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Abstract

Background: Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in
severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same
STEC strain. One question of particular interest is why some infected people resolve infection after hemorrhagic
colitis whereas others progress to the hemolytic uremic syndrome (HUS). Host age and infection dose have been
implicated; however, these parameters do not appear to fully account for all of the observed variation in disease
severity. Therefore, we hypothesized that additional host genetic factors may play a role in progression to HUS.

Methods and Results: To mimic the genetic diversity in the human response to infection by STEC, we measured the
capacity of an O157:H7 outbreak isolate to colonize mouse strains from the advanced recombinant inbred (ARI) BXD
panel. We first infected the BXD parental strains C57BL/6 J (B6) and DBA/2 J (D2) with either 86–24 (Stx2a+) or TUV86-2,
an Stx2a-negative isogenic mutant. Colonization levels were determined in an intact commensal flora (ICF) infection
model. We found a significant difference in colonization levels between the parental B6 and D2 strains after infection
with TUV86-2 but not with 86–24. This observation suggested that a host factor that may be masked by Stx2a affects
O157:H7 colonization in some genetic backgrounds. We then determined the TUV86-2 colonization levels of 24 BXD
strains in the ICF model. We identified several quantitative trait loci (QTL) associated with variation in colonization by
correlation analyses. We found a highly significant QTL on proximal chromosome 9 (12.5–26.7 Mb) that strongly
predicts variation in colonization levels and accounts for 15–20 % of variance. Linkage, polymorphism and co-citation
analyses of the mapped region revealed 36 candidate genes within the QTL, and we identified five genes that are
most likely responsible for the differential colonization.

Conclusions: The identification of the QTL on chromosome 9 supports our hypothesis that individual genetic makeup
affects the level of colonization after infection with STEC O157:H7.
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Background
Shiga toxin (Stx)-producing E. coli (STEC) are Gram-
negative enteric pathogens associated with foodborne
outbreaks. E. coli O157:H7 accounts for the greatest
incidence of disease due to a single STEC serotype in
the in the United States. Indeed, E. coli O157:H7 is
estimated to be responsible for 63,000 of the estimated
175,000 STEC cases per year [1]. Stx, the primary STEC
virulence factor, is an AB5 toxin that inhibits protein
synthesis and leads to cell death [2]. The A subunit is
responsible for the catalytic activity of the molecule
while the B pentamer binds to the host cell receptor,
globotriaosylceramide (Gb3). An STEC strain may
encode Stx1a and/or Stx2a, two biologically similar
though antigenically distinct toxins. Some STEC
strains also have the locus of enterocyte effacement
(LEE) pathogenicity island [3], a large segment of 43
Kb DNA flanked by direct repeats, that encodes a type
III secretion system and the adhesin intimin. Intimin
is necessary for maximal colonization by O157:H7 in
mouse, pig, and calf models [4–7].
Cattle and other ruminants are the natural carriers of

STEC O157:H7, and contamination of the organism in
meat most often occurs during beef processing [8–10].
Undercooked ground beef was responsible for the majority
of STEC outbreaks initially [11, 12]; however, contaminated
fresh produce and non-pasteurized beverages also spread
STEC [13–17]. After ingestion of even low doses of E.
coli O157:H7, the most common disease manifestation
is bloody diarrhea or hemorrhagic colitis (HC) [18]. A
serious sequela of E. coli O157:H7 infection, the
hemolytic uremic syndrome (HUS), is defined by
thrombocytopenia, hemolytic anemia, and kidney
failure and occurs in 10–20 % of individuals [18]. It is
not known why some individuals spontaneously clear
infection while others progress to the HUS. Infectious
dose and age of the patient have been implicated [19–21];
however, these factors alone do not account for the total
observed disease variance [18, 22].
Host genetic factors are likely important determinants

for O157:H7-related disease outcome. Because traditional
laboratory animal models are inbred to reduce genetic
heterogeneity and to minimize variably between
experiments [23], a different animal model was
required to investigate phenotypic variations and to
reflect the complex genetic structure of the human
population. The advanced recombinant inbred murine
(ARI) BXD panel [24], was created by intercrossing
two mouse strains, C57BL/6 J (B6) and DBA/2 J (D2).
The progeny BXD strains were inbred to homozygositiy
and genotyped to determine the genotypic contest of each
strain and to identify the location of crossover events. The
BXD panel has approximately 580,000 single nucleotide
polymorphisms (SNPs) and microsatellite markers [25, 26].

