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Abstract

Background: Gene expression profiling using high-throughput screening (HTS) technologies allows clinical
researchers to find prognosis gene signatures that could better discriminate between different phenotypes and serve
as potential biological markers in disease diagnoses. In recent years, many feature selection methods have been
devised for finding such discriminative genes, and more recently information theoretic filters have also been
introduced for capturing feature-to-class relevance and feature-to-feature correlations in microarray-based
classification.

Methods: In this paper, we present and fully formulate a new multivariate filter, iRDA, for the discovery of HTS
gene-expression candidate genes. The filter constitutes a four-step framework and includes feature relevance, feature
redundancy, and feature interdependence in the context of feature-pairs. The method is based upon approximate
Markov blankets, information theory, several heuristic search strategies with forward, backward and insertion phases,
and the method is aiming at higher order gene interactions.

Results: To show the strengths of iRDA, three performance measures, two evaluation schemes, two stability index
sets, and the gene set enrichment analysis (GSEA) are all employed in our experimental studies. Its effectiveness has
been validated by using seven well-known cancer gene-expression benchmarks and four other disease experiments,
including a comparison to three popular information theoretic filters. In terms of classification performance, candidate
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genes selected by iRDA perform better than the sets discovered by the other three filters. Two stability measures
indicate that iRDA is the most robust with the least variance. GSEA shows that iRDA produces more statistically
enriched gene sets on five out of the six benchmark datasets.

Conclusions: Through the classification performance, the stability performance, and the enrichment analysis, iRDA is
a promising filter to find predictive, stable, and enriched gene-expression candidate genes.
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Background

Prognosis gene signatures for the discovery of biologi-
cal markers in carcinogenesis studies and the diagnosis
of diseases is one of the essential areas in biomedical
research. High-throughput screening technologies (HTS),
such as microarrays, are able to examine more than a
hundred thousand of oligonucleotide probes in parallel,
which allows the interrogation of thousands of mRNA
transcripts in a single experiment. To date, transcriptome
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analysis using HTS gene expression profiling has become
a useful approach that can provide a stronger predictive
power of clinical changes than the diagnostic testing pro-
cedures used in pathology [1, 2]. Out of thousands of
interrogated transcripts in the cell of interest, a small sub-
set of genes is assumed to be differentially expressed and
is subject to change [3]. The exploration of differentially
expressed genes that contribute to a better prediction can
be referred to as feature selection.

Feature selection is a technique of reducing the feature
dimension of sample instances, where a subset of features
is selected without creating new features from the original
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form of the features. This technique is widely used in data
mining, machine learning and pattern recognition, and
has also been applied to the field of bioinformatics [4].
Known to be an NP-complete problem [5], feature subset
selection not only finds a subset of relevant features for the
use of a model construction but also looks into the mini-
mal subset that optimises the best predictive model. This
is actually based on the principle of parsimony [6], i.e.,
seeking a model that has as few as possible variables to fit
the data sufficiently. Gene expression microarray exper-
iments are often affected by noise that is caused by the
experimental design of the underlying microarray tech-
nique, the stages of sample preparation, and the hybridi-
sation processes of oligonucleotide probes [7]. Several
statistical and computational methods have been intro-
duced to cope with the probe level data in recent years
[8-11]. Besides the unavoidable technical noise, a typi-
cal scenario in the context of discovering gene-expression
candidate genes is that there are many thousands of genes
to be interrogated, but only tens to a hundred of clini-
cal samples are available [12]. The curse of dimensionality
makes the process of selecting relevant genes even more
challenging.

Filter, wrapper, and embedded methods are the three
main types of feature selection techniques, where the tax-
onomy is based on the degree of interaction within a
classification method [4]. A filter, being either univari-
ate or multivariate, does not use a classifier within its
selection scheme and takes only the intrinsic characteris-
tics of sample instances into account in order to quantify
the association between features and phenotypes. SAM
[13] and LIMMA [14] are two examples of univariate fil-
ters in the domain of individual selections of differentially
expressed genes, based on random permutations (non-
parametric) and ¢-statistics (parametric), respectively. On
the other hand, a multivariate filter, such as CFS [15, 16],
considers feature interactions and therefore does not eval-
uate features independently, which is sometimes referred
to as space search methods [17]. A wrapper (determin-
istic or randomised) measures the predictive power of
a feature subset by using a classification model which a
repetitive selection scheme is wrapped around [18, 19].
Due to small sample sizes and an abundance of features,
a wrapper is usually prone to overfitting and computa-
tionally expensive in spite of the benefit of its multivariate
nature. While sequential search (backward, forward, float-
ing, or best-first) is deterministic [20], simulated anneal-
ing and genetic algorithms can be regarded as classical
randomised search methods [21-23]. Search procedures
embedded into a given learning algorithm where features
are ranked or weighted in the context of a classification
task are called embedded methods. Popular embedded
methods are SVM-RFE-like [24—27] and Random-Forest
[28, 29]. Both methods interact well with classifiers, are
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of multivariate nature, and require less computational
time compared to a wrapper. Nowadays robustness or
stability of feature selection are one of the major issues.
Several techniques [30-32] have been devised for mak-
ing feature selection more stable for biomarker repro-
ducibility. Of particular interest is the ensemble approach
[30]. The approach uses a sampling technique to gen-
erate numerous different selectors and combines the
components into a consensus ranking list. With regard
to the stability of feature selection, we refer the reader
to [33-35].

Recently, feature selection methods using informa-
tion theory have been devised for feature-to-class rel-
evance and feature-to-feature correlations, including a
probabilistic interpretation based upon the conditional
likelihood maximisation in order to unify information the-
oretic feature selection [36]. We consider in more detail
three information theory-based multivariate filters that
exemplify an approximation of higher order gene inter-
actions and aim at the selection of a gene subset. The
methods are compared to a new gene-expression can-
didate gene filter proposed in the present paper. The
first method is called the minimum-Redundancy and
Maximum-Relevance framework (mRMR). It uses mutual
information to manage the tradeoff between the deduc-
tion from redundant features and the gain from rele-
vant features [37]. The Conditional Mutual Information
Maximization (CMIM) method utilises the so-called
minimum operator of conditional mutual information
for the evaluation of relevant features that are condi-
tioned on the selected feature subset by using only pair-
wise feature statistics [38]. Whereas mRMR and CMIM
introduce evaluation criteria, the Fast Correlation-Based
Filter (FCBF) uses symmetrical uncertainty and designs
an efficient backward elimination scheme for the removal
of irrelevant and redundant features [39]. The three fil-
ters all consider feature relevance and feature redun-
dancy, but they still neglect feature interdependence in
favour of moderate computational complexity. Despite the
lesser relevance of neglected features, they could, how-
ever, exhibit a strong discrimination when combined with
other features and might reveal interactions within a set of
candidate genes.

In this paper, we present and fully formulate a new
multivariate filter, iRDA, designed for the exploration of
cancer-related candidate genes under a HTS gene expres-
sion profiling experiment. The filter is based on infor-
mation theory, approximate Markov blankets, and several
heuristic search strategies. Being a four-step framework,
iRDA takes into account a number of feature proper-
ties that include feature relevance, feature redundancy,
and feature interdependence in the context of feature-
pairs. The iRDA filter is a data-driven approach that
does not employ a priori biological information and the
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filter can properly tackle interdependent features through
the subtle design of the underlying algorithmic proce-
dures. Additionally, the filter produces a small number of
discriminative genes for improved phenotype prediction,
which is advantageous for the domain user since a small
number of candidate genes supports greater efficiency of
in vitro validation. To demonstrate the strengths of iRDA,
three performance measures, two evaluation schemes,
two sets of stability measures, and the gene set enrich-
ment analysis (GSEA) have all been used in our experi-
ments. Its effectiveness has been validated by using eleven
gene expression profiling data (seven well-known can-
cer benchmarks and four different disease experiments).
The experimental results show that iRDA is stable and
able to discover gene-expression candidate genes that are
statistically significant enriched and constitute high-level
predictive models.

Preliminaries

Domain description

In this section, the domain of HTS gene selection for
phenotype prediction is briefly described. Given a gene
expression dataset D = {X € R”,Y € R} = {(x;,y)}_q,
where D consists of n samples X labeled by a class vec-
tor Y (Fig. 1b), and each sample is profiled over m gene
expressions, i.e. x; = {(%i1,- -+, %im)}/1, m > n (Fig. 1a).
The task is to find a small number of discriminating genes
(from tens to a hundred) (Fig. 1c) for clinical classifica-
tion to be validated experimentally and to identify a gene
signature for a specific disease. To address the issue of
HTS-based gene signatures, one can refer to the task as
a feature selection problem. Let F be a full set of fea-
tures (genes) F = {f;}72,, then feature selection aims at
choosing a feature subset G C F that maximizes the pre-
diction performance; moreover, if one tries to minimise G,
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Information theory basics

Entropy is the rationale behind information theory and is
an intuitive measure to evaluate the uncertainty of a ran-
dom variable. Given a variable, the entropy is computed at
the level of probability distributions [40]. Let X be a nom-
inal random variable, then the Shannon entropy is defined
as

HX) = =) p@) logpw), (1)

where the x denote the values of the random variable
X, and p(x) is the marginal probability distribution of X.
Unlike conventional statistics, an entropy-based measure
does not make any a priori assumptions. This differs, for
instance, from the student’s t-test, where the values have
to be normally distributed. Further information quantities
can be defined through applying probability theory to the
notion of entropy. The conditional entropy of X given'Y is
represented as

HX|Y) = =) p() Y p(xly) log p(xly), )

where p(x|y) is the conditional probability of X given the
observed values of Y. This quantity evaluates how much
uncertainty of X is left given that the value of another ran-
dom variable Y is known. Similarly, the joint entropy of
two random variables X and Y is denoted by

