T37
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small RNA libraries
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Fig. 7 ASGV virus titer in tip meristem tissues of in vitro pear shoots determined by gqRT-PCR analysis of the ASGV ¢p gene in the 24 °C and 37 °C

Tip(5d)
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class were 29 and 32 in the 24 °C and 37 °C libraries, re-
spectively. The length distribution patterns of the sRNA
read may refelct the compositions of the small RNA sam-
ple. For example, miRNAs are normally 21 or 22 nt long,
siRNAs are 24 nt, and piRNAs are between 28 and 30 nt in
length. We observed that the 21-nt small RNAs increased
and the 24-nt small RNAs decreased in abundance in re-
sponse to 37 °C treatment, and the 21 nt miRNAs were
more abundant in the 37 °C library than in the 24 °C li-
brary. These observations demonstrate that the expression
of miRNAs and siRNAs is significantly altered by the high
temperature treatment, and such dynamic small RNA pro-
files may have important functions in suppressing viral in-
fection under high temperature treatment.

Possible functional roles of miRNAs in suppressing viral
infection in high temperature-treated P. pyrifolia

In the P. pyrifolia shoot meristem tip, seven known and
77 potentially novel miRNAs were shown to be differen-
tially expressed in response to high temperature (37 °C)
treatment and the predicted target genes of these differ-
entially expressed miRNAs were also identified (Table 2

and Fig. 6). These datas provide valuable insight infor-
mation about the complex miRNA-mediated regulatory
networks in pear shoot meristem tips infected with
ASGV in response to high temperature treatment. To
the best of our knowledge, this is the first report of high
temperature-altered miRNAs that are involved in viral
infection.

miRNAs may play important roles in host resistance
against abiotic stress and biotic pathogens. For example,
down-regulation of miR398 in A. thaliana up-regulates
its target gene CSD encoding Cu/Zn superoxide dismut-
ase, a known enzyme that is related to defense response
against Pseudomonas syringae [3, 16, 43, 44]. In addition,
it has also been reported that infections by Tobacco
mosaic virus and Potato virus Y lead to changes in
miRNA expression levels that affect the ability of plants
to resist disease. These previous studies have demon-
strated that miRNAs can regulate key genes in disease
resistance pathways to affect viral infections [13, 17, 18,
45, 46]. In this study, we identified a number of pre-
dicted miRNA-target genes from P. pyrifolia that are
possibly involved in disease resistance and defense in the
high temperature-induced reduction in ASGV titers
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(Fig.6 and Table 3). For instance, Laccase targeted by
miR397a is involved in the formation of the plant cell
wall, and plays an important role in the defense
response [47]. DELLA protein RGL1-like, TIR-NBS-
LRR, and RGA2-like predicted to be targeted by miR-
NA477b, novel421 and novel482, respectively are also
known as disease resistance proteins. Interestingly, we
found that the targets of novell77 severely down-
regulated in high temperature include NAC transcrip-
tion factor, heat shock factor protein HSF8-like, and
E3 ubiquitin-protein ligase COP1-like, which suggests
that novell77 is involved in a complicated miRNA
regulatory network. The computational analysis com-
bined with the qRT-PCR results showed that NAC is
negatively regulated by novell77 (Figs. 5 and 8). Nu-
merous members of the NAC gene family have been
shown to respond to biotic and abiotic stresses which
may activate the plant defense response [48-52]. In
this study, we found that significantly repressed
expression of novell77 significantly up-regulated NAC
expression in the shoot meristem tip of P. pyrifolia
with low ASGV titer at 37 °C as compared to 24 °C
(Fig. 8 and Table 3). In Arabidopsis, NAC1, regulated
by miRNA164, is crucial for the formation of boundaries
between meristems and emerging organ primordia, and
affects auxin metabolism in the auxin signaling pathway
[53-55]. It is possible that up-regulated NAC accelerates
the growth and developmental process of the shoot meri-
stem tip tissue, and inhibits the moevment of ASGV into
the newly divided tip cells in an as-yet unknown manner
during high temperature, leading to the reduced viral titer
in the shoot meristem tip [56]. Based on above disucssion,
it is very likely that the mixed action of these miRNA-
mediated target genes contributes to the thermo-
elimination of ASGV in pear. Indeed, high temperature
can activate many highly conserved biological and adap-
tive responses that are regulated by miRNAs, which ex-
hibit protective functions for the induction of the disease
resistance response in plants [41, 56-58]. Future work is
aimed at elucidation of the mechanistic details of these
miRNA-regulated defense genes in inibiting viral infection
at high temperature.