In addition, the genomes of the parental parents B6 [27]
and D2 [28, 29] were sequenced and found to differ at
approximately 4.8 million SNPs. Phenotypic differences
among the BXD strains are primarily related to the SNPs
and 500,000 insertion-deletions [26].
Therefore, use of the BXD panel allows for a systems

genetic, genome-wide analysis to facilitate identification of
a quantitative trait locus (QTL) responsible for phenotypes
such as variation of severity of diabetes [30], forebrain
weight [31], bone density [32], or addiction response to
alcohol [33, 34]. Of particular relevance to this study, the
BXD panel was used to explore genetic traits that underlie
the response to infectious diseases such as influenza [35],
streptococcal sepsis [36, 37], and Ebola [38] infections. A
comparison of the human and murine genome reveals a
high degree of similarity [39]. Therefore, it is theoretically
possible to translate QTL findings from BXD mice to
humans (reviewed in [40, 41]). Thus, we theorized that
host genetic loci that impact colonization by O157:H7 in
the BXD panel may reflect human traits responsible for
STEC disease.
In this study, we observed a statistically significant

difference in colonization levels in the murine parental
strains (B6 and D2) after infection with TUV86-2.
That difference indicates the presence of a potential
QTL involved in O157:H7 colonization that may be
masked when Stx2a is expressed by the infecting E.
coli O157:H7 strain. Analysis of colonization data from
24 BXD strains infected with TUV86-2 identified a
highly significant QTL on proximal chromosome (chr)
9 between 12.5 and 26.7 Mb that strongly predicts
variation in colonization levels one day post-infection,
accounting for 15–20 % of variance. This QTL harbors
several genes known to regulate immune responses to
bacterial infections. We evaluated candidate genes within
this QTL using multiple parameters that included linkage,
gene ontology, variation in gene expression, co-citation
networks, and biological relevance. We identified five
genes of interest that may be responsible for the observed
differential colonization phenotype.

Methods
Ethics statement
All animal studies were approved by the Institutional
Animal Care and Use Committee of the Uniformed
Services University of the Health Sciences and were
conducted in strict accordance with the recommendations
of the Guide for the Care and Use of Laboratory Animals
[42]. Animals were housed in filter top cages with access
to food and water ad libitum unless otherwise noted, in
an environmentally controlled room approved by the
American Association for Accreditation of Laboratory
Animal Care (AAALAC).
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Mice
Female mice, approximately 5–6 weeks old were used
for all experiments. BXD parental strains (B6 and D2)
were purchased from The Jackson Laboratory (JAX)
(Bar Harbor, Maine). We obtained some BXD strains
through collaboration with investigators at the University of
Cincinnati (UC) who had acquired BXD breeding pairs
from the University of Tennessee Health Science Center
(UTHSC) (Memphis, Tennessee) [24]. Ten BXD strains
(BXD 32, 44, 49, 51, 55, 65a, 75, 86, 96, and 98) were only
analyzed from UC. Additional BXD strains were from UC
or JAX. Similar colonization levels between mice from UC
and JAX were confirmed with four BXD strains (BXD #:
73, 73b, 83, 87) (Additional file 1: Figure S1). Ten additional
BXD strains (BXD #: 45, 48, 61, 62, 66, 69, 70, 84, 100, and
101) were tested from both UC and JAX (Additional file 1:
Figure S1), while five BXD strains (BXD #: 60, 71, 73a, 99,
102) were only analyzed from the JAX colony. A minimum
of two biological replicates were conducted for each BXD
strain. We tested total of 31 strains, 29 BXD strains and an-
cestral parental strains B6 and D2, with 321 mice total
(each BXD strain n = 6–20; B6 and D2 n = 48).

E. coli O157:H7 strains and growth conditions
Colonization studies with the BXD parental strains
(B6 and D2) were conducted with two STEC O157:H7
strains: 86–24, an Stx2a positive clinical isolate, and
TUV86-2 an Stx2a-negative isogenic mutant [43–45].
BXD colonization studies were conducted only with
TUV86-2. Both STEC strains are resistant to nalidixic acid
(Nal) and were grown in Luria broth supplemented with
25 μg/mL Nal. To prepare the inoculum, an overnight
culture (~18 h) was pelleted by centrifugation (5000 × g),
the supernatant removed, and the pellet resuspended 1:100
in phosphate buffered saline (PBS) supplemented with 20 %
sucrose. The inoculum was serially diluted and plated to
determine the dose/mouse.

Intact commensal flora (ICF) infection model
Colonization levels were determined in the ICF infection
model as previously reported [46]. Briefly, food and
water were removed from the mice for 20 or 2 h,
respectively, prior to infection. Mice were fed a high
inoculum, approximately 1010 colony forming units
(CFU) in 100 μL by pipette tip. Each experiment
included three mice per strain, with six to seven strains
total. The parental B6 and D2 strains were included in
all experiments as an internal control for colonization
levels. Mice were weighed daily and colonization levels
were reported as CFU per g feces on day one through
day four post-infection.
To determine the CFU per g feces, mice were placed

in individual cages with no bedding for 30–40 min. After
this time, mice were returned to their original cage and

fecal pellets were collected, weighed, and resuspended
1:10 w/v in PBS. The fecal slurry was further diluted
1:10 in PBS and plated on sorbitol MacConkey (SMAC)
agar supplemented with Nal to select for the inoculating
strain. The dilution that contained between 30 and 300
colonies was counted to determine CFU per g feces. The
limit of detection for this model is 100 CFU per g.