HX,Y) = =) " p(x,y) log p(x,y), (3)

where p(x,y) is the joint probability distribution of X
and Y. It quantifies the amount of information needed
to describe the outcome of two jointly distributed ran-
dom variables. Another important information theoretic
measure, mutual information, quantifies the amount of
information shared by two random variables X and Y. The
quantity can be defined according to

a parsimonious subset is sought for. MI(X,Y) = H(X) — H(X]Y). (4)
(a) (b)
Genel Gene2 Gene3 - Genem-1 Genem Class
Sample1 2036.28 2253.36 2490.87 - 1015.91 1459.10 1
Sample2 1618.65 1066.84 1006.21 ---- 853.443 734.529 -1
Sample 3 1597.28 1144.69 1139.63 - 792.214 1133.24 1
Samble n-1 4143.38 7256.52 7761.75 2472.23 4906.45 -1
Samplen 2863.18 3036.59 3695.51 - 1533.80 3030.32 1

(c) {Gene 2, Gene 4, Gene 18, Gene 33, Gene 60}

Fig. 1 Cancer classification using high-throughput screening technologies. a An example of gene expression profiling data. The experimental
dataset contains n samples and each sample has m interrogated genes (m > n). b The extracted samples of an experiment are labeled according to
their phenotypes or different types of cell lines. Both a gene expression matrix and a class vector form the input of gene selection for cancer
classification. € A subset G of significant genes is obtained as an output for a certain cancer classification, which is a so-called gene signature
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The measure is symmetric and non-negative, and if the
value equals zero, then the two variables are statistically
independent. The mutual information of X and Y can
also be conditioned on a variable Z as conditional mutual
information, which is defined by

CMI(X,Y|Z) = H(X|Z) — HX|Y,Z). (5)

The quantity measures the information amount shared
between X and Y, if Z is known. Finally, we introduce
symmetrical uncertainty, a measure that will be heav-
ily utilized in our gene selection framework throughout
the paper. The measure can be viewed as one type of
normalised mutual information and is defined as

HX) - H(XIY)}

- ©)
(X) +H(Y)

SUxy =2 |:

Similar to the joint entropy, the joint symmetrical uncer-
tainty can be defined as

H(Xy, X3) — H(X1,X2|Y)]

I (7)
(X1, X2) + H(Y)

SUX, X5y = 2 |:

Feature relevance

Feature subset selection is to find a subset of the origi-
nal features of a dataset such that a classifier generates
the highest accuracy of classification upon the reduced
data that only contains the selected features. Kohavi and
John (hereafter KJ) [41] addressed the issue of finding a
good feature subset and its relation to which features shall
be included by partitioning features into three types of
strong relevance, weak relevance, and irrelevance. Given
a class variable C, a set of features F, a feature f; € F,
and F; = F\f;, the KJ feature types are defined by the
conditional probability below.

Definition 1. KJ-Strong Relevance.
A feature variable f; is strongly relevant iff there exists an
assignment of values ¢, f;, F; for which

p(c=dfi=fuki=F)#p(c=aFi=f) ®
or

p(Clfi, Fi) # p(C|F;) for short. )

Definition 2. KJ-Weak Relevance.
A feature f; is weakly relevant iff

p(CIf, F)) = p(CIF;) and 3F; C F;

/ , (10)
such that p (C|fi,Fi> £p (C|F,.) .
Definition 3. KJ-Irrelevance.
A feature f; is irrelevant iff
VE, C F,p (Clﬁ,F;) =p (C|F£) . (11)
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Kohavi and John used the above theoretical representa-
tions to claim that two degrees of feature relevance (strong
and weak) are required in terms of an optimal classifier.
The removal of a strongly relevant feature will result in
performance deterioration of the classifier. For a weakly
relevant feature f;, there exists a subset of features, F;, such
that the performance of the classifier running on F; is
worse than the performance on F] with the inclusion of f;.
The loss of discriminative power is reflected by the sym-
bol # in the K] representation [41]. In short, the strongly
relevant feature is indispensable in the KJ sense and can-
not be removed without loss of prediction accuracy, while
a weakly relevant feature can sometimes contribute to
classification performance.

Similar to KJ definitions, we can define a strongly rele-
vant feature-pair f; given two jointly distributed random
variables f; and f; (or f;).

Definition 4. KJ-Strongly Relevant Feature-pair.
A feature-pair f;; is strongly relevant iff
p (Clfij, Fy) # p (CIFy). (12)
where Fj; denotes the feature set F excluding f; and f; at the
same time.

A feature-pair is referred to as a united-individual and
must be selected together during the process of selection.
The strong relevance of a feature-pair will be the basis for
the framework presented in our paper for finding HTS
gene-expression candidate genes.

KJ-relevance, correlation, and discretization

Kohavi and John proposed two families of feature rel-
evance (strong and weak) and claimed that a classifier
should be taken into account when selecting relevant
features. Therefore, Kohavi and John used a wrapper
approach to investigate feature relevance by an optimal
classifier in practical selection scenarios, such that the
prediction accuracy of the classifier was estimated using
an accuracy estimation technique [41]. On the other hand,
correlation is widely used in filter-based feature selection
for relevance analysis [15, 39] with the use of a correlation
measure. A correlation-based filter employs the following
assumption: if a feature variable (f;) is highly correlated
with a class variable (C), then the case of strong rele-
vance is expected [15]. A higher correlation value implies
a stronger feature relevance.

There are various measures for the correlation between
two random variables. A typical correlation measure is
Relief - it assigns a relevant weight to each feature that
represents the relevance of the feature variable to the
class variable [42]; the measure has been used in CFS
[15]. Other popular correlation measures are based on
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the notion of entropy in the context of feature selec-
tion filters [36], which is mainly used in this paper and
requires the continuous gene expression data need to be
discretized for the calculation of entropy-based quanti-
ties. Here, we discretize continuous features using the
scheme presented in [36, 37]. Given the mean (u) and
standard deviation (o) of expression data for a gene across
all I, any values smaller than i — o/2 are substituted by
1; any values between ; — 0/2 and u + o/2 are replaced
by 3; any values larger than p + /2 are transformed to
5. Like other correlation-based filters, a measure to quan-
tify the correlation between two random variables needs
to be defined. In the present framework, this measure
is called R-Correlation and we propose four types of R-
Correlation, where each type applied to a different stage
of our four-step selector of candidate genes.

Definition 5. R-Correlation.
The four types of correlation are:

(a) R1-Correlation expresses the correlation between
the feature f; and the class C, denoted by R ( fi, C) ;
(b) R2-Correlation expresses the correlation between
the feature-pair f;; and the class C, denoted by

R (f;,C);

(c) R3-Correlation expresses the correlation between
the feature f; and the feature fj, denoted by R ( f;, fj);
(d) R4-Correlation expresses the correlation between
the feature f; and the class C given a seed feature set
M;, denoted by R (f;, C|Mj).

Here, R(X,Y) measures the degree of correlation
between X and Y (Definition 5(a)-(c)), and R(X,Y|Z)
quantifies their correlation conditioned on an additional
variable Z (Definition 5(d)). Based on the generic defini-
tion, a number of suitable correlation measures - either
linear or nonlinear - can therefore be applied to our frame-
work. In the present paper, we choose the information-
theoretic measures of Shannon entropy to calculate the
four types of R-Correlation (based upon the above men-
tioned discretized data). The correlation measures are
SUx,y, SUx,,x,;v, and CMI(X, Y|Z); defined in Egs. 6, 7,
and 5. The details of how the correlations are calculated
and where the four types of R-Correlation are applied are
shown in Table 1.

R ( fi> C) (R1-Correlation) is used to establish the struc-
ture of “Relevance-based K-Partition” ({2;}), which is
being introduced in Definition 9. We also use the R1-
Correlation for arranging the order of features that form
a seed feature set M; (Definition 11) and to aggre-
gate candidate genes G from a set of parsimonious sets
ME[u] (Definition 14). The strength of R(f,-j, C) (R2-
Correlation) is utilised for exploring KJ-strongly rele-
vant feature-pairs fj; see Definition 6. To estimate the
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Table 1 The calculation and use of four types of R-Correlation

R-Correlation Calculation Applied in/to

RI:R(f, O) SUjc {94}, M5, G S UM, ()
e-Estimation

R2: R(f, ©) SUjjc Strongly Relevant f;
g-Estimation

R3:R(fi, f) SUj e-Estimation

R4: R(f;, C|Ms) CMI(f;, CIMs) Feature Redundancy

crucial threshold ¢ in Definition 15, R1-, R2-, and R3-
Correlations (R (f,,ﬁ)) are required. Finally, R (ﬁ, C|MS)
(R4-Correlation) is employed as a conditional indepen-
dence test for identifying redundant features with respect
to a subset of features (Corollary 1).

Methods

Notions and fundamental principles

We introduce a number of fundamental concepts that
constitute a filter for high-throughput screening gene
selection. In our previous study [43], we have found that
feature-pairs would play more important roles than indi-
vidual features in the context of discovering candidate
genes for cancer classification via a “Ratio by Correlation”
plot. By utilising a suitable correlation measure, in general,
a feature-pair variable (fj) can be highly correlated with
a class variable C if compared to a single feature variable
(f7) [43]. Also, feature-pairs having high correlation values
are combinations of different types of features in the con-
text of strong and weak correlations; that is, it could be a
pair of strongly correlated features; a strongly correlated
feature & a weakly correlated feature; or a pair of a weakly
correlated features. Thus, while searching for strongly rel-
evant feature-pairs, not only strongly relevant features can
be selected, but also putative weakly relevant features can
be included, i.e., features of weak relevance are sometimes
able to contribute to the classification performance when
combined with other features. Consequently, a feature-
pair could have more potential than a single feature when
dealing with feature interdependency that takes gene syn-
ergy into account. This leads to the following criteria for
finding potential feature-pairs, assuming that the more
likely a feature-pair f;; correlates with a class variable C,
the more likely it is KJ-strongly relevant.