Conclusions

This is the first report of miRNAs differentially expressed
at 24 °C and 37 °C in the meristem tip of in vitro-grown
pear shoots infected with ASGV. Using Illumina high-
throughput sequencing, the numbers and types of miR-
NAs were systematically identified from in vitro-grown P.
pyrifolia shoot meristem tip tissue at 24 °C and 37 °C. This
was done in combination with qRT-PCR to explore the
interaction between miRNA-regulated pear genes and
ASGYV in response to high temperature treatment. A total
of seven known and 77 novel miRNAs were found to be
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expressed differentially in response to high temperature.
Putative target genes were predicted and then annotated
by GO databases to explore predicted gene functions.
Comparative analysis of expression levels in relation to
virus titer, miRNA and miRNA-mediated target gene
expression patterns were performed to reveal the role of
miRNA regulation on the decrease in virus titer from the
shoot meristem tip observed under conditions of high
temperature. Our research provided valuable information
for further exploration of the function of these miRNAs/
mRNA in associaiton with the reduced viral titer in
meristem tip of P. pyrifolia shoots inducible to high
temperature treatment.

Methods

Plant materials

P. pyrifolia cv. Jinshui no. 2; a widely grown cultivar in
central and southern China, was used in the experi-
ments. The establishment of in vitro P. pyrifolia cv.
Jinshui no. 2’ shoots in culture was performed as re-
ported [59]. The presence of ASGV in each of the differ-
ent explants was determined by reverse transcrption
(RT)-PCR. In vitro shoots about 1 cm in length were
transferred to freshly prepared MS medium and incu-
bated in a thermotherapy chamber at 37 °C with a day/
night regime of 16 h light at an intensity of 1500 lux and
8 h dark. Non-treated shoots infected with ASGV were
kept at 24 °C as controls. Six shoots of 5 mm in length
were collected from meristem tip and treated at 37 °C
for 1 and 5 days, with three replications per treatment.
Untreated meristem tip shoots (5 mm) maintained at
24 °C for 1 and 5 days were used as controls. All samples
were frozen in liquid nitrogen immediately and stored
at —80 °C prior to extraction of total RNA.

Small RNA library construction and Illlumina sequencing
To construct the small RNA libraries, total RNA was
extracted from the pear tissue samples treated for 1 and
5 days at 24 °C and 37 °C using TRIzol reagent (Invitro-
gen, USA) according to the manufacturer’s instructions.
Mixed samples containing equal amounts of total RNA
from the 1- and 5-day treatments at 37 °C, were desig-
nated as T37, and a mixed sample containing equal
amounts of the two treatments at 24 °C was the T24 con-
trol. The integrity and concentration of the total RNA
samples were checked using a NanoDrop spectrophotom-
eter and Agilent 2100 Bioanalyzer. High quality samples
were used to construct small RNA library for sequencing
on the Illumina Hiseq 2000 instrument at Beijing Genomics
Institute (BGI) company (Shenzhen, China).