Data analysis and QTL mapping
We dedicated a considerable amount of time to data
error checking and filtration after each experiment. Data
from individual mice were flagged in the database and
excluded from the final analysis if there were factors
that affected colonization levels other than infection.
For the final analysis we used data from 24 BXD strains
and the parental mice. We performed general linear
model (GLM) analysis of covariates using ordinary least-
squares analysis of variance (OLS ANOVA) to determine
the relative effect and interactions of covariates on the
genetic factor, represented as mouse strain. GLM analysis
revealed that there were no differences associated with
mouse age, source, or the seasonality of the experiment
(P > 0.15), Additional file 2: Table S1. Mouse strain was
the most significant predictor of colonization (P <0.0001),
followed by inoculum (P = 0.02). Although the differences
in inoculum were statistically significant, we do not
believe them to be biologically significantly, as they were
within the same log for all experiments and did not result
in any difference in colonization levels of the parental
strains. We used the open-access web-based interval
analysis on the GeneNetwork (GN) platform for complex
trait analysis to identify QTLs. The primary data has been
entered under trait IDs 17467, 16607, 16608, 18071, and
18072. The genome-wide interval mapping module
allowed us to analyze phenotypes in the context of
mouse genotypic differences and estimate the signifi-
cance at each location using 5000 permutation tests
[25]. We did ten sets of analyses of the log CFU means,
log CFU medians or corrected coefficient of log CFU/g
feces for the following variables: 1) colonization one day
post-infection; 2) colonization two days post-infection; 3)
colonization 3 days post-infection; 4) colonization 4 days
post-infection; 5) difference in colonization between day
four and one post-infection; 6) difference in colonization
between day four and two after infection; 7) difference in
colonization between day four and three after infection; 8)
difference in colonization between day three and one after
infection; 9) difference in colonization between day three
and two after infection; and, 10) difference in colonization
between day two and one after infection, for 30 traits
analyzed. In addition, we determined the overall variation
in median colonization across the BXD panel over time
from the linear and polynomial slopes of colonization
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change per strain. Therefore 32 traits overall were mapped
for QTLs.

Bioinformatic analyses of mapped QTLs
Haplotype analyses of significant QTL on Chr 9
We analyzed haplotypes of the BXD strains used in this
study at the significant mapped QTL on Chr 9 between
12.6 and 25.6 Mb. We downloaded the BXD genotype
data set as a Microsoft excel file from http://www.genenet
work.org/genotypes/BXD.geno and selected for the Chr 9
mapped QTL region and examined the genotypes of the
BXD strains from that database. The different BXD strains
were rank-ordered according to colonization levels on day
one post-infection.

Polymorphism analysis (SNP analysis)
We did SNP analysis on genes and transcripts in the
mapped QTLs associated with STEC O157:H7 differential
colonization. The analysis was done on the 24 BXD strains
and the parental strains B6 and D2. SNP analysis data were
retrieved on March 22, 2015 from the mouse phenome
database (MPD) with the SNP wizard online tool at http://
phenome.jax.org/SNP. The retrieved data originated from
several databases: national center for biotechnology infor-
mation (NCBI) Mouse Build 37 (known as mm9), NCBI
SNP database (dbSNP) build 128 and the joint project of
the European Molecular Biology Laboratory (EMBL),
European Bioinformatics Institute (EBI) and the Wellcome
Trust Sanger Institute, (Ensembl) build 48. SNPs among
BXD strains were based on Wellcome-CTC Mouse Strain
SNP Genotype Set [26].

QTL heatmap
We did correlation analyses of all traits associated with
the differential colonization parameters described in the
QTL analysis section above (12 traits) with QTL heatmap.
QTL heatmap is a bioinformatics tool offered by the
GeneNetwork (GN) platform in which a hierarchical cluster
tree of the mapped set of traits is computed and distances
between pairs of traits is calculated with the formula1-r,
where r is the Pearson product–moment correlation.

Candidate gene co-citation analysis
We did co-citation analyses using open-source Chilibot
platform (www.chilibot.net), a literature search engine that
identifies all relevant relationships among search terms
[47]. We cross-referenced the 36 candidate polymorphic
genes using key words associated with STEC O157:H7
colonization to identify genes most likely responsible for
the QTL on Chr 9. The initial key words were: STEC;
colonization; normal flora; colonization resistance; epithelial
cell; tight junction; cell polarity; adhesion; mucus; mucin;
nucleolin. The key words for the final interaction diagram,
chosen because of the high degree of interconnectivity to

the top genes and for clarity of the figure were: STEC;
colon; mucus; colonization.

Statistical analysis
All primary calculations and sorting operations were
done with features and functions of Microsoft Excel.
Statistical analyses were executed with Data Desk (ver-
sion 6.3) software (Data Description, Inc., Ithaca, NY;
www.datadesk.com) and included correlation, regression,
and general linear model (GLM) analyses by ordinary
least squares analysis of variance (OLS ANOVA). Mouse
age, weight, inoculum, and log CFU/g feces for each day
post-infection were analyzed to determine the possible
effect of those variables on the final results.