Definition 6. KJ-Strongly Relevant Feature-pairs.
For a fixed threshold & > 0, a feature-pair fj; is considered
to be (e-)KJ-strongly relevant iff

R(f,j, C) > &. (13)

Within our framework, we apply the concept of a
Markov blanket in order to be able to identify mini-
mal subsets of discriminative features resulting from the
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exploration of KJ-strongly relevant feature-pairs by using
the measures of R2-correlation. The concept of Markov
blankets was introduced in [44] and was incorporated
into optimal feature selection by Koller and Sahami [45],
with the assumption that the Markov blanket MB of a
target variable C is independent of any f; € F\MB;
the FCBF method [39] extended the approach from [45]
to efficiently remove redundant features, based on the
search for an approximate Markov blanket. Additionally,
Tsamardinos and Aliferis [46] considered the connection
between KJ-relevance and the Markov blanket of a target
variable in a Bayesian Network faithful to some data dis-
tribution, which aims at building the minimal subset of
features according to the following definition:

Definition 7. Markov Blanket.
A Markov blanket, MB, is a minimal set of features such
that Vf; € F\MB,

p(Cf), MB) = p(C|MB). (14)

Tsamardinos and Aliferis [46] showed that the blan-
ket is unique and that it also coincides with the case
of KJ-strongly relevant features under the assumption of
“faithfulness” (see Definition 13 in [46]), which can be
summarised in the following theorem (see Theorem 5 in
[46] along with the proof).

Theorem 1. In a faithful BN, a feature f; € F is KJ-
strongly relevant if and only if f; € MB.

Since we focus on feature-pairs, we extend the notion of
Markov blankets accordingly:

Definition 8. Markov Blanket for Feature-pairs.
A Markov blanket for feature pairs, pr, is a minimal set
of feature-pairs such that Vf;; € F \Mg,

p(ClfjMgy) = p(CIMgy). (15)

Assumption. f; € Mg;, iff fjj is KJ-strongly relevant.

Typically, there is a huge number of interrogated genes
in high-throughput gene expression profiling. Therefore,
finding an exact Markov blanket appears to be impracti-
cal. Similar to the strategy proposed in [39] regarding the
FCBF method, we aim at finding an approximate Markov
blanket for the problem of discriminative gene discovery.
High-throughput gene expression profiling returns only a
relatively small number of differentially expressed genes,
and the correlation values between a feature variable and
a class variable are exponentially distributed. Thus, we
propose the K-partition of the feature (gene) space with
regard to relevance, which is a key component of our
framework.
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Definition 9. Relevance-based K-Partition.
Given a feature space F and {Qk}le, where Q; =

{fik|i: 1 ,|Qk|}.lf

@ V1=i<|LR(C)=R(fAuC)s  (6)

b) Let Q; be the mean of R ( £, C) in 4,

() Let & i (ﬁ~ )ine
then V1 <i < K, Qx > Qp41;

¢ QN = ¢ and

(© k+1 (18)

F=QUQU-- Uk,

then {Qk}f:1 is called a relevance-based K-partition of F.
Note that the symbol | - - - | represents the cardinality of a
set.

The proposed partition orders features with regard to
the relevance of a class variable within a partition and
between partitions. Features in the same partition can
be viewed as having a similar scale of relevance, while
features from two remote partitions do belong to two
distinct feature types. For example, if we assume that
strongly/weakly relevant features are in Qi,...,Qx_1,
then Qk can be regarded as the collection of irrelevant
features. With the relevance-based K-partition, we are
now able to define a seed feature that can provide informa-
tion about multivariate feature-to-feature relationships.

Definition 10. Seed Feature.
A feature f; is a seed feature if Vf; € F\Qx, f; are (s-)KJ-
strongly relevant feature-pairs, where distinct features f;
are all coupled to the same feature f;.

For any strongly relevant feature-pair, if the coupled
feature is identical, then the other features are depen-
dent on the seed feature and might have interdependence
among them to some extent in terms of biological inter-
action. Consequently, seed feature sets are defined for
constructing putative Markov blankets.

Definition 11. Seed Feature Set.
For a given ¢ > 0, we consider all feature-pairs f;; with
seed feature f; that are ¢-KJ-strongly relevant according to
Definition 6. A seed feature set, M, is then a set of features
led by f; that has an underlying order of features w.r.t. their
R1-Correlation:

M = {fy} = {ffIR(f C) = R (fi+1,C)} -

Here, /f; : f denotes that the first element in Mj is f;
followed by its coupled features f;.

(19)

Thus, a seed feature set consists of features based on
(e-)KJ-strongly relevant feature-pairs that have the same
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seed (leading) feature f;. We note that when the seed fea-
ture set is formed, feature-pairs f;; are decoupled; that is,
M is the collection of single features with an underly-
ing order according to R (f, C). Furthermore, R (fs, C) >
R(f;,C) is not necessarily true, but, by definition, it is
part of all e-KJ-strongly relevant feature pairs f;. Thus,
no matter how strong/weak R ( /5> C) is, f; is still consid-
ered as the first element in M. Hence, M is called a set
of features led by f;. We emphasise that Definition 11 uses
the R2-correlation for strongly relevant feature-pairs as in
Definition 6 with the same coupled feature f;, but the R1-
correlation determines the underlying order within M.
The set allows us to look at feature-feature relationships
beyond low-order interaction, which leads to the notion
of redundant features with respect to a seed feature set.

Definition 12. Redundant Feature.
A feature f; € M; is redundant iff f; is irrelevant with
respect to {Ms\ﬁ}, ie,

P(Clfi M\ ) = p(CIM\ f). (20)

Although it seems that every feature within a set led
by a seed feature is of relevance (strong or weak), in fact
some features may not increase the predictive power with
respect to the set. These features are then redundant and
should be removed from the set. Therefore, given a seed
feature set, we need another measure (i.e. R4-Correlation)
to assess feature redundancy w.rt. M. In the present
framework, we use conditional mutual information to cal-
culate how strongly a feature variable is correlated with
a class variable conditioned on M; so that the redun-
dant features can be identified, according to the following
corollary.

Corollary 1. Criteria for Redundancy.
fi € M; is redundant iff

CMI(f,, CIM;\f;) = 0. (21)

Proof. Conditional mutual information can be
expressed as the Kullback-Leibler Divergence (Dky), i.e.,
CMIX,Y|Z) = Dxi(pX,Y|2)|lpX|Z2)p(Y1Z2)) = O.
CMI(X, Y|Z) is equal to zero iff p(x,y|z) = pxlz)p (y|z)
for some assignment of values x,y,z. Since p(x,y|z)
= px|lz)p(ylx,z), we have p(ylx,z) = p(y|z), which
implies p(C| f;, M;\ f;) = p(C|M;\ f;). In terms of Eq. (20),
this means that f; is redundant. O

After the removal of redundant features related to the
seed feature set, one can eventually build a parsimonious
set of features.
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Definition 13. Parsimony Model.
ME is called a parsimony model iff ¥f; € M;, f; is not
redundant within M, which implies MY = M.

A parsimony model is, therefore, a heuristic approxima-
tion of the Markov blanket where the existence of least
feature redundancy is admitted. Initially, strongly relevant
feature-pairs with the same seed feature are discovered for
a putative blanket M; in a forward phase. Out of these
coupled features, some features could become false pos-
itives from a multivariate point of view. An approximate
Markov blanket can then be created if these false posi-
tives are identified and eliminated from M;. Once multiple
parsimony models are built, a set of candidate genes for
high-throughput gene expression profiles can be selected.

Definition 14. Candidate Genes.
A set G of features with G € U,ME[u] is called a set
of candidate genes such that V M%[u] & ME[u + 1],

R(f C) > R(f**1,C).

As our original intention is to select gene-expression
candidate genes from gene synergy, the parsimony model
would not always be the best way to find a suitable size
of a gene signature that not only would have good predic-
tive power but also could reveal highly likely regulators or
markers regarding a certain disease.

The new filter

A complete framework for finding high-throughput
gene-expression candidate genes is presented through
Algorithm 1. The filter is named iRDA, an abbreviation
for gene selection derived from interdependence with
Redundant-Dependent analysis and Aggregation scheme.
The framework is based on information-theoretic mea-
sures, heuristic search strategies, parameter estimation
criteria, a mixture of forward-backward phases, and a
gene aggregation scheme. The rationale for devising such
a framework is to select a set of candidate genes from gene
synergy that could potentially discover genetic regula-
tory modules or disease-related factors. Interdependence
between features is, therefore, a matter of concern.