Deep sequencing data analyses
All raw sequencing data was processed using the SOAP
software (BGI Company) to obtain clean reads from
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each library as follows: except for low quality reads,
reads with 5" primer contaminants, reads without a 3’
primer, reads with no insert tags, reads with poly A tags,
reads shorter than 18 nt and longer than 30 nt. Firstly,
the sequences homologous to non-coding RNAs, in-
cluding rRNAs, tRNAs, snRNAs, snoRNAs and siRNA
were removed from the matched sequences through
BLASTn searches using the NCBI Genebank (http://
www.ncbi.nlm.nih.gov/blast/Blast.cgi/) and Rfam data-
bases (http://www.sanger.ac.uk/Software/Rfam/). The
remaining sequences were aligned to the pear genome
sequence (http://peargenome.njau.edu.cn) with known
miRNAs from miRBasel7 and those matched to the pear
genome shotgun-sequence assemblies were kept for
known miRNA identification. Mireap software developed
by BGI to predict novel miRNAs based on certain rules
for stem-loop hairpins described [36—39], can be accessed
from the following link: http://sourceforge.net/projects/
mireap/.

Differential expression analysis of miRNAs in response to
high temperature

The expression levels of miRNAs in the 24 °C (control)
and 37 °C (high temperature) treatments from in vitro-
grown pear shoots were visualized by plotting the Log2-
ratio of T37/T24. The procedures used were as follows:
(1) The expression of miRNAs in the 24 °C and 37 °C li-
braries to get the number of transcripts per million
(TPM) were normalized. Normalized expression = actual
miRNA count/Total number of clean reads*1000000. In
addition, the normalized expression of the miRNA was
corrected to 0.01, when the miRNA gene count was zero.
(2) The fold-change and P-value from the normalized
expression were calculated. Fold-change = log,(T37 treat-
ment/T24 control); the P-value was calculated as reported
previously [60, 61]. The expression levels of miRNAs with
fold changes >1.0-fold and P -values < 0.05 were consid-
ered to be responsive to high temperature treatment in P.
pyrifolia shoots.

Prediction of potential target genes for miRNA candidates
in P. pyrifolia

Differentially expressed miRNAs were used as query
sequences in BLASTn searches against the pear unigene
database (http://peargenome.njau.edu.cn). The criteria for
predicted mRNA target genes by alignment with each
miRNA were based on those previously reported [62, 63].

Real-time PCR analysis of miRNA and target gene
expression

Real-time PCR was used to confirm the miRNA expres-
sion levels obtained from the high-throughput sRNA
sequencing. Total RNAs were extracted from the sam-
ples treated for 1 and 5 days at 24 °C and 37 °C,
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respectively, using CTAB methods as described [64]. For
miRNA, poly (A) tails were first added to the 3" ends,
and cDNA was then synthesized by RT using the One
Step Prime-Script miRNA cDNA Synthesis Kit with a
special oligo-dT adaptor according to the manufacturer’s
instructions (TaKaRa, Dalian, China). The ¢cDNA prod-
ucts were used as templates for quantitative PCR
analysis, which was performed on a CFX96 Real-time
System (BIO-RAD, USA) using SYBR Premix Ex Taq I1
(TaKaRa). All specific miRNA forward primers were de-
signed based on the mature miRNA sequence, while the
reverse primers were the adaptor sequence provided in
One Step Prime-Script miRNA c¢DNA Synthesis Kit
(Additional file10). In addition, qRT-PCR was used to
analyze the expression of target genes cleaved by miR-
NAs and ASGV c¢p mRNAs, and the primers are also
listed in Additional file 10. Total RNA digested by DNA-
ase as template was reverse-transcribed using M-MLV
reverse transcriptase (Promega, USA) and 6-base
random primers to obtain cDNA. Each RT reaction con-
tained 2.5 pl diluted cDNA, 12.5 pl of the SYBR Premix
Ex Taq 11 (2x) PCR mixture, 1 pl of each 5 mM primer,
and sterile water to a final volume 25 pl. The Actin gene
was used as the internal reference gene. The specificity
of the primers was verified by analysis of the melting
curves from a thermal denaturing cycle of 60-95 °C with
1 °C increments applied for 1 s. All reactions were run
in triplicate. The real-time PCR program conditions
were as the follows: 95 °C for 30s, followed by 40 cycles
of 95 °C for 5 s, and 60 °C for 30 s. The values for each
miRNA/mRNA in the T24 sample were set as 1, and
miRNA/mRNA relative expression level changes were
calculated by a comparative Ct method (AACt) using
the formula 2724t [65].
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