Data deposition
Our data sets were stored as part of the BXD published
phenotypes on Gene Network Platform and can be
found at (www.genenetwork.org) under BXD published
phenotypes record trait IDs 17467, 16607, 16608,
18071, and 18072.

Results
Infection with TUV86-2, but not 86–24, results in
significant colonization differences between the parental
murine strains
We used the ICF infection model to determine the
colonization levels of two isogenic STEC O157:H7 strains
in the BXD parental mice. After infection with 86–24, an
Stx2a-positive strain, both B6 and D2 mice had an average
colonization level of 106–107 CFU/g feces on day one post-
infection (Fig. 1a). The colonization levels did not vary
significantly between B6 and D2 over the course of
the experiment, and both murine strains maintained
colonization through day 4. We next determined
colonization levels from B6 and D2 mice infected
with TUV86-2, an Stx2a-negative isogenic mutant.
The initial TUV86-2 colonization levels were similar
to those after infection with 86–24: the geometric
mean colonization levels of the parental B6 and D2 murine
strains was 106 or 108 CFU/g feces, respectively (Fig. 1b).
However, a significant difference in colonization levels
developed by day three post-infection, such that D2 mice
maintained colonization while B6 mice began to resolve the
infection (Fig. 1b). The significant difference in colonization
was maintained on day 4.

Colonization differences between parental and BXD
strains infected with TUV86-2
Since there was a significant difference in the colonization
levels of the parental mice after infection with TUV86-2,
we decided to infect the BXD mice only with TUV86-2. All
of the BXD strains tested became colonized with TUV86-2
after oral inoculation with the organism. Although the
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mean colonization levels of the parental murine strains one
day post-infection were 1.38 × 106 or 1.15 × 107 CFU/g
feces, respectively, for B6 and D2 mice, the mean
colonization levels from the different BXD strains one day
post-infection ranged from 104 to 107 CFU/g feces (Fig. 2).
Additionally, individual BXD strains exhibited different
patterns of colonization over the course of the infection. A
few strains maintained colonization (BXD 99 and 102),
others steadily lost colonization (BXD 51, 75, 96, 97), and
some others showed variable colonization over the experi-
ment (BXD 60, 62, 71, 87, 100) (Fig. 2). These data demon-
strate variable susceptibility to O157:H7 colonization
within the BXD panel and suggest that colonization levels

might be used to identify host genetic factors associated
with the capacity of STEC to establish infection.

QTL identified on proximal Chr 9 associated with TUV86-2
colonization in BXD mice
We performed genome-wide scans with bioinformatics
tools provided by GeneNetwork (www.genenetwork.org)
to assess the observed colonization levels against the
known genotypes of the BXD strains. We analyzed
TUV86-2 colonization levels in the BXD strains by the
32 parameters listed in the methods. We identified a
significant QTL on proximal Chr 9 when we mapped
the log of the colonization means from day 1 (Fig. 3a),
with a likelihood ratio statistic (LRS) of 20.19 [limit of
detection (LOD) = 4.4 and P < 0.05] and a total interval
width of 14 Mb (12.5–26.7 Mb) (Fig. 3b). We next did
linkage analysis of the QTL on proximal Chr 9 and
found that the QTL was linked with three genetic
markers, gnf09.010.169, rs13480073, and mCV24962297
(13.23–15.69 Mb), with a peak LRS at 15.69 Mb associated
with genetic marker gnf09.010.169. When we mapped
colonization levels on day 2 or 4 post-infection, we found
a suggestive QTL that overlapped the Chr 9 QTL for day
one colonization at interval 13–26 Mb (Table 1).
We also identified suggestive QTLs that overlapped on

Chr 14 for colonization levels on days one or two post-
infection with a peak LRS of 13.84 and 12.09, respectively
(Table 1). We further identified multiple suggestive QTLs
for the following traits: difference in colonization between
two independent days post-infection [such as colonization
day two minus colonization day 1 (QTL on Chr 13)], and
the linear (Chr 17) and polynomial slopes of colonization
change (Chr X) (Table 1).
We identified the haplotypes of the BXD strains at the

significant QTL on Chr 9 between 12.6 and 25.6 Mb and
rank-ordered BXD strains according to colonization levels
from low to high (Fig. 4). Strain distribution patterns
(SDP) of the BXD strains revealed that high colonization
levels on day one post-infection were associated with the
B allele (blue) inherited from the parent B6. Low
colonization levels in the BXD panel were associated with
D alleles (red) inherited from the D2 parent. Taken
together the SDP of the haplotypes suggests that overall
the B allele exhibited dominance for high colonization. In
addition, we performed QTL heatmap analysis that
entailed correlation analyses for 12 traits associated with
differential colonization (Additional file 3: Figure S2). The
phylogenetic tree at the top of the QTL heatmap indicates
how closely related the independent traits are to each
other. We observed that the significant mapped QTL on
Chr 9 was associated with B allele dominance (dark blue)
in accordance with haplotype analyses. Other mapped
QTLs on Chrs 1 and 5 had similar B allele dominance. In

Fig. 1 Colonization levels in BXD parental strains after infection with
STEC O157:H7 strains. B6 and D2 strains were infected with isogenic
O157:H7 strains 86–24 (Stx2a+) (a) or TUV86-2 (Stx-) (b). Individual
mouse colonization levels are depicted as CFU/g feces over the course
of the experiment and the black bars represent the geometric mean of
the group. (*) The difference in colonization levels between B6 and D2
mice was significant after infection with TUV86-2 on days 3 and 4 as
D2 mice maintained colonization while B6 showed reduced
colonization or even cleared the infection (P≤ 0.003). n = 10. Limit of
detection was 102 CFU/g
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contrast, QTLs on Chrs 14, 15 18, and 19 had D allele
dominance (Additional file 3: Figure S2).