The proposed gene selection method is a four-step
framework with a vast body of feature-pairs, including a
set of analyses of feature relevance, feature interdepen-
dence, feature redundancy and dependence, and feature
aggregation. The construction of the relevance-based K-
partition is the main objective in the first step. The
discovery of {Q} plays an important role in explor-
ing strongly relevant feature-pairs, finding a parsimony
model, and performing gene aggregation. In our frame-
work, symmetrical uncertainty is used as R-Correlation
in order to quantify the strength of association between
features/feature-pairs and class variables. First of all, for
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Algorithm 1 iRDA (A1)

Given: D = (X e R",C e R} = {(x;, ¢},
F = {f;}" |, and 6: Selection Mode

Parameter: ¢

Find: candidate genes G

RELEVANCE

1 Vf, compute R(f;, C)

2 Sort R(f;, C) into descending order

3 Define the K-partition of F for relevance {§2k}1k<:1
a. Perform k-mean clustering (k = 5) on the sorted

R(f, C) .

b. Label 5 clusters 27 — 5 such that Q7 > - - -

INTERDEPENDENCE

(Refer to Algorithm 2 for forward phase)

4 Generate Seed Feature Sets {M;}

5 Gpre = forward phase(D; {Q}; 0; €)

REDUNDANCY AND DEPENDENCY

(Refer to Algorithm 3 for backward phase)

(Refer to Algorithm 4 for insertion phase)

6  Generate approximate Markov blankets {Mf }

7 Case 6="Greedy’

8 Gi)re = backward phase(D; {Q}; Gpre)

9 Gi;re = insertion phase({}; Gi)re)

10 {Mf} = backward phase(D; {Q}; Gi;re)

11 Case 0="Semi-Greedy’ or ‘Non-Greedy’

12 {M‘;7 } = backward phase(D; {Q}; Gpre)

13 Let Gpost = {MF[u] IR (f*, C) > R(f**1,C)}

AGGREGATION

14 u=1,G=40¢

15 do

16 G=GUM![u]

17 u=u+1

18 while (|G| = |Gpost| or G is defined)

>Qs

each feature f;, SU; . (see Eq. 6) is calculated for estimating
the degree of feature relevance (line A1:1). This is followed
by sorting all of the calculated correlations in descend-
ing order (line Al:2); k-mean clustering is executed on
the sorted list of SU;. in order to partition features into
five groups that are labelled as 21,---,Qs5 in descend-
ing order according to their centroids of SU; . values (line
A1:3). These feature types will be passed onto subsequent
steps of the framework as indicators for the discovery of
seed features, putative parsimony models, and a set of
candidate genes.

The consideration of high-order gene interactions could
have the potential for a road map of feature interdepen-
dence. However, because of the immense complexity of
gene regulatory mechanisms, it would not be a good strat-
egy to infer high-order feature interdependence in a direct
way, since it is impractical to perform exhaustive search
for visiting all feature-pairs if the number of features is
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very large. In large-scale HTS gene expression profiling,
differentially expressed genes are biologically assumed to
be a small portion of the population and the correla-
tion values between a feature variable and a class variable
are exponentially distributed. By using the K-partition
{Q}, we are able to explore potential KJ-strongly relevant
feature-pairs whose R2-Correlation values are beyond a
threshold ¢, which is estimated by the following method
(see Definition 6).

Definition 15. Criteria for & Estimation.
(a) A feature pair f;,fj € {Q}, where f; is ahead of f; in
{2}, is called positive joint feature-pair iff
R(f5C) > R(f, C);R(f,C) > R(finff)-
(b) For given L(= 100) positive joint feature-pairs, ¢ is

defined by the mean of their R2-Correlation:

. _ Xic R ()
)

(22)

(23)

Condition (a) implies that the feature-pair has a joint
effect relative to a class variable that is more significant
than the contribution of each single feature, where the
contribution is still larger than the correlation between the
two features.

In the second step, given a joint random variable of
two features f; and f; (or f;), joint symmetrical uncer-
tainty SU; ;. is used to measure the strength of correlation
between a feature-pair and a class variable. The key idea of
interdependence is to generate seed feature sets by using
forward selection (see line A1:4-5).

In the forward phase (see Algorithm 2), Q5 is assumed
to be a KJ-irrelevant-feature subset, while features with
KJ-strong/weak relevance would exist in the other sub-
sets of the partition. Moreover, if we assume that the
population of €1 consists of predominantly strongly rele-
vant features with a minority of weakly relevant features,
then one feature from 2; in conjunction with other fea-
tures from Q, . .., 24 might constitute feature-pairs (line
A2:1-12) whose joint symmetrical uncertainty values are
greater than the threshold ¢ (line A2:3). A feature-pair f;;
having a strong R2-Correlation according to Definition 6
is added to a subset led by a seed feature f; and/or to a sub-
set led by a seed feature f;. Thus, fj; can lead to two seed
feature sets, M; and M;, respectively. Due to the struc-
ture of the relevance-based K-partition, R(f;, C) is stronger
than R(f;, C). Features with the strongest R1-Correlation,
e.g., f1 and the respective pairs f;, might generate a large
number of M;, each consisting only of a few elements,
which is too complex to be analysed. Moreover, such “frag-
mented seed sets” might generate noisy data and make
gene aggregation extremely demanding. Consequently, we
propose three selection modes (Greedy, Semi-Greedy, and
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Non-Greedy) for the production of probable seed fea-
ture sets. In the “Greedy” strategy, f; will be added to
M; only, and f; is followed by f;. Since f; is a seed fea-
ture, it will be added just once (line A2:4—6). On the other
hand, f; is added to both seed feature sets M; and M;
for the other two selection modes (line A2:7-9). In case
of “Semi-Greedy” selection, we consider the removal of
“fragmented seed sets” that have just two features, f; and
fi, inside. If R(f;, C) is weaker than R(f;, C), the fragment
is removed; otherwise, the fragment would still be viewed
as a candidate M; (line A2:14-19). Eventually, a collec-
tion of non-empty seed feature sets, Gpre, is returned (line
A2:20). In summary, the “Greedy” strategy ignores many
probable seed feature sets, but reduces the level of noise
when genes are aggregated. The “Non-Greedy” selection
is to fully explore the space of potential M, and this is
especially appropriate for a data matrix where only a few
“fragments” are generated. The “Semi-Greedy” strategy
not only allows the presence of some “fragments” (for not
missing out on some true positives), but also takes targets
false positives to be removed.

Algorithm 2 Forward Phase (A2)

Given: D, {Q2},0, ¢
Find: {M}

1 fori=1tosup()
2 forj =i+ 1tosup(Q4)
3 if R(f;,C) > ¢
4 Case § ='Greedy’
5 add fif; to M;, f; followed by f;
6 where f; is a seed and added once only
7 Case 0§ ='Semi-Greedy’ or ‘Non-Greedy’
8 add fif; to M;, f; followed by f; and
f; is added once only
9 add fif; to Mj, f; followed by f; and
f; is added once only
10 end
11  end
12 end

13 VM, € {M;, M}, M = M,

14 Case 0 ='Semi-Greedy’

15 do

16 if [Ms] = 2and R(f;, C) < R(f;, C)
where f;, f; € M;

17 My =90

18 end

19 while (all M have been checked)

20 Return {M;}if Mg £ 0

After a seed feature set has been formed, features are
analysed with respect to redundancy in conjunction with
a given seed features set. Thus, the third step in Algorithm
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1 is to identify and remove redundant features with the
aim of building a parsimonious set of features (see Defini-
tion 13). The analysis of redundancy and dependency will
be carried out using backward elimination. Since there are
three modes of selection in the forward phase, two differ-
ent scenarios are considered in the backward procedure.
Whereas the “Greedy” selection performs two runs of the
backward phase with an insertion phase (line A1:7-10),
the other two go only through the backward phase (line
Al:11-12).

Algorithm 3 shows the details of the backward selec-
tion for generating a parsimony model M (see Defini-
tion 13). Given a collection of subsets Gpre, derived from
interdependent analysis, the conditional mutual informa-
tion CMI(f;, C|M;) (see Eq. 5) of a feature f; and label C
conditioned on a subset M € Gpre is chosen to be the R4-
Correlation (see Definition 5(d)). The Corollary 1 reveals
how to identify whether or not a feature is redundant with
respect to a subst. However, it is inherent to HTS profiling
that the data exhibit small sample sizes. Consequently, it
is to be expected that the CMI-based correlation does not
accurately express the exact joint distribution of features.
Therefore, the redundant-dependent analysis of M; will be
base upon an approximation of backward elimination as
defined below.

Algorithm 3 Backward Phase (A3)

Given: D, {2k}, Gpre
Find: {Mf})

1 for each M; € Gpre do

2 for each f; € M do first seat last check

3 f; is removed instantly if CMI(f;, C|M,\f;) =0
4 M; = 0 if CMI(f;, CIM,\f) = 0

5 end
6

7

8

end
VM| > 1, ME = M;
Return {M?}

Definition 16. Approximate Backward Elimination.
We assume that elements of M are ordered in descend-
ing order according to the selected R1-Correlation (see
Definition 11).

(a) First Seat Last Check: Vf; € M;\f;, the features are
checked for redundancy in ascending order of
R1-Correlation (least R1-value first) using the criteria
of Corollary 1 and f; is checked at last step;

(b) Once f; is removed, f; cannot enter M; again;

(c) If f; is removed, then Mj is discarded.
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According to Definition 11 of a seed feature set, the
front features in the seed feature set are of stronger
relevance, which implies that they are less likely to be
removed when Corollary 1 is applied. Therefore, follow-
ing Definition 16, for any M; € Gpre, we test if the value
of CMI(f;, C|M;\f) is zero for every feature checked as
described above (line A3:2-5). A feature whose CMI-
value is zero will instantly be removed (line A3:3) and the
next feature will be checked until all features from M; have
been tested. If a seed feature is eliminated, the subset M
led by this feature will be discarded (line A3:4); otherwise,
features that remain in the (potentially reduced) subset are
considered to be dependent with regard to the seed fea-
ture. Thus, a subset that is not discarded is defined by at
least two features (line A3:7).

In the forward phase with “Greedy” strategy, a poten-
tial feature-pair f;; is not evenly included into seed feature
sets. For this reason, we design an insertion phase for re-
structuring putative seed feature sets, which is shown in
Algorithm 4. For any f;; € Gi)re generated by the first
round of backward elimination, we add the pair to the seed
feature set led by feature f;, if it is applicable. The move
is motivated as follows: If the existence of f; is in multi-
ple seed feature sets after backward elimination, it might
imply that f; is likely to be a potential feature such that
a seed feature set led by M; might improve the overall
performance.

Algorithm 4 Insertion Phase (A4)
Given: {Q¢}, Gi)re
Find: {Ggre}
1 Vfij € Gpre, add f; to M; if applicable, where

M, is a set led by f;
2 Gpre=all existing and newborn seed feature sets
3 Return Gppe

Since the insertion phase might create new seed feature
sets, a second round of the backward phase is executed
(line A1:10). The complete execution of the third step of
iRDA eventually returns a set Gpost of multiple parsimony
models M? (see Definition 13), where we assume that the
elements (M%) of Gpost are ordered, namely according to
the R1-Correlation of their seed features that lead the par-
simony models M? (line A1:13). The order of M? in Gpost
can be an indicator for gene aggregation (line A1:14-18).

Wrapper-based evaluation scheme

The underlying paradigm of our method is to provide
multiple parsimonious gene sets instead of a unique par-
simony model as usually returned by existing feature
selection methods. Such filters produce candidate genes
sequentially one by one, which then extends also to the
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evaluation process. Unlike existing gene selectors, the
iRDA method (see Algorithm 1) selects a candidate gene
set G from Gpost, which is derived from parsimonious sets

ME[u]; i.e., iRDA aggregates candidate genes sequentially
one set by one set, not one gene by one gene. Furthermore,
the sets M¥ [u] are ranked according to the R1-correlation
of their seed features R(f¥, C) (see Definition 14).
Consequently, in order to cope with single gene vs
parsimonious sets, it is imperative to provide the neces-
sary implements for a fair comparison of candidate genes
derived from different filters. We propose a wrapper-
based evaluation scheme for evaluating different sets of
candidate genes from various filters. Before presenting
the proposed evaluation scheme, we introduce a set of
three evaluation measures that are used to assess the
classification performance of candidate genes.

Definition 17. Performance Measures.
Given a gene expression data set D, a set of candidate
genes G, and the kNN classifier, the three performance
measures of binary classification are denoted by

(a) Error(G): generalization error;
(b) AUC(G): area under the ROC curve;
(c) MCC(G): Matthews correlation coefficient.

The generalization error (Error) is an intuitive judgment
about the misclassification rate, but might not present
a valid picture if the two classes under consideration
strongly differ in size. The Matthews correlation coeffi-
cient (MCC) is generally viewed as a balanced summary
statistics that takes into account true positives & negatives
as well as false classifications [47]. The receiver operating
characteristic (ROC) curve is a plot of the true positive
rate (benefits) against the false positive rate (costs) for a
given predictor [48]; while a random predictor leads to the
AUC value of 0.5, the perfect outcome returns the AUC
value of 1.

The proposed evaluator is based on a wrapper approach
that utilises two performance measures (MCC and AUC)
in conjunction with the k-Nearest Neighbours classifi-
cation model (kNN). Additionally, a search scheme of
sequential forward selection (SES) is ‘wrapped around’
the application of MCC, AUC, and kNN. The evaluator
is denoted by MA-KkNN (MA is from the two measures
MCC and AUC). If a set of candidate genes G is given,
through the evaluation of genes one by one, conducted by
anon-parametric classification model kNN, the behaviour
of candidate genes can be evaluated by dual performance
measures and based upon a sequential forward strategy.
Here, AUC(G) and MCC(G) are chosen to find ‘promis-
ing’ genes, which are called successive victory genes, as
defined below. This way an evaluation profile (Eval) of G
is generated.
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Definition 18. Successive Victory Gene.
Let O denote the set of previously examined genes;
u(max MCC) represents the uniqueness of max MCC(OU
f). Then g is called a successive victory gene iff

arg (rr\?xMCC(O Uf)) , u(max MCC) = TRUE,
g =
arg (n&zxAUC(O U h)) , u(max MCC) = FALSE.

(24)

The value of u(max MCC) indicates how many of the
genes examined along with O have an identical value
max MCC(OUY). In case of u(max MCC) = TRUE, there
is a unique gene that dominates the performance mea-
sure MCC, and therefore gene f with maxMCC(OUY) is
selected. On the other hand, if #(max MCC) = FALSE,
then there are multiple genes along with O that have the
same maximum of MCC, and therefore the additional
measure AUC is invoked. Among the genes, a gene &
with max AUC(OUA) is selected, i.e., the selected feature
was successively ‘victorious’ in terms of MCC and AUC
performance.

The MA-KNN evaluator, shown in Algorithm 5, begins
with initial assignments of the examined gene set (O), the
maximum of MCC measures (maxMCC), and the maxi-
mum of AUC values (maxAUC) (line A5:1). Since iRDA
generates candidate genes from Gpost, the initial state of
O is therefore the first parsimonious gene set, while for
other filters the first gene identified by the filter is given
to O. We then update G by removing the initial genes and
construct an initial evaluation point E; (line A5:2—4).

The two evaluation measures AUC(OUf) and MCC(OU
f) are then computed for each gene f in G, and a successive
victory gene g can be identified out of the remaining can-
didate genes by using sequential forward selection (line
A5:7-19). The gene g is now removed from G and added
to O (line A5:20-21), and the next evaluation point E; is
created for the update of O (line A5:22). This process is
iteratively repeated until all genes in G have been exam-
ined, which means that an evaluation profile (Eval) of
candidate genes has been obtained (line A5:24).

Table 2 Cancer-related gene expression profiling benchmarks
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Algorithm 5 MA-kNN Evaluator (A5)

Given: D, G, kNN
Find: Eval

1 [Initialize (O, maxMCC, maxAUC)

2 G=G\O

3 i=]0|

4 E; = {O,Error(0), AUC(O), MCC(0O)}
5 while (G # 0)
6

7

8

9

i=i+1

foreach f € G do
compute AUC(OUf) and MCC(OUf)
if MCC(OUf) > maxMCC

10 maxMCC=MCC(OUf)
11 maxAUC=AUC(OUf)

12 g=f

13 else if MCC(OUf) = maxMCC
14 if AUC(OUf) > maxAUC
15 maxAUC=AUC(OUY)
16 g=f

17 end

18 end

19 end

20 G=G\g

21 O = 0uUg

22 E; = {0, Error(0), AUC(O), MCC(0O)}
23 end
24 Eval = {E;}

Results and discussion

Cancer benchmark datasets

Seven publicly available microarray-based gene expres-
sion benchmarks were used (see in Table 2, where IR is
the imbalance ratio) to demonstrate that the proposed
framework is potentially capable of selecting the most
discriminative candidate genes for phenotype prediction
and of finding significant genetic regulation within the
selected set of genes. The seven datasets have frequently
been used to validate the performance of cancer classifica-
tion and gene selection (the data repositories are provided
in Additional file 1: Table S1)

Dataset Class Samples Genes IR Source

1. Brain GBM/AO 50 (28/22) 12,625 1.27 (Nutt et al,, 2003 [54])
2.CNS Survivor/failure 60 (21/39) 7129 1.86 (Pomeroy et al., 2002 [55])
3.Colon Negative/positive 62 (40/22) 2000 1.82 (Alon et al., 1999 [49])

4. Leukemia ALL/AML 72 (47/25) 7129 1.88 (Golub et al,, 1999 [56])
5.Lung MPM/ADCA 181 (31/150) 12,533 4.84 (Gordon et al,, 2002 [57])
6. Lymphoma DLBCL/FL 77 (58/19) 7129 3.05 (Shipp et al., 2002 [58])

7. Prostate Tumor/normal 102 (52/50) 12,600 1.04 (Singh et al,, 2002 [59])
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The Brain experiment was designed to investigate
whether high-throughput gene expression profiling could
classify high grade gliomas better than histological classi-
fication. This data set consists of 50 samples and 12,625
probe-sets using Affymetrix Human Genome U95Av2
Array. Out of 50 high grade gliomas, there are 28 glioblas-
tomas (GBM) and 22 anaplastic oligodendrogliomas
(AO). The second experiment recorded embryonal tumor
patients in the central nervous system (CNS). There are 60
patient samples with 7129 genes. Among these samples,
21 are survivors (patients who are alive after treatment)
while 39 are failures (patients who succumbed to their
disease). The Colon experiment, introduced by Alon [49],
consists of 62 samples from the patients of colorectal can-
cer, where 22 normal labels are extracted from healthy
tissues and 40 abnormal biopsies are extracted from colon
tumors. Out of more than 6500 genes in the original
design of experiment, 2000 genes were selected to ana-
lyze by [49], based on the confidence at the measured
expression levels. The Leukemia dataset includes gene
expression profiles of two classes of bone marrow sam-
ples labeled with acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML). There are 72 samples
(47 ALL and 25 AML) and 7129 genes in this dataset.
The fifth experiment is about clinically relevant cancer
diagnostic tests of the Lung. There are 181 tissue sam-
ples profiled by 12,533 gene expression intensities. Among
these observations, 31 are of malignant pleural mesothe-
lioma (MPM) and 150 are of adenocarcinoma (ADCD).
The Lymphoma experiment was designed to delineate
diffuse large B-cell lymphoma (DLBCL) from a related
germinal center B-cell lymphoma, follicular lymphoma
(FL), and to identify rational targets for intervention. In
this dataset, there are 77 observations (58 DLBCL and 19
FL) with the interrogation of 7129 probe-sets. The last
dataset contains the expression levels of 12,600 genes for
correlates of clinical Prostate cancer behavior. There are
102 observations in total, from 52 tumor patients (labeled
as tumor) and 50 non-tumor patients (labeled as normal),
respectively.