Candidate genes analyses
We did gene enrichment analyses of the significant QTL
mapped on Chr 9 with multiple parameters that included
linkage, gene ontology, variation in gene expression, poly-
morphism, co-citation networks, and biological relevance.
Polymorphism (SNP) analysis identified 36 candidate
genes that might modulate differential colonization associ-
ated with the identified QTL on proximal Chr 9. SNPs
were identified by the Mouse Phenome Database (http://
phenome.jax.org/). We focused on nonsynonymous SNPs,
even those located within exons since those SNPs may
influence translation. We found 38 SNPs of interest (Fig. 5)
and with the ToppGene suite (https://toppgene.cchmc.org/)
we identified 36 candidate genes (Table 2). Finally, we did
co-citation networks and biological function analyses for
candidate genes and key words (listed in methods).
Through those analyses, we identified five genes that are
most likely to modulate differential colonization. These are
Pannexin 1(Panx1); BMP binding endothelial regulator
(Bmper); DNA methyltransferase 1 (Dnmt1); phospho-
diesterase 4A (Pde4a); and acyl-CoA dehydrogenase
family, member 8 (Acad8). A visual representation of
the relationship between the final key words (STEC;
colonization, mucus, colon) and the five genes of
interest is shown in Fig. 6.

Discussion
The major finding from this study was the identification of
a significant QTL on proximal Chr 9 associated with
TUV86-2 colonization levels in BXD mice one day post-
infection. The identification of this QTL supported our
hypothesis that host genetics affect STEC O157:H7
colonization levels in mice. Since establishment of infection
is critical for comparison of colonization levels across
multiple experiments, we included the BXD parental strains
in every experiment as an internal control. Because the B6
and D2 day one colonization levels were consistently within
the expected range (106–108), we are confident that the
variation in BXD colonization levels is due to genotypic
differences among the strains. The variation in colonization
levels across BXD strains is consistent with the mosaic
genotypes of the panel. We predict that such genetic
predispositions to low or high initial colonization levels
could influence the severity of disease from an STEC infec-
tion. The mosaic-like genetic complexity of the ARI BXD
panel provided the diversity required to map the QTL and
would allow us to predict if an individual animal would be
susceptible or relatively resistant to O157:H7 colonization.
We initially determined the colonization profiles of the

parental murine strains after infection with both 86–24,
an Stx2a-positive strain, and TUV86-2, an Stx2a-negative
isogenic strain. However, since there was no difference in
colonization levels of the parental strains after 86–24
infection, we decided to only infect the BXD strains with
TUV86-2 to have the greatest chance of identifying a QTL

Fig. 2 BXD colonization levels after infection with TUV86-2. The TUV86-2 colonization levels for the BXD and parental murine strains over the course of the
infection. Individual murine strains (sorted based on day one colonization from lowest to highest) are listed along the x-axis and daily colonization levels
are depicted as the log CFU/g feces. Parental n= 31; BXD n= 3–9 per strain; 182 mice total. Limit of detection was 102 CFU/g
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Fig. 3 (See legend on next page.)
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associated with colonization. The reason that we did not
observe a difference in colonization levels after infection
by 86–24 is most likely due to the fact that Stx2a enhances
STEC colonization levels in a traditional mouse model
[45]. The decision to proceed with the toxin-negative
strain enabled us to identify host genetic markers that

may be associated with O157:H7 colonization. Future
studies could determine whether the toxin positive strain
would overcome the low colonization phenotype associ-
ated with the “D” allele at the Chr 9 QTL.
Suggestive QTLs linked to colonization levels on

days two and four post-infection were also mapped to

(See figure on previous page.)
Fig. 3 Genome wide scan for TUV86-2 susceptibility revealed a significant QTL on chromosome 9. a) A mouse chromosome interval map based on
TUV86-2 colonization levels on day one. The x-axis depicts the physical map of the entire murine genome. The left y-axis illustrates the LRS (blue line) as an
expression of strength of the association between colonization and genotypic markers. The grey line at y= 11.25 indicates the suggestive threshold, while
the pink line at y = 17.88 shows the significant threshold. A significant QTL was identified on proximal Chr 9. b) Expanded physical map of Chr 9 for the
region of the QTL. (a) Colored blocks represent the location of individual genes along the Chr. with links to corresponding section of the genome in the
UCSC Genome Browser, the Ensembl Genome Browser, and expanded WebQTL map. (b) Haplotype map of BXD strains (listed on the left side with the
log geometric mean colonization on day one listed next to the strain name), where green denotes D2 (paternal), red designates B6 (maternal), blue shows
heterozygous and grey indicates an unknown genotype. Genetic markers associated with the mapped QTLs are shown: proximal mCV25073238,
rs13480072, rs13480071, rs13480073, mCV24962297, gnf09.010.169 (associated with highest LRS), rs6183014, rs13480107, rs13480109 and CEL-9_29909656.
(c) Expanded view of the QTL (blue line) overlaid on the SNP seismograph track, where each orange hash mark indicates a unique SNP. The right y-axis
represents the additive allele effect and the red line signifies that the B6 allele is associated with increased colonization levels