Classification performance

To evaluate the effectiveness and characteristics of the
proposed framework, three well-known multivariate fil-
ters (mRMR, CMIM, and FCBF) that utilise information
theoretic measures are used for comparison through the
examination of the seven recent microarray-based cancer
classification datasets. Since the sample size is far smaller
than the feature dimension in a typical HTS gene expres-
sion experiment, the conventional training-test data par-
tition of 70-30 % (also known as holdout validation) is
not very appropriate for the evaluation of gene selec-
tion approaches. Thus, the procedure of leave-one-out
cross-validation (LOOCYV) is used in our experiments.
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We employ performance measures for assessing the gene
discrimination of the gene selectors under considera-
tion. The three performance measures were introduced in
Definition 17 (Error, AUC, and MCC), along with the kNN
reference classifier. The classifier is used to induct can-
didate genes identified by a filter-based feature selector
into a learning process. Here, we exploit a non-parametric
classifier, kNN (for k = 3), for building inductive models
from the results produced by gene selectors.

Parsimony model
Based upon parsimonious models (see Definition 13),
minimal feature subsets are returned by the iRDA fil-
ter and the three reference filters are evaluated by using
the three evaluation measures Error, AUC, and MCC. In
particular, we proceed as follows: The maximum cardi-
nality of ME (max|M?%|) that constitute Gpost is identified.
Each reference filter produces genes one by one, and
every round the newly produced gene along with previ-
ously examined genes are evaluated. The evaluation pro-
cess stops when max|M?| genes have been generated; if
max|M% | < 5, the process stops when five genes have been
evaluated. For each reference filter and each performance
measure (Error, AUC, and MCC), a minimal gene set with
the best performance is reported as a parsimony model for
the filter and performance measure. Out of the M% con-
stituting Gpost, iRDA reports the parsimony model with
the best performance regarding the same evaluation mea-
sures, and the outcome is then compared to the parsimony
models returned by reference filters.

In the respective tables, the best performance (within
a row) is highlighted in boldface, and the second best
evaluation result is highlighted in italics. Table 3 shows
the generalization errors of mRMR, CMIM, FCBEF, and
iRDA over the seven microarray-based benchmarks. In
six out of seven cases, iRDA returns the smallest num-
ber of misclassification, with three rate values identical to
mRMR. For iRDA, the average error rate is 3.97 %, which

Table 3 Generalisation error rate of parsimony models over
seven benchmark data using four information theoretic filters

mRMR CMIM FCBF iRDA

% # % # % # % #
Brain 6 4 8 5 4 4 4 3
CNS 1833 2 1833 2 1667 6 1333 3
Colon 6.45 5 968 2 968 2 8.06 2
Leukemia 0 4 139 5 139 3 0 3
Lung 1.1 2 055 5 055 4 055 3
Lymphoma 1.3 4 2.6 2 2468 1 1.3 3
Prostate 392 5 4.9 6 4.9 5 392 3
avg 53 371 649 386 884 357 4.45 2.85

%: misclassification rate; #: number of explored genes
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is achieved for the smallest average number of 2.85 genes
compared to the other three filters. On the third dataset,
iRDA takes the second place. Although FCBF uses only a
slightly larger average number of 3 genes, its discrimina-
tion levels are not as good as iRDA on all seven datasets.
On average, mRMR is ranked at second place with an aver-
age rate of 5.3 %, and the average number of genes (3.71)
is a bit smaller than that of CMIM (3.86). Both iRDA and
mRMR have no misclassification on the Leukemia data,
using three and four genes, respectively. All the parsimo-
nious gene sets of four filters in terms of generalisation
error rate are provided in Additional file 2: Table S2.

The results of the AUC performance are summarised
in Table 4. While iRDA displays the best results on
five datasets, mRMR returns the same value (100 %) on
Leukemia and is better on the Lymphoma datasets. In
particular, the parsimony model of iRDA achieves 100 %
on the Leukemia (also mRMR and CMIM) and Lung
datasets. On the Prostate dataset FCBF has the best AUC
performance with 97.67 % while iRDA and CMIM per-
form almost equally well (96.77 % vs 96.83 %). Overall,
iRDA exhibits on average the highest AUC (98.11 %)
with the fewest genes (4.14). The average AUC of CMIM
and mRMR are 97.15 % and 96.23 %, respectively. The
parsimonious gene sets of four filters in terms of AUC
performance are provided in Additional file 3: Table S3.

The results for the Matthews correlation coefficient are
shown in Table 5. While mRMR returns the best results on
four instances, iRDA achieves the best result on CNS and
Leukemia data, with the second best performance on the
remaining five instances. However, except for the Colon
dataset, the difference between the first place and iRDA
on four datasets (Brain, Lung, Lymphoma, and Prostate)
is relatively small, with a maximum of 0.15 %. Moreover,
with respect to the average value over all seven datasets,
iRDA shows the best MCC performance with 91.89 %,
which is achieved with the smallest average number of

Table 4 Area under the ROC curve of parsimony models over
seven benchmark data using four information theoretic filters

mRMR CMIM FCBF iRDA

% # % # % # % #
Brain 974 5 9886 4 9472 5 99.68 3
CNS 87.18 4 8968 4 91.15 5 94.08 5
Colon 925 4 96.25 5 89.72 3 98.86 4
Leukemia 100 4 100 4 9996 3 100 3
Lung 9994 4 99.66 5 97.08 4 100 4
Lymphoma 99 5 98.77 4 5036 5 9737 3
Prostate 9762 7 9683 6 97.67 7 9.77 7
avg 96.23 471 9715 457 8867 457 98.11 4.14

9%: AUC performance rate; #: number of explored genes
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Table 5 Mathew correlation coefficient of parsimony models
over seven benchmark data using four information theoretic
filters

mRMR CMIM FCBF iRDA

% # % # % # % #

Brain 8796 4 8461 5 92.26 4 9211 3

CNS 68.64 2 68.64 2 6708 6 7151 3

Colon 85.54 5 7863 2 7863 2 8335 4

Leukemia 100 4 96.95 5 9701 3 100 3

Lung 9.11 2 98.1 5 98.05 4 98.05 3

Lymphoma 96.62 4 93.01 2 0.18 5 96.5 3

Prostate 92.23 5 9065 6 9036 5 9215 3
avg 8962 371 8723 386 7480 414 90.52 3.14

9%: MCC performance rate; #: number of explored genes

genes. We note that the ranking of filters w.r.t. average per-
formance is similar to the one from Table 3, which is in
line with the general observation that both generalization
error and Matthews correlation coefficient can exhibit the
same overall predictive power. The parsimonious gene
sets of four filters in terms of MCC performance are
provided in Additional file 4: Table S4

Gene aggregation evaluation

Other than the construction of parsimonious subsets of
genes, it is also important to identify candidate genes that
could have a high classification performance and there-
fore are likely to play a role in regulatory modules or as
biomarkers. As already mentioned, existing filters pro-
duce candidate genes sequentially one by one, and then
this sequential order of genes is used to look at their clas-
sification performance. In contrast, iRDA is a filter that
produces candidate genes by sequentially aggregating par-
simonious gene sets. In this section, we use the sequential
ordering of aggregated parsimonious gene sets and com-
pare the classification performance to the three reference
filters. For each dataset, we aggregate all of the parsimo-
nious sets in Gpost, where the individual sets are dissolved
and feature pairs are decoupled, with the resulting set
being G (see aggregation part in Algorithm 1). With the
known cardinality of G, each reference filter then pro-
duces the same number of genes in a sequence. We note
that FCBF cannot generate as many genes as |G| for the
CNS and Colon datasets.

Figures 2, 3, 4, 5, 6, 7 and 8 display the classification
performance of the candidate genes produced by four
filters across the seven microarray-based gene expres-
sion profiles with regard to three performance measures.
For the Brain, CNS, and Colon data, iRDA produces the
best discriminating genes, dominating all three perfor-
mance measures, followed by CMIM and FCBE, while the
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genes selected by mRMR have a lower level of discrim-
ination. We note that except for iRDA, no other filter
dominates the three measures of Error, AUC, and MCC.
Furthermore, while iRDA achieves for individual numbers
of genes and the three measures Error, AUC, and MCC
the levels of 0, 100, 100 %, respectively, on Leukemia,
Lung, and Lymphoma data, genes produced by CMIM
and mRMR reach the perfect level only on Leukemia and
Lung data. FCBF exhibits a slightly worse performance
in these datasets. However, since there is only a marginal
difference between the filters for all three measures on
Leukemia, Lung, and Lymphoma data, the three datasets
are apparently more easily to classify w.r.t. the underly-
ing two tissue types. For the Prostate dataset, mRMR has
the best performance for the Error and MCC measures,
whereas CMIM approaches the best level for AUC. Ini-
tially, iRDA has the worst performance on Prostate data
(along with FCBF), but with an increasing number of

genes its AUC performance improves and approaches the
levels of mRMR and CMIM.

In summary, except for the Prostate dataset, iIRDA dom-
inates the performance results for an increasing number
of genes. On the other hand, the parsimonious gene
sets of mRMR can sometimes dominate top-rankings in
MCC performance, as discussed in Section “Parsimony
model”, but it seems that its discriminative power does
not improve when more genes are selected. Furthermore,
on the datasets we analysed, the performance of CMIM
improves with an increasing number of genes, which in
most cases eventually leads to better results than those
produced by mRMR and FCBE.