Table 1 Summary of TUV86-2 colonization QTLs in ARI BXD micea

Name of mapped trait (Phenotype) Chr
(mm9b)

Peak
LRS

Genetic marker(s) associated with
peak locus

Location of genetic
markers (Mb)

Colonization one day after infection 9 20.19c gnf09.010.169, rs13480073, and
mCV24962297

13.23–15.69

14 13.84 rs13482392, gnf14.114.290,
rs13482396

118.97–119.71

Colonization two days after infection 9 16.12 gnf09.010.169 13.23–25.69

14 12.09 rs13482396, gnf14.085.610 and
rs3707842

91.32–120.03

Colonization four days after infection 9 12.29 gnf09.010.169, rs13480073,
mCV24962297

13.23–25.69

Difference in colonization between day two and one after infection 13 12.05 rs6209128 and rs3023086 52.86–53.52

Difference in colonization between day three and one after infection 7 13.36 rs6206014 47.86

18 11.98 rs3718618 and rs3669949 69.37–69.9

19 12.99 rs13483513, gnf19.005.316,
rs4232041 and rs4232042

3.41–10.15

Difference in colonization between day four and one after infection 5 12.86 rs13478413 and rs3688859 98.23–100.05

17 11.6 rs13483110 76.56

Difference in colonization between day three and two after infection 4 15.52 rs3719891–rs6358921 140.88–150.45

10 12.04 rs13459120, rs13480580 35.75–36.17

15 12.02 rs4230714–rs3701428 44.2–55.00

Difference in colonization between day four and two after infection 1 11.66 rs13475818 and UT_1_38.719268 38.07

15 11.28 rs3717268 and rs13482709 90.7–91.5

X 16.64 rs13483746, rs13483748 and
rs13483736

44.68–48.08

Difference in colonization between day four and three after infection 12 11.17 rs13481566–rs13481579 85.87–89.93

Overall strain specific variation in pattern of colonization across BXD
strains (Linear slopes of medians)

17 12.47 rs13483110 76.5

Overall strain specific variation in pattern of colonization across BXD
strains (Polynomial slopes of medians)

X 12.17 rs13483770, gnfX.044.260,
rs13483785, rs13483786

56.48–61.86

aTrait linkage analysis done with 5000 permutation tests
bmm9: NCBI Mouse Build 37
cSignificant quantitative trait locus
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Fig. 4 Haplotype of BXD strains within the region of the QTL on Chr 9. The BXD strains are arranged in order from the lowest to highest
colonization levels one day post-infection. The overall strain distribution pattern is that the D2 haplotype (D, red) is associated with low
colonization, while the B6 haplotype (B, blue) is associated with high colonization. U indicates an unknown genotype

Fig. 5 Selected SNPs from the Chr 9 QTL. The SNPs of the parental and BXD strains are identified at 38 nonsynonymous loci of interest. The
parental strains are shown first and the BXD strains are listed in order from lowest to highest colonization levels one day post-infection. Low
colonization was associated with the D2 haplotype and high colonization was associated with the B6 haplotype. SNP consequence “I”: SNP occurs
within an intron. Haplotype “H”: heterozygous; blank white box: unknown
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Chr 9 in the same region as the significant day one
colonization QTL. In addition, an LRS that approached a
suggestive QTL in the same Chr 9 region was mapped for
colonization levels on day three post infection (data not
shown), and the QTL heatmap for day three colonization
also indicates B haplotype (blue color) dominance
(Additional file 1: Figure S1). It is possible that the

addition of more strains to the panel would strengthen
the suggestive QTLs for colonization on days 3 and 4
post infection, time points for which days the parental
mice also showed a difference in colonization. We
believe that the overlap of multiple QTLs in one
location bolsters the likelihood that this region of Chr
9 is tightly linked to colonization capacity. However, it

Table 2 Candidate genes on Chr 9

Gene symbol Name or description Chr location (GRCm38) Size Identifiers

Cntn5 Contactin 5 9:9660891–10904775 – 1243884 MGI:3042287

Maml2 Mastermind like 2 (Drosophila) 9:13619990–13709388 + 89398 MGI:2389460

Sesn3 sestrin 3 9:14276301–14326138 + 49837 MGI:1922997

Amotl1 Angiomotin-like 1 9:14541966–14615483 – 73517 MGI:1922973

Mre11a Meiotic recombination 11 homolog A (S. cerevisiae) 9:14784654–14837123 + 52469 MGI:1100512