Evaluation by MA-kNN wrapper

In addition to the performance analysis executed in
Section “Gene aggregation evaluation” directly for the
three measures Error, AUC, and MCC, we expose the
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Fig. 9 Processing of candidate genes by MA-kNN wrapper and evaluation by Error, AUC, MCC: brain cancer
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Disease Class Samples Genes IR Source GEO

A. Multiple Myeloma (MM) Lytic lesion: N/Y 173 (36/137) 12,625 3.81 (Tian et al.,, 2003 [60]) GSE755

B. Marfan Syndrome (MS) Control/case 101 (41/60) 4132 1.46 (Yao et al, 2007 [61]) GSE8759
C.HIV Infection (HIV) Negative/positive 166 (41/125) 4776 3.05 (Morse et al.,, 2012 [62]) GSE30310
D. Neurodegeneration (AD) VH/AD11 119 (59/60) 16,515 1.02 (D'Onofrio et al., 2011 [63]) GSE63617

gene sets produced by the four filters to the wrapper-
based MA-KNN evaluator introduced in Section “Wrap-
per-based evaluation scheme”. Here, we are using the
same candidate gene sets as described at the begin-
ning of Section “Gene aggregation evaluation”, but the
candidate genes are processed by the MA-kNN wrap-
per, and the outcome is then evaluated by the three
performance measures as in Section “Parsimony model”
(Tables 3, 4 and 5) and Section “Gene aggregation evalua-
tion” (Figs. 2, 3,4, 5, 6,7 and 8).

The results are shown in Figs. 9, 10, 11, 12, 13, 14
and 15. On the datasets for Brain, CNS, and Colon, the
four methods demonstrate markedly different capacities
of discrimination between binary samples. The new fil-
ter iRDA exhibits on the three datasets overall the best
classification results and dominates for most of the gene
numbers all of the three performance measures. The
second best overall performance is displayed by CMIM,
which for some gene numbers returns better results than
iRDA. CMIM is followed by mRMR and FCBE, although

FCBF shows sometimes marginally better results for Error
and MCC than mRMR on Brain data for an increasing
number of genes. We note that for CNS and Colon data,
only iRDA achieves the optimum values of 0 and 100 %
for AUC and MCC measures, respectively. On Leukemia,
Lung, and Lymphoma data, all of the four filters perform
nearly equally and perfectly well. Regarding the Prostate
instance, the differences of performance among the four
methods become less obvious than those for the Brain,
CNS, and Colon data. However, one can observe that
overall iRDA dominates the the other three filters, fol-
lowed by CMIM, which also reaches optimum levels for
Error, AUC, and MCC. FCBF is ranked third and reaches
the optimum level for AUC, while mRMR displays on
Prostate data the least performance. In comparison to the
results from Figs. 2, 3, 4, 5, 6, 7 and 8, iRDA demon-
strates an even stronger overall performance when the
MA-KNN wrapper is applied. All the candidate genes
selected by the four filters are provided in Additional file 5:
Table S5.

Table 7 Classification performance of parsimony models over four disease gene-expression data using four information theoretic filters

mRMR CMIM FCBF iRDA

Error % # % # % # % #
Multiple Myeloma (MM) 14.45 7 14.45 6 15.03 10 16.18 10
Marfan Syndrome (MS) 3.96 4 6.93 7 11.88 3 5.94 6
HIV Infection (HIV) 13.86 8 11.45 8 15.06 7 10.84 8
Neurodegeneration (AD) 0.84 2 0 2 0.84 2 0 2
avg 8.28 525 8.21 575 10.7 55 824 6.5

AUC % # % # % # % #
Multiple Myeloma (MM) 90.71 9 90.09 9 91.26 10 89.84 9
Marfan Syndrome (MS) 98.84 4 97.2 3 93.25 7 98.76 4
HIV Infection (HIV) 91.88 8 9242 8 87.29 7 92.49 8
Neurodegeneration (AD) 100 2 100 2 100 2 100 2
avg 95.36 575 94.93 55 92.95 6.5 95.27 575

MCC % # % # % # % #
Multiple Myeloma (MM) 61.52 7 63.67 6 61.55 10 59.56 10
Marfan Syndrome (MS) 91.93 4 85.7 7 7867 6 8861 6
HIV Infection (HIV) 63.06 8 68.98 8 57.99 7 70.4 8
Neurodegeneration (AD) 98.33 2 100 2 98.33 2 100 2
avg 78.71 525 79.59 5.75 74.14 6.25 79.64 6.5

%: performance rate; #: number of explored genes
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Fig. 16 Classification performance of candidate genes found by four filters upon three measures: Multiple Myeloma
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Other disease types

Besides the cancer expression profiling benchmarks, we
have carried out the gene expression experiments on addi-
tional disease types in order to further understand the
characteristics of the new filter. The experiments concern
a variety of diseases and include larger samples, all above
100 and up to 173, and their detailed information is pro-
vided in Table 6. All the datasets are archived in Gene
Expression Omnibus (GEO) [50] and can be accessed by
their GSE Accession Number. The series GSE755 is to
profile multiple myeloma (MM) patients with (Y) and
without (N) bone lytic lesions by MRI. GSE8759 is to study
cultured skin fibroblasts from Marfan syndrome (MS)
subjects and unaffected controls of similar age and sex dis-
tributions. The identification of gene expression level in
different tissues between HIV-positive and HIV-negative
patients is represented by GSE30310. The experimen-
tal design of the last dataset is about the Alzheimer’s
like neurodegeneration (AD), using the anti-NGF AD11

transgenic mouse model, which is compared to transgenic
VH controls. Table 7 shows the classification performance
of the parsimonious models of genes selected by the four
filters over the diseases multiple myeloma, Marfan syn-
drome, HIV infection, and neurodegeneration. CMIM
dominates the first place in the average of generalisa-
tion error rates (8.21 %), while mRMR and iRDA have the
best performance regarding the average of AUC scores
(95.36 %) and MCC scores (79.64 %), respectively. In terms
of the minimal subset of selected genes, the three filters
perform not significantly differentially and outperform
FCBE.

Figures 16, 17, 18 and 19 display empirical results about
whether or not the performance can be improved if more
genes are selected. In the experiments for MS and HIV,
iRDA outperforms the other three methods and achieves
the evaluation values of 0, 100, and 100 % for Error,
AUC and MCC; whereas CMIM returns values similar
to mRMR, and both are better than FCBE. For the AD
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Fig. 17 Classification performance of candidate genes found by four filters upon three measures: Marfan Syndrome
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Fig. 23 Processing of candidate genes by MA-kNN wrapper and evaluation by Error, AUC, MCC: Neurodegeneration
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dataset, all filters perform equally, no matter what mea-
sures are used. For the disease of multiple myeloma,
CMIM performs worst, and there is no strong distinction
between iRDA, FCBF and mRMR regarding the measures
Error and AUC. Finally, the classification performance of
selected genes that are evaluated by using the MA-kNN
wrapper for the four datasets is shown in Figs. 20, 21, 22
and 23. The experimental results show that iRDA out-
performs the other methods on all four diseases, while
mRMR takes the second place, followed by FCBF and
CMIM. We also observe that the AD experiment is data
set that can be easily classified, and that MM is the most
difficult to classify, which can be seen from the MCC
performance with a level of around 0.7. All the candi-
date genes selected by the four filters are provided in
Additional file 5: Table S5.

Computation time

We conducted an experiment about computation time
with regard to the four gene selectors applied to all of the
11 gene expression profiling data in the environment of
MATLAB 7.14, with the hardware being an Intel Core i7-
3820 CPU of 3.60 GHz and a 24 GB RAM. For each of
the four filters, we measured the time required for gen-
erating candidate genes. The results are summarised in
Table 8. Not surprisingly, improved performance comes at
a price: CMIM is the fastest method, followed by mRMR,
FCBE, and iRDA. Since CMIM and mRMR are criteria-
based only filters and do not incorporate search-based
methods, they are expected to be faster than FCBF and
iRDA. Although both FCBF and iRDA utilise a heuristic
search strategy, there are two selection phases (forward
and backward) involved in iRDA. Consequently, FCBF
outperforms iRDA in terms of run-time on 7 out of the 11
data sets considered in our study. Moreover, we note that

Table 8 Computation time for gene selectors

mRMR CMIM FCBF iRDA
Brain 0.21 0.03 1.69 5.61
CNS 0.53 0.02 0.78 3.15
Colon 0.13 0.01 0.17 0.08
Leukemia 0.51 0.05 097 342
Lung 1.27 0.10 4.16 2.92
Lymphoma 0.17 0.02 0.96 312
Prostate 1.06 0.06 1.68 8.18
Multiple Myeloma 0.88 0.05 2.10 7.92
Marfan Syndrome 039 0.03 049 0.59
HIV Infection 0.41 0.03 0.59 043
Neurodegeneration 1.35 0.07 252 113
avg 0.63 0.04 1.46 332

Unit: Seconds
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iRDA generates more viable parsimonious sets to build
candidate genes, which, of course, affects the run-time.
However, all the iRDA run-time data are in the region of a
few seconds.

Stability performance

In order to assess the robustness of the four feature
selection methods, we consider two stability index-based
measures with respect to differently sized gene lists. The
Jaccard index quantifies the amount of overlap between
two datasets, ranging from 0 to 1, with 0 indicating empty
intersection and 1 indicating that the two sets are equal
(see also Tanimoto distance [51]).

Definition 19. Jaccard Index.
Given two gene lists G;, Gj, JI(G;, Gj) a stability index
called Jaccard index, which is defined as follows:
|Gi N Gl

(G, G) = —+.
JI(Gi, G)) G/ UG

The definition is extended to larger sets of gene lists in
the following way:

Definition 20. Overall Jaccard Stability.
Given a system of / gene lists U, VG;, VG; € U we define
the overall Jaccard stability of U as

-1 1
2
S = 17— ;,«;1 J(G;, G)).

The Jaccard index suffers from the problem of list-size-
bias: The more lists approach the size of the total pool of
features, the higher the probability of an overlap in pairs
of gene lists. To solve the problem, the relative weighted
consistency [52] has been introduced based on the relative
degree of randomness of the system of lists in the feature
selection process.

Definition 21. Relative Weighted Consistency.
Given a system U of [ gene lists G; C F, let 0;(f}) =
1 denote f; € G; (zero, otherwise). We set N =

Z]l-zl > _; 0j(f;), which is the total number of occurrences

of features in U, and Ry = Z;l‘=1 0;j(f). The relative

weighted consistency of U is then defined by
Srwc (U, F)
_IFIN=Q+) e Rr(Rr—1)) -N?+Q?
 F@HWN -9 - Q—-N2+Q
where Q = N(mod |F|) and g = N(mod /).

’

We compare the stability of the four filters by using
the two stability measures Sj; and Spyyc over the eleven
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Fig. 24 Box plots of the Jaccard index and the Relative Weighted Consistency (RWC) to show the stability of the four filters
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datasets (seven cancer benchmarks and four disease
experiments). For each dataset, a pool of data samples
S5 derived from the procedure of leave-one-out (LOO)
is constructed. For example, the Brain dataset consists of
22 + 28 = 50 samples, which generates 50 sets S5 of size
49. For each S5, a set of candidate genes Gj’ is produced by
each of the feature selection filters, 4 = 1, .. ., 4. For iden-
tifying the Glh, as before (see Sections “Gene aggregation
evaluation” and “Evaluation by MA-KNN wrapper”), iRDA
is executed first, which determines the cardinality of gene
lists. The other three methods subsequently generate the
same size of gene sets. Again, due to the nature of FCBF,
the method can sometimes return only a smaller portion
of genes. Figure 24 displays the results for the Overall Jac-
card Stability and the Relative Weighted Consistency as
average values over the eleven datasets. Although Sy
provides higher values than Sj; does, the two box-plots
show similar results. For both measures, iRDA is the most
stable with the least variance, followed by mRMR with
a smaller median value and a larger variance. FCBF is
slightly inferior to mRMR, while the least stable selector is
CMIM in both plots.

The details of stability measure results on each dataset
are shown in bar-charts in Fig. 25. The behaviour of the
four filters is less stable on the Brain, CNS, Colon, and
HIV datasets, except for iRDA on Brain and HIV data,
when compared to the other seven datasets. The gene lists
returned by iRDA perform better than by the other three
filters on seven datasets, specifically on Brain data. The
results for Lung data suggest that the gene lists are least
varied, such that all methods perform nearly equally well

with high index values. For the instances where mRMR
dominates the other filters, the difference between iRDA
and mRMR is only marginal. We noticed that there is a
large amount of FCBF lists whose sizes are rather small
on CNS and Colon data compared to the other three fil-
ters, but, interestingly, this causes FCBF to be the least
stable on CNS data and the most stable on Colon data.
Surprisingly, CMIM appears highly unstable on AD data,
whereas the other three filters remain very stable.

Enrichment analysis

Whilst a set of genes is selected, it is essential to under-
stand if some genes would interact with other genes in the
set. Gene set enrichment analysis (GSEA) is able to pro-
vide a good insight into the complex interaction among
genes, based on collections of a priori biologically defined
and annotated gene sets [53]. Since its introduction about
10 years ago, GSEA has become a standard procedure for
looking at groups of genes that share common biologi-
cal function, chromosomal location, or regulation. In the
present paper, we utilised for the analysis of candidate
gene sets the Molecular Signatures Database (MSigDB-v4)
in conjunction with GSEA-v2 in order to gain knowledge
about how many gene sets are statistically significantly
enriched. Table 9 reports (i) the number of native features
(denoted by N and the same as in Sections “Gene aggrega-
tion evaluation” and “Evaluation by MA-kNN wrapper”)
produced by the four filters that were considered for the
enrichment analysis over Brain, CNS, Leukemia, Lung,
Lymphoma, and Prostate datasets, and (ii) the number of
genes (denoted by C) that were actually used by GSEA

Jaccard Index

Brain CNS Colon Leukema Lung Lymph Prosiste MM MS HV AD

Fig. 25 Bar charts of the stability of the four filters across eleven datasets using Jaccard index and RWC, respectively
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Table 9 Features selected by the four filters and used in GSEA
version 2 over various cancer-related gene expression
experiments

Brain  CNS  Leukemia Lung Lymphoma Prostate
#N #C #N #C #N #C #N #C #N #C #N #C
mRMR 8 8 34 31 29 28 26 25 10 10 30 30
CMIM 8 7 34 31 29 28 26 26 10 10 30 30
FCBF 8 8 21 20 29 28 26 25 10 10 30 29
iRDA 8 7 34 31 29 29 26 23 10 9 30 26

N: Native Features; C: Collapsed Features

after the process of collapsing original features into gene
symbols. We excluded the Colon dataset, since it exploited
an array of Affymetrix Hum6000 where many ESTs are
mapped into the same gene symbol. All the collapsed
genes over six cancer benchmarks for GSEA are provided
in Additional file 6: Table Sé.

Based on the sets of collapsed features, numbers of gene
sets recognised by GSEA-v2 as statistically significant
enrichment for the six cancer types are shown in Table 10,
where GSEA employs a false discovery rate to indicate a
significance level (FDR<0.25). The results show that iRDA
produces on five out of the six datasets the largest number
of statistically enriched gene sets. CMIM occupies the sec-
ond place in this experimental study, whereas mRMR and
FCBF exhibit a similar enrichment performance. Of par-
ticular interest is that, although, for iRDA fewer candidate
genes are collapsed into gene symbols, the collapsed genes
still produced a larger number of enrichment groups.
For example, iRDA has 6, 19, and 16 enrichment groups
based on 7, 9, and 26 collapsed genes for the Brain, Lym-
phoma, and Prostate instances, respectively, while there
are a fewer enrichment groups identified for the other
three gene selectors based upon a larger number of col-
lapsed genes (see Table 9). We note that the Lung dataset
is the most imbalanced (IR = 4.84) and that the number
of samples (= 181, see Table 2) is also relatively larger
compared to the other datasets. We found that iRDA does
not perform well on the Lung dataset when compared
to CMIM, although both filters display an almost identi-
cal classification performance on this particular dataset.
From Table 10 we see that there is a far greater amount
of enrichment groups for Leukemia data, independently
of the underlying gene selector: GSEA returned 45, 21,
12, and 7 statistically significantly enriched gene sets for
iRDA, CMIM, mRMR, and FCBE. The details of all the
enrichment groups and genes are provided in Additional
file 7: Table S7.

Conclusions
A new filter, iRDA, for identifying gene-expression can-
didate genes for phenotype prediction derived from
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Table 10 Statistically significantly enriched gene sets of the four
gene selectors analysed by using GSEA version 2

Brain CNS Leuk. Lung Lymph. Prost.
mRMR T 0 12 1 1 0
CMIM 1 4 21 14 4 0
FCBF 0 0 7 0 3 0
iRDA 6 6 45 0 19 16

Leuk. Leukemia, Lymph. Lymphoma, Prost. Prostate
FDR<0.25

high-throughput screening technologies is fully intro-
duced in this paper. The filter is able to produce small
sets of discriminative genes, either in form of a parsi-
mony model or as a set of candidate genes, with an impact
on better phenotype prediction. The output produced
by iRDA meets the demands of a domain user, since a
small number of candidate genes is the preferred basis to
perform in vitro validation efficiently.

The effectiveness of iRDA was validated on eleven
datasets, including seven well-known cancer benchmarks
and four additional disease experiments. Based on the
transcriptomic profiling data, iRDA was compared to the
three information theoretic filters (mMRMR, CMIM, and
FCBF) in terms of classification performance, stability
indices, and the gene set enrichment analysis (GSEA).
According to the experimental results, we conclude that
(1) Parsimonious sets generated by iRDA have good
and comparable classification performance; (2) Candidate
genes explored by iRDA dominate the sets produced by
mRMR, CMIM, and FCBF; (3) iRDA exhibits on average
the best stability with the smallest variance; (4) There are
more sets of statistically significant enrichment in genes
selected by iRDA than in those discovered by mRMR,
CMIM, and FCBE. The performance results come at a
price in terms of run-time. However, the gene selection
is executed on all data sets within a few a seconds on
standard desktop equipment. Overall, we think that the
new iRDA filter has the potential of identifying genes that
might have an inferior relevance, but contribute strongly
to interactions between genes. Such genes, accompanied
by other genes in a signature set, could have a measur-
able impact on phenotype distinction, which would not
necessarily be seen at the level of expression data.

Additional files

Additional file 1: Table S1. Data repositories. The file provides data
repositories of seven cancer benchmarks summarised in Table 2.
(XLSX 10 kb)

Additional file 2: Table S2. Parsimonious gene sets of error performance.
The file provides all the gene sets of four filters over eleven datasets based
on generalisation error rate from Tables 3 and 7. (XLSX 19 kb)
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Additional file 3: Table S3. Parsimonious gene sets of AUC performance.
The file provides all the gene sets of four filters over eleven datasets based
on AUC measurement from Tables 4 and 7. (XLSX 20 kb)

Additional file 4: Table S4. Parsimonious gene sets of MCC performance.
The file provides all the gene sets of four filters over eleven datasets based
on MCC measurement from Tables 5 and 7. (XLSX 19 kb)

Additional file 5: Table S5. Candidate genes. The file provides all the
candidate genes selected by four filters over eleven datasets to be
evaluated in Figs. 2, 3,4,5,6,7,8, 9,10, 11,12,13,14, 15, 16,

17,18, 19,20, 21, 22 and 23. (XLSX 36 kb)

Additional file 6: Table S6. Collapsed Genes. The file is a supplement to
Table 9 to provide all the collapsed genes over six cancer benchmarks for
GSEA. (XLSX 15 kb)

Additional file 7: Table S7. GSEA Results. The file provides the details of
all the enrichment groups and genes summarised in Table 10. (XLSX 29 kb)
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