Panx1 Pannexin 1 9:15005161–15045478 – 40317 MGI:1860055

4931406C07Rik RIKEN cDNA 4931406C07 gene 9:15283337–15306448 – 23111 MGI:1918234

Taf1d TATA box binding protein (Tbp)-associated
factor, RNA polymerase I, D

9:15306214–15312104 + 5890 MGI:1922566

Ccdc67 coiled-coil domain containing 67 9:15559864–15627914 – 68050 MGI:2443026

4930540M03Rik RIKEN cDNA 4930540 M03 gene 9:15619857–15641220 + 21363 MGI:1925275

Fat3 FAT tumor suppressor homolog 3 (Drosophila) 9:15910205–16378231 – 468026 MGI:2444314

Naalad2 N-acetylated alpha-linked acidic dipeptidase 2 9:18321951–18402995 – 81044 MGI:1919810

Olfr39 Olfactory receptor 39 9:20282351–20286648 + 4297 MGI:1313142

Olfm2 Olfactomedin 2 9:20667986–20728219 – 60233 MGI:3045350

Col5a3 Collagen, type V, alpha 3 9:20770050–20815067 – 45017 MGI:1858212

Dnmt1 DNA methyltransferase (cytosine-5) 1 9:20907206–20959888 – 52682 MGI:94912

Pde4a Phosphodiesterase 4A, cAMP specific 9:21165714–21213248 + 47534 MGI:99558

Ilf3 Interleukin enhancer binding factor 3 9:21368019–21405361 + 37342 MGI:1339973

Carm1 Coactivator-associated arginine methyltransferase 1 9:21546894–21589487 + 42593 MGI:1913208

Dock6 Dedicator of cytokinesis 6 9:21800184–21852635 – 52451 MGI:1914789

Gm6484 Predicted gene 6484 9:21835510–21837346 + 1836 MGI:3643534

Zfp599 Zinc finger protein 599 9:22247430–22259895 – 12465 MGI:2679006

Zfp810 Zinc finger protein 810 9:22276748–22307638 – 30890 MGI:2384563

Bbs9 Bardet-Biedl syndrome 9 (human) 9:22475715–22888280 + 412565 MGI:2442833

Bmper BMP-binding endothelial regulator 9:23223076–23485202 + 262126 MGI:1920480

Npsr1 Neuropeptide S receptor 1 9:24097996–24316398 + 218402 MGI:2441738

Dpy19l1 dpy-19-like 1 (C. elegans) 9:24411776–24503140 – 91364 MGI:1915685

Dpy19l2 dpy-19-like 2 (C. elegans) 9:24557048–24696293 – 139245 MGI:2444662

Tbx20 T-box 20 9:24720812–24774303 – 53491 MGI:1888496

Sept7 Septin 7 9:25252439–25308571 + 56132 MGI:1335094

Eepd1 Endonuclease/exonuclease/phosphatase family
domain containing 1

9:25481547–25604110 + 122563 MGI:1914734

Gm1110 Predicted gene 1110 9:26879567–26923081 – 43514 MGI:2685956

Acad8 Acyl-Coenzyme A dehydrogenase family, member 8 9:26974135–26999566 – 25431 MGI:1914198

Ncapd3 Non-SMC condensin II complex, subunit D3 9:27030175–27095311 + 65136 MGI:2142989

Opcml Opioid binding protein/cell adhesion molecule-like 9:27790775–28925410 + 1134635 MGI:97397

Ntm Neurotrimin 9:28994750–29963141 – 968391 MGI:2446259
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is possible that different host factors are responsible
for variations in colonization on day one compared to
colonization persistence as measured on days 2 and 4.
The additional suggestive QTLs identified in Table 1
linked to multiple traits illustrate the complexity of
host genetic factors that respond to the presence of a
bacterial pathogen. The QTLs associated with the differ-
ences in colonization between the days after infection are
likely related to colonization persistence. That multiple
QTLs on different Chrs are implicated in the persistence
phenotype suggests that genes located across QTLs may
be connected through similar pathways. This is especially
evident by the three suggestive QTLs linked to the
difference in colonization between day 3 and day 1
on Chrs 7, 18, 19.
Haplotype analysis in the region of Chr 9 that contains

the significant QTL revealed that the D allele is associated
with low colonization levels of BXD strains, a finding that
contrasts with the colonization data from the parental
strains in which the D allele was associated with high,
sustained colonization. When there is such a reversal of
SDP the QTL is referred to as a “cryptic” QTL, and is likely
a reflection of the fact that the BXD panel was derived from
the F2 progeny of the initial D2 x B6 cross [48]. It may be
that the D2 have other factors that allow high colonization
levels that mask the cryptic QTL on Chr 9. Future studies
to test that latter hypothesis would determine the
colonization levels of additional BXD strains that are “D” at
the Chr 9 QTL to try to map a host factor(s) that allows
high colonization in DBA but not the progeny.
We focused our QTL analysis on the significant QTL on

proximal Chr 9. The QTL is located in a chromosomal

region with limited SNPs. We chose the 36 candidate genes
based on the highest number of polymorphisms, because
such polymorphisms are more likely to be responsible for
the QTL. We used Chilibot to compare scientific literature
that included one or more of the 36 genes and key words
associated with STEC colonization in the colon. Fig. 6
represents the final interconnectivity plot of the five genes
most likely to be linked to the QTL: Acad8; Bmper; Pdea;
Panx1; Dnmt1. All five of the genes selected are expressed
in the colon of humans and mice. Acad8 is a member of
the acyl-Coenzyme A dehydrogenase family and necessary
for butyrate oxidation [49]. Butyrate, a short chain fatty
acid, is an important source of energy for colonic
enterocytes [50, 51] and helps to maintain intestinal
epithelial cell physiology [52]. Defects in butyrate
oxidation are linked to mucosal inflammation and
ulcerative colitis [53]. Additionally, butyrate increases
STEC adherence to CaCo2 cells [54] and increases the
concentration of the Stx receptor, Gb3, on intestinal
epithelial cells [55]. Polymorphisms of Acad8 may
drive the QTL on Chr 9 by affecting the health of
colonic enterocytes, which in turn promote or inhibit
colonization.
Bmper, Pde4a, Panx1, and Dnmt1 are four genes that

modulate inflammation of colonic enterocytes. Bmper
is a BMP-binding endothelial regulator [49]. It limits
endothelial inflammation by inhibiting expression of
intercellular adhesion molecule 1 (ICAM1) [56, 57] and
by regulating leukocyte extravasation and adhesion
[58]. Pde4a is a cAMP-specific phosphodiesterase 4A that
participates in multiple signal transduction pathways, such
as platelet aggregation and immune cell activation [49].
Use of Pde4a-specific inhibitors has anti-inflammatory
effects, such as reduced neutrophil adhesion [59] and
inhibition of cellular trafficking and microvascular leakage
[60]. Additionally, Pde4 inhibitors have been proposed to
prevent STEC-mediated brain damage [61]. Panx1 is part
of the innexin family, and as such a structural component
of gap junctions [49] Panx1 is responsible for the release
of ATP to the extracellular space, which can initiate cellu-
lar migration and inflammation [62]. Additionally, ATP re-
lease can modulate mucus secretion [63] which may
impact colonization. Dnmt1 is a DNA methyltransferase
responsible for the establishment and regulation of tissue
specific methylated cytosine residues [49]. Since Dnmt1
activity affects global methylation patterns, variation in
expression can change epithelial cell morphology [64].
Finally, Dnmt1 levels are elevated in response to UPEC
infection [65]. Variation of inflammation levels could affect
initial colonization, while the effect on leukocyte transit
could impact colonization persistence. Further studies are
needed to confirm or refute the actual involvement of one
or more of the identified genes. The long term goal of this
project is to correlate the genes identified within the

Fig. 6 Gene interaction analysis of the five genes predicted to be
responsible for the Chr 9 QTL. The final 4 key words (STEC; colonization;
colon; mucus) and the interactions between and among the five genes
predicted to be important for the QTL: Acad8; Bmper; Pde4a; Panx1;
Dnmt1. Circles indicate an interactive relationship while diamonds
indicate that a co-occurrence was found. A green line indicates a
stimulative relationship; a red line signifies an inhibitory relationship; a
yellow line shows both stimulative and inhibitory relationships; and a
grey line denotes a neutral relationship. The Chilibot search was
conducted on April 9, 2015. There were nine search terms and 55
searches were conducted. A total of 2364 PubMed records were
searched with 239 (10.1 %) records processed and 20 links were found
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murine QTL(s) with human host factor(s) responsible for
the variable disease states observed during STEC O157:H7
outbreaks.

Conclusions
We identified a QTL associated with colonization 1
day post-infection by O157:H7 on murine Chr 9. The
identification of this QTL suggests that host genetics
affect STEC O157:H7 colonization levels in mice

Additional files

Additional file 1: Figure S1. Colonization levels of 14 BXD strains tested
from JAX and UC. The individual colonization levels of mice from the 14
BXD strains that were tested from both JAX and UC are depicted. Mice from
JAX are shown as red squares and mice from UC are shown as black circles.
The colonization levels from both sources overlap, which supports the
finding that there was no difference in colonization level depending on the
source of the mice, Additional file 2: Table S1. (TIFF 320 kb)

Additional file 2: Table S1. Analysis of variance for mean colonization
day 1. (XLSX 40 kb)

Additional file 3: Figure S2. Heat map of all mapped traits across the
murine genome. The QTL heat map for all members of the cluster tree,
from mouse Chr 1 to distal Chr X. The more intense colors mark
chromosomal regions with comparatively high linkage statistics and the
spectrum encodes the allelic effect. Each individually colored line in the
vertical column indicates the genome-wide p value computed on the
basis of 5000 permutations (significant p values are indicated by colors at
the right end of the spectrum). (TIFF 258 kb)